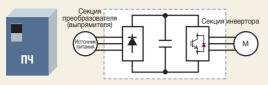


Высокопроизводительный преобразователь частоты с векторным управлением

# FRENIC-VG Series



# Начало новой эры


Инвертор FRENIC-VG с наилучшими в отрасли характеристиками открывает новую эру в истории преобразователей частоты.



В инверторе FRENIC-VG от Fuji Electric сосредоточены все технологии, необходимые для получения преобразователя частоты с наилучшими характеристиками на рынке. В дополнение к базовым характеристикам эта модель отличается следующими преимуществами: возможность применения в областях, ранее недоступных из-за технических и прочих ограничений, более простое и удобное для пользователя техническое обслуживание, безопасность и минимальное воздействие на окружающую среду. Компания Fuji Electric с гордостью представляет миру преобразователи частоты серии FRENIC-VG.

# Представление изделия

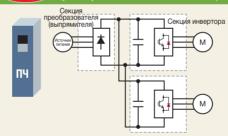
### Преобразователь частоты (Моноблочный)



Эта модель включает в себя цепи преобразователя (выпрямителя) и инвертора. Инвертор может работать от сети общего пользования.

\* Питание постоянным током также может обеспечиваться без использования схемы преобразователя (выпрямителя).

#### Конструкция


- Встроенный преобразователь (выпрямитель)
- Встроенная цепь управления
- Стандартное исполнение с внешним дросселем звена постоянного тока \*
- Опция ввода постоянного тока.
- \* Для моделей мощностью 75 кВт и выше

### Особенности

Упрощенная конфигурация для малогабаритных систем



### новинка Преобразователь частоты (Модульный)



В этой модели секции преобразователя (выпрямителя) и инвертора установлены отдельно друг от друга. В зависимости от целевого использования требуется преобразователь (диодный модуль) или ШИМ-рекуператор. Кроме того, один преобразователь может использоваться в комбинации с несколькими инверторами.

### Конструкция

- Отдельно установленный преобразователь (выпрямитель)
- Внешняя цепь управления
- Встроенный дроссель звена постоянного тока

### Особенности

- Питание постоянным током позволяет создать многоприводную систему (мульти-привод)
- Общее использование энергии линиями шины постоянного тока
- Панель уменьшенных размеров
- Легкость построения системы большой мощности
- Более простое техническое обслуживание

### новинка Преобразователь

# Диодный выпрямитель (Модульный) Серия RHD-D



Этот преобразователь используется там, где не требуется рекуперация электроэнергии.

# ШИМ-рекуператор (Моноблочный) Серия RHC-C\*



#### ШИМ-рекуператор (Модульный) Серия RHC-D\* (690 В: Ожидается поступление)

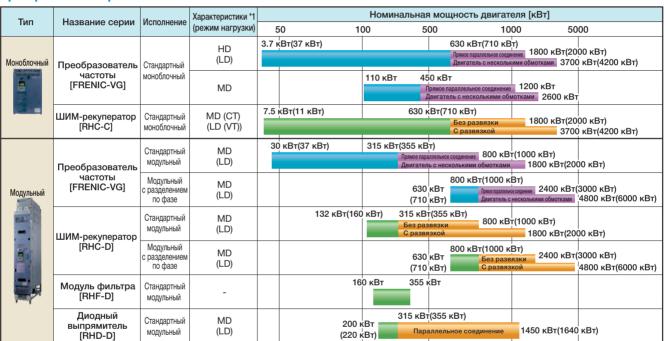


#### Модуль фильтра (Модульный) Серия RHF-D (690 В: Ожидается поступление)



Этот преобразователь используется там, где требуется рекуперация электроэнергии или контроль гармоник. Периферийные устройства должны заказываться отдельно.

\* Аппараты серий D и C отличаются по форме, но обладают одинаковыми функциями и характеристиками. Выбор модели зависит от имеющегося в распоряжении монтажного пространства и целей использования.


# Широкая линейка

### Серийная линейка (инверторы, преобразователи)

- Линейка включает в себя моноблочные и модульные устройства, что позволяет создавать системы большой мощности.
- Посредством прямого параллельного соединения устройства модульного типа обеспечивают мощность системы до 2400 кВт в режиме средней нагрузки (MD) или до 3000 кВт в режиме легкой нагрузки (LD)



#### Трехфазное напряжение 400 В



### Трехфазное напряжение 690 В

| T     |                                                      | .,                       |                  |   | Номинальная мощность двигателя [кВт] |          |                                                                               |                                  |                          |  |
|-------|------------------------------------------------------|--------------------------|------------------|---|--------------------------------------|----------|-------------------------------------------------------------------------------|----------------------------------|--------------------------|--|
| Тип   | Название серии                                       | Исполнение               | (режим нагрузки) | 5 | 50 10                                | 00 5     | 00 10                                                                         | 000 50                           | 000                      |  |
| Stack | Преобразователь<br>частоты<br>[FRENIC-VG]            | Стандартный<br>модульный | MD<br>(LD)       |   | 90 кВт<br>(110 кВт)                  |          | 00 кВт(450 кВт)<br>рименараллельное соединение<br>цвигатель с несколькими обл | 1200 кВт(1200<br>мотками 2700 кВ | )<br>кВт)<br>т(2700 кВт) |  |
| -     | ШИМ-рекуператор (RHC-D) (Ожидается поступление)      | Молупиний                | MD<br>(LD)       |   | 132 кВт<br>(160 кВт                  |          | 0 кВт(450 кВт)<br>без развязки<br>развязкой                                   | 1200 кВт(1200<br>2700 кВ         | ) кВт)<br>т(2000 кВт)    |  |
|       | Модуль фильтра<br>(RHF-D)<br>(Ожидается поступление) | Стандартный<br>модульный | -                |   | 160                                  | ) кВт 45 | 0 кВт                                                                         |                                  |                          |  |
| 9     | Диодный<br>выпрямитель<br>(RHD-D)                    | Стандартный<br>модульный | MD<br>(LD)       |   | 220<br>(250                          | кВт      | 0 кВт<br>Параллельное соединен                                                | ие 2000 кВт                      |                          |  |

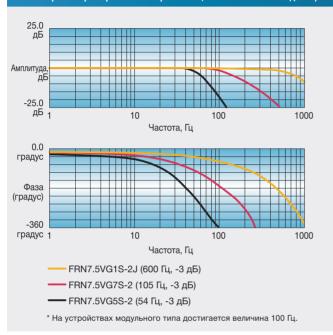
- \*1 См. характеристики (режим нагрузки) в разделе «Номинальные характеристики для целевого использования» на странице 6.
- \* В стандартную комплектацию моноблочных преобразователей частоты мощностью 160 кВт и ниже входят встроенные тормозные цепи. \* Конфигурация: Стандартный моноблок → Может использоваться с одним ПЧ. Модульный с разделением по фазе → Сгруппирован по фазе, один ПЧ состоит из трех модулей. \* Несколько ПЧ можно соединить с одним ШИМ-рекуператором и диодным выпрямителем.
- ПЧ также могут питаться постоянным током (с помощью генератора и т.п.) без использования цепи преобразователя (выпрямителя).

Расширение мощности (параллельное соединение) Преобразователи частоты

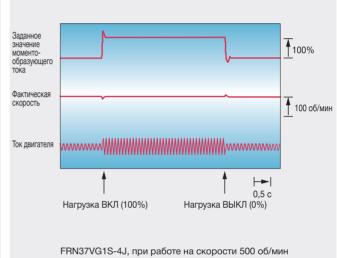
- Прямое параллельное соединение: Несколько ПЧ (до трех) управляют одним однообмоточным двигателем.
- Привод двигателей с несколькими обмотками: Специальная система электропривода для одного двигателя с несколькими обмотками. (Возможен привод с максимально

ШИМ-рекуператоры

- Трансформаторная развязка (параллельная система): Используется для разделения системы принимаемого напряжения и преобразователя с помощью трансформатора. Каждый вход преобразователя необходимо оборудовать трансформатором. (Количество параллельно соединенных устройств: не более 6)
- Без трансформаторной развязки (параллельная система): Система, в которой ШИМ-рекуператор подключается непосредственно к системе принимаемого напряжения. Необходимость в разделении с помощью трансформатора отсутствует. (Количество параллельно соединенных устройств: не более 3)

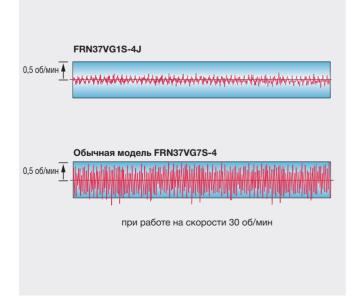



Наилучшие в отрасли характеристики управления


# Асинхронный электродвигатель

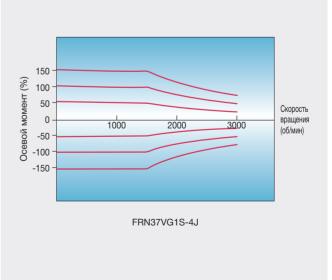
# Отклик по скорости 600 Гц

(При испытании с использованием профильного двигателя с энкодером в режиме векторного управления с датчиком скорости отклик по скорости примерно в шесть раз выше, чем на обычных моделях)




# Характеристики реагирования при ударных нагрузках




# Снижение на треть неравномерности вращения

\* По сравнению с обычными моделями Fuji Electric



# Характеристики скорости и крутящего момента

При векторном управлении с датчиком скорости



# Широкий спектр применения

### Номинальные характеристики для целевого использования

Режим работы двигателя выбирается в зависимости от уставки нагрузки. Для управления двигателями на один-два размера выше могут использоваться характеристики для средней (MD) и легкой (LD) нагрузки.

| Характеристика | Режим нагрузки         | Особенности привода                                                                     | Номинальная перегрузочная способность                        | Напряжение        | Мощность двигателя [кВт] |              |  |
|----------------|------------------------|-----------------------------------------------------------------------------------------|--------------------------------------------------------------|-------------------|--------------------------|--------------|--|
| ларактеристика | т сжим нагрузки        | особенности привода                                                                     | Поминальная перегрузочная спосооность                        | источника питания | Моноблочный              | Модульный ⁴² |  |
|                | _                      |                                                                                         |                                                              | 200 B             | 0.75 - 90                | -            |  |
| HD             | но Тяжелая<br>нагрузка | Мощный малошумный привод                                                                | Ток: 150% в теч.<br>1 мин./200% в теч. 3 с                   | 400 B             | 3.7 - 630                | -            |  |
|                |                        |                                                                                         |                                                              | 690 B             | -                        | -            |  |
|                |                        | Может использоваться<br>для управления двигателями<br>на один размер выше <sup>11</sup> |                                                              | 200 B             | =                        | -            |  |
| MD             | мо Средняя<br>нагрузка |                                                                                         | 150% в теч. 1 мин.                                           | 400 B             | 110 - 450 *2             | 30 - 800     |  |
|                |                        |                                                                                         |                                                              | 690 B             | =                        | 90 - 450     |  |
|                |                        | для управления двигателями                                                              |                                                              | 200 B             | 37 - 110                 | -            |  |
| LD             | Легкая<br>нагрузка     |                                                                                         | Моноблочный: 120% в теч. 1 мин. Модульный:110% в теч. 1 мин. | 400 B             | 37 - 710                 | 37 - 1000    |  |
|                | na pyona               | на один-два размера выше *1                                                             |                                                              | 690 B             | -                        | 110 - 450    |  |

<sup>\*1</sup> Может меняться в зависимости от характеристик двигателя и напряжения источника питания.

# Стандартная встроенная тормозная цепь с расширенным диапазоном мощности

Встроенная тормозная цепь является стандартной функцией в преобразователях частоты класса 200 В/55 кВт (и ниже) и класса 400 В/160 кВт (и ниже). Эта функция особенно полезна в случаях применения преобразователей с целью управления оборудованием, предназначенным для вертикального перемещения, которым часто приходится работать в условиях цикличной нагрузки. \* Только для моноблочных моделей

# Высокоскоростной, высокоточный контроль позиционирования (функция сервоуправления)

 Встроенный контроль позиционирования является стандартной функцией для устройств с импульсным входом задания.

(Для импульсного входа задания требуется опция OPC-VG1-PG(PR).)

- Высокоскоростной, высокоточный контроль позиционирования возможен в сочетании с шиной E-SX и 17-битным высокоразрешающим абсолютным энкодером.

(Функция сервоуправления поддерживается на предназначенных для этого моделях.) (Скоро будет доступно)

# Способ управления

Преобразователи частоты могут управлять не только асинхронными, но и синхронными двигателями. Что касается асинхронных двигателей, то пользователь может выбрать наиболее подходящий способ управления в соответствии с индивидуальными требованиями.

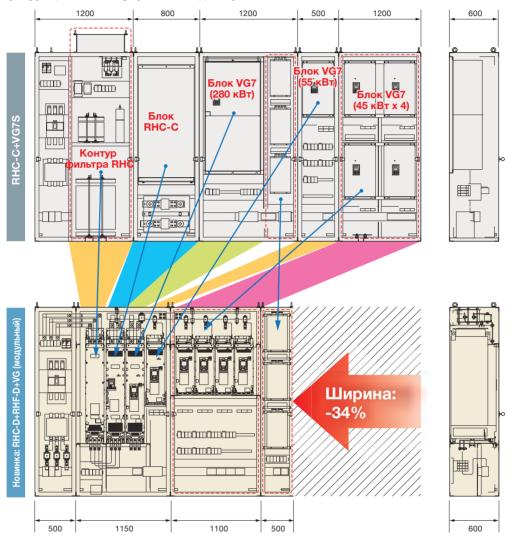
| Целевые двигатели        | Способ управления                                                                                       |
|--------------------------|---------------------------------------------------------------------------------------------------------|
| Асинхронный<br>двигатель | - Векторное управление с датчиком скорости - Векторное управление без датчика скорости - U/f управление |
| Синхронный<br>двигатель  | - Векторное управление с датчиком скорости (включая определение положения полюса)                       |

# Широкий выбор опций

- Опции, поддерживающие различные интерфейсы, например, плата высокоскоростной последовательной связи.
- Чтобы воспользоваться опциональными платами, достаточно просто их вставить в разъемы внутри преобразователя частоты. Максимальное число плат 4. (Комбинация с встроенной опцией управления: см. страницу 48)

| Категория                     |                            | Название                                                     | Туре          |  |  |
|-------------------------------|----------------------------|--------------------------------------------------------------|---------------|--|--|
| Аналоговая плата              | Синхронизированный и       | OPC-VG1-SN                                                   |               |  |  |
|                               | Преобразователь часто      | OPC-VG1-FV                                                   |               |  |  |
|                               | Плата расширения анал      | Плата расширения аналогового ввода-вывода                    |               |  |  |
| Цифровая плата                | Плата дискретного ввод     | ца                                                           | OPC-VG1-DI    |  |  |
| (для 8-разрядной шины)        | Плата расширения диск      | кретного ввода-вывода                                        | OPC-VG1-DIO   |  |  |
|                               | Плата энкодера             | Дифференциальный выход (line driver) +5 В                    | OPC-VG1-PG    |  |  |
|                               |                            | Выход с открытым коллектором (open collector)                | OPC-VG1-PGo   |  |  |
|                               |                            | Высокоразрешающий абсолютный энкодер с 17-битным разрешением | OPC-VG1-SPGT  |  |  |
|                               | Плата энкодера для привода | Выход "Line driver"                                          | OPC-VG1-PMPG  |  |  |
|                               | синхронного двигателя      | Выход "Open collector"                                       | OPC-VG1-PMPGo |  |  |
|                               | Плата связи T-Link         | OPC-VG1-TL                                                   |               |  |  |
|                               | Плата связи CC-Link        | OPC-VG1-CCL                                                  |               |  |  |
|                               | Плата высокоскоростно      | OPC-VG1-SIU                                                  |               |  |  |
| Цифровая плата                | Плата связи SX bus         |                                                              | OPC-VG1-SX    |  |  |
| (для 16-разрядной шины)       | Плата связи E-SX bus       | OPC-VG1-ESX                                                  |               |  |  |
|                               | Плата программирован       | OPC-VG1-UPAC                                                 |               |  |  |
|                               | Плата связи PROFINET-IRT   |                                                              | OPC-VG1-PNET  |  |  |
| Плата безопасности            | Плата функций безопас      | OPC-VG1-SAFE                                                 |               |  |  |
| Интерфейсная плата            | Плата связи PROFIBUS       | OPC-VG1-PDP                                                  |               |  |  |
| промышленной шины (Field bus) | Плата связи DeviceNet      | OPC-VG1-DEV                                                  |               |  |  |
| Клеммы управления             | Клеммная колодка для       | высокоскоростной связи                                       | OPC-VG1-TBSI  |  |  |

<sup>\*1</sup> ожидается поступление


<sup>\*2</sup> Несущая частота становится равной 2 кГц.



### Уменьшение размеров панели управления

Применение модульного устройства, разработанного специально для установки в панель, позволило уменьшить размер панели по сравнению с обычной конструкцией. Ширину панели удалось сократить на 34% (данный пример относится к панели управления крановой системой). Использование специальной конструкции также упростило процедуры установки в панель и замены устройств.

### <Пример конфигурации панели управления для крановой системы>



### Возможность применения с вентиляторами и насосами

Применение для создания крупногабаритных систем с вентиляторами и насосами в широком диапазоне мощности [Скоро будет доступно]

- Принудительная работа (Аварийный режим) Функция защиты ПЧ игнорируется (перезапуск), что позволяет максимально возможное время продолжать работу вентиляторов и насосов в условиях чрезвычайной ситуации, например, при пожаре.
- Функция обнаружения потери аналогового задания скорости
   Если перестают поступать аналоговые сигналы настройки скорости, работа продолжается на скорости, установленной с помощью функционального кода.
- Функция останова по снижению количества воды
- Преобразователь частоты может остановиться, если нагнетательное давление насоса повышается, а количество подаваемой воды падает.
- Широкий диапазон мощности
- Расширение диапазона мощности легко достигается при работе в параллельном режиме (прямое параллельное соединение).

| Напряжение Моноблоч |                   |            | ый: Режим | ı HD/Модульный         | Режим LD                                   |             |  |                        |                                            |
|---------------------|-------------------|------------|-----------|------------------------|--------------------------------------------|-------------|--|------------------------|--------------------------------------------|
| Исполнение          | источника питания | Линейка    |           | Расширение мощности *1 | Кол-во параллельно работающих устройств *2 | Линейка     |  | Расширение мощности *1 | Кол-во параллельно работающих устройств *2 |
| Maria               | 200 B             | до 90 кВт  |           | до 250 кВт             | 3                                          | до 110 кВт  |  | до 300 кВт             | 3                                          |
| Моноблочный         | 400 B             | до 630 кВт |           | до 1800 кВт            | 3                                          | до 710 кВт  |  | до 2000 кВт            | 3                                          |
| Ma=                 | 400 B             | до 800 кВт |           | до 2400 кВт            | 3                                          | до 1000 кВт |  | до 3000 кВт            | 3                                          |
| Модульный           | 690 B             | до 315 кВт |           | до 800 кВт             | 3                                          | до 355 кВт  |  | до 1000 кВт            | 3                                          |

<sup>\*1</sup> Значение в графе «Расширение мощности» указывает номинальную мощность двигателя.

<sup>\*2</sup> Расширение мощности относится к системе с прямым параллельным соединением. Возможно параллельное соединение максимум трех преобразователей частоты.

### Поддержка сверхвысокоскоростной шины E-SX

ПЛК (серии MICREX-SX: SPH3000MM) и преобразователь частоты FRENIC-VG можно соединить сверхвысокоскоростной коммуникационной шиной E-SX. Благодаря сверхвысокой скорости связи возможна поддержка еще более быстрых и точных устройств.



# Более простое техническое обслуживание

# Номенклатура преобразователей частоты и легкость замены (модульный

При компоновке преобразователей частоты (модульного типа) учитываются два фактора: необходимость установки в панель и облегчение замены.

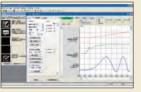
Легкость установки и замены модульных ПЧ (мощностью от 132 до 315 кВт) обеспечивается наличием колесиков.

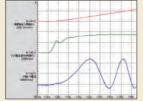
У преобразователей модульного типа (от 630 до 800 кВт) модули сгруппированы по фазе выхода (U, V и W), что позволяет снизить вес установки.

| Номинальная мощность<br>двигателя [кВт]<br>(режим MD) | 30 - 110                                                           | 132 - 315                                                                                                                        | 630 - 800                                                                                                                                                                                              |
|-------------------------------------------------------|--------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Тип                                                   | 400 B: FRN30SVG1S-4 □<br>FRN110SVG1S-4 □                           | 400 B: FRN132SVG1S-4 ☐<br>FRN315SVG1S-4 ☐                                                                                        | FRN630BVG1S-4 ☐<br>FRN800BVG1S-4 ☐                                                                                                                                                                     |
|                                                       | 690 B: FRN90SVG1S-69 □<br>FRN110SVG1S-69 □                         | 690 B: FRN132SVG1S-69 □<br>FRN450SVG1S-69 □                                                                                      |                                                                                                                                                                                                        |
| Категория                                             | Моноблочный                                                        | Моноблочный                                                                                                                      | Модульный с разделением по фазе                                                                                                                                                                        |
| Колесики                                              | Нет                                                                | Есть                                                                                                                             | Есть                                                                                                                                                                                                   |
| Схема                                                 | N N N N N N N N N N N N N N N N N N N                              | N N N N N N N N N N N N N N N N N N N                                                                                            | N                                                                                                                                                                                                      |
| Обслуживание                                          | Вес одного модуля снижен (до 50 кг и менее) для облегчения замены. | Модели с тяжелыми модулями оснащены колесиками для облегчения замены модулей. Имеется в наличии подъемное устройство для замены. | Сбалансировать вес, разделив модуль на 3 части по фазе выхода (U, V и W). В случае пробоя потребуется замена только определенной фазы. Лишь в исключительном случае производится замена целого модуля. |
| Прибл. вес [кг]                                       | 30 - 45                                                            | 95 - 135                                                                                                                         | 135×3                                                                                                                                                                                                  |



# Более простое техническое обслуживание и повышенная надежность


### Усовершенствованные функции персонального компьютера с профильным ПО (загрузчик)


Преобразователь частоты можно подключить к ПК с профильным программным обеспечением через USB-разъем (mini B) на передней панели.

- Нет необходимости в снятии передней крышки.
- Преобразователь RS-485 не требуется.
- Можно использовать промышленные кабели.

# [Диагностика неисправностей при помощи функции отслеживания]

Редактирование на экране отслеживания ПО загрузчика (Loader)





- Регистрируются внутренние данные, время и дата неисправности.
   В стандартном исполнении предусмотрены встроенные часы реального времени для обеспечения функции синхронизации.
- Резервное питание от батареи для сохранения данных.
   Данные отслеживания сохраняются в памяти даже при отключении питания.
   \*Батарея: 30 кВт или больше (встроенная аккумуляторная батарея входит в стандартную комплектацию преобразователя), до 22 кВт (опция: OPK-BP)
- Проверка форм сигналов при отслеживании выполняется с помощью программы ПК (Loader).

# Разъем USB Mini B Подключение через переднюю панель ПЧ

### [Монитор редактирования и детализации]

С помощью монитора все операции по редактированию и подробному анализу данных выполняются намного легче, чем при использовании обычного ПК с профильным ПО.

Настройка функциональных кодов

Определяемые пользователем экраны (настраиваемые экраны), отображение данных для объяснения каждого кода.

Функция отслеживания

Отслеживание в реальном времени: для долгосрочного контроля Архив операций: для подробного анализа данных за короткие периоды Журнал сообщений о неисправностях: для анализа неисправностей (хранятся три последних сообщения)

- \* Платное ПО Loader (WPS-VG1-PCL) поддерживает функцию отслеживания в реальном времени и архив операций.
- \* Платное ПО Loader (WPS-VG1-STR) содержится на CD-ROM, прилагаемом к изделию. (Может быть загружено с веб-сайта Fuji.)

# Многофункциональный пульт управления

- Широкий 7-сегментный светодиодный индикатор для удобного просмотра.
- Подсветка жидкокристаллического дисплея обеспечивает хорошую видимость даже внутри темной панели.
- Улучшенная функция копирования Функциональные коды легко копируются на другие преобразователи частоты. (Возможно сохранение функциональных кодов трех типов.) Предварительное копирование сокращает время восстановления данных, если возникают проблемы, связанные со сменой пульта при замене преобразователя.
- Доступность режима дистанционного управления.
   С помощью пульта можно осуществлять управление в дистанционном режиме, подключив удлинительный кабель к разъему RJ-45.
- Пульт оператора обеспечивает работу в толчковом режиме (JOG).
- Клавиша HELP (Справка) предназначена для вызова на экра руководства по эксплуатации.
- Поддерживаемые языки: английский, китайский, корейский (хангыль), японский



# Дополнительные функции

### Сохранение истории аварий

#### Сохраняются следующие данные по четырем Перенапряжение последним авариям: тока 2011/01/01 Время подачи звукового Низкое 2011/01/01 сигнала напряжение - Уставка скорости Значение измеренной m 2011/01/02 скорости Time of occurr 2011/01/05 Заданное значение m момента - Температура (радиатор, внутренняя температура) Время наработкиПревышение тока на \* = 50.0 Hzвыходе Заданное значение магнитного потока 210.6A Состояние входов-выходов

- В сравнении с обычными моделями увеличено количество сохраняемых аварийных событий.
- Благодаря встроенной стандартной функции часов реального времени сохраняются полные данные по 3 последним аварийным событиям: время, заданная скорость, крутящий момент, ток и прочие значения. Это позволяет проверить оборудование на наличие нарушений.
- ⇒На предыдущей модели данные по новой аварии записывались поверх существующих данных, стирая их.

Эта проблема решена с появлением новой модели преобразователя частоты VG.

#### Выбор степени критичности аварийных сигналов

Можно выбрать степень критичности аварийных сигналов (высокая или низкая). Это позволит устранить риск остановки оборудования из-за незначительной неполадки.

|                                                                                       | Релейный<br>выход [30]                 | Выход на<br>клемме Y | Выход ПЧ                                                    | Возможность<br>выбора |
|---------------------------------------------------------------------------------------|----------------------------------------|----------------------|-------------------------------------------------------------|-----------------------|
| Перегрузка двигателя,<br>ошибка сетевой платы,<br>блокировка вентилятора              | латы, (некритичная Имеется работы стег |                      | Можно выбрать<br>степень критичности<br>для каждой функции. |                       |
| и т.д.                                                                                | Выход                                  | Отсутствует          | Отключение                                                  | диналдон функция      |
| Выход из строя предохранителя,<br>чрезмерно высокий ток,<br>замыкание на землю и т.д. | Выход                                  | Отсутствует          | Отключение                                                  | Фиксированная         |

### Диагностика отказов энкодера

- Стандартная встроенная схема энкодера обнаруживает обрыв линии электропитания, а также линии передачи сигналов энкодера.
- Добавлен режим, позволяющий определить, вызвано ли это неисправностью энкодера или отказом преобразователя частоты.
   Для клеммы выходных импульсов энкодера (FA и FB) предусмотрен режим имитируемого выхода.
- Функцию можно проверить, подключив ее к входной клемме энкодера.

### Простая процедура замены охлаждающего вентилятора

### ■ Моноблочный тип

Охлаждающий вентилятор можно легко заменить без снятия передней панели и печатной платы.



### Корпус вентилятора



### ■Модульный тип

Охлаждающий вентилятор, установленный в верхней части преобразователя, можно легко заменить без извлечения модулей. Однако на преобразователях мощностью 220 кВт и выше для замены охлаждающего вентилятора требуется снять два соединительных стержня со стороны постоянного тока.



#### Корпус вентилятора



### Увеличение срока службы компонентов

Срок службы различных расходных деталей, расположенных внутри преобразователя частоты, увеличен до 10 лет. Это позволило удлинить цикл технического обслуживания оборудования.

Условия обеспечения долговечности

Моноблочный тип: температура окружающей среды 40°С, коэффициент нагрузки 100% (режим HD), 80% (режимы MD и LD) Модульный тип: температура окружающей среды 30°С, коэффициент нагрузки 100% (режим MD), 80% (режим LD)

\*Плановый срок службы является расчетной величиной и не гарантируется.

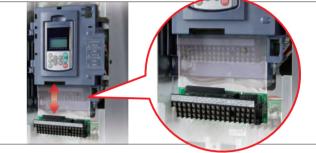
# Усовершенствованная сигнализация окончания срока службы

- Сигналы окончания срока службы можно быстро проверить на пульте оператора и на компьютере с профильным ПО (опция).
- Наличие данной сигнализации намного упрощает процедуру технического обслуживания оборудования.

| Параметры                 |                           |                                                                                                         |                                                                        |  |  |  |
|---------------------------|---------------------------|---------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|--|--|--|
| Время наработки<br>ПЧ (ч) | Количество<br>запусков ПЧ | Предупреждение о приближении срока техобслуживания оборудования Время наработки (ч) Количество запусков | Отображается<br>информация<br>о сигналах окончания<br>срока службы ПЧ. |  |  |  |

| Компонент с ограниченным сроком службы           | Расчетный срок службы* |  |
|--------------------------------------------------|------------------------|--|
| Охлаждающий вентилятор                           |                        |  |
| Сглаживающий конденсатор в главной цепи          | 10 лет                 |  |
| Электролитические конденсаторы на печатной плате |                        |  |

# Полезные функции для пробного запуска и настройки


- Адаптация функций для пробного запуска и настройки (можно задать или отменить отображение отдельных элементов в ПО Loader).
- Имита́ция аварийного сигнала, подаваемого специальной функцией на пульте оператора
- Функция сохранения данных контроля
- Имитация режима работы Имитация соединения позволяет внутренним компонентам ПЧ функционировать так, как если бы они были подключены к двигателю (без фактического соединения).
- На пульте оператора можно выполнить проверку монитора ввода-вывода с внешним входом и состояний импульсов энкодера.



- Клеммную колодку можно подключить к преобразователю частоты после завершения электромонтажных работ. Процесс монтажа упрощается.
- Время восстановления при обновлении оборудования, возникновении неполадок и замене ПЧ резко сокращается. Требуется просто установить смонтированную клеммную плату на новый преобразователь.







# Адаптация к требованиям обеспечения безопасности и охраны окружающей среды

### Соответствие международным стандартам

Модели, соответствующие международным стандартам: FRENIC-VG (Моноблочный), FRENIC-VG (Модульный, трехфазное напряжение 400 B)

- Соответствие стандартам UL и cUL, директивам EC (маркировка соответствия требованиям EC), директиве RoHS, наличие сертификата КС (Корея).
- Соответствие требованиям директивы по ЭМС при комплектации стандартной модели опциональным фильтром ЭМС.

# Европейский Союз

Директива EC (маркировка соответствия требованиям EC)

# США/Канада

Стандарты UL/cUL

# Корея Сертификация КС (Модульный тип: ожидается)







### Повышенное сопротивление воздействию окружающей среды

Сопротивление воздействию окружающей среды было повышено в сравнении с обычными преобразователями частоты.

- (1) Повышение стойкости охлаждающего вентилятора к воздействию окружающей среды.
- (2) Применение медных стержней, покрытых никелем или оловом.

Сопротивление воздействию окружающей среды преобразователей частоты FRENIC-VG было увеличено по сравнению с обычными моделями. Тем не менее, с учетом того, как именно будет использоваться преобразователь, необходимо принять во внимание наличие следующих внешних факторов:

- а. Сульфидирующий газ (производство шин, бумажное производство, очистка сточных вод, текстильная промышленность)
- b. Электропроводящая пыль и посторонние частицы (металлообработка, применение экструзионных и печатных машин, обработка твердых отходов)
- с. Прочие: специфические факторы окружающей среды, не входящие в число стандартных условий

Перед использованием изделия в вышеперечисленных условиях необходимо проконсультироваться со специалистами компании Fuji.

### Соответствие стандартам безопасности

Модели, соответствующие стандартам безопасности: FRENIC-VG (Моноблочный), FRENIC-VG (Модульный, трехфазное напряжение 400 В)

- В стандартном исполнении ПЧ оснащен функцией безопасности STO для обеспечения функциональной защиты (FS), которая соответствует стандарту IEC/EN 61800-5-2.
- Чтобы воспользоваться функциями безопасности STO, SS1, SLS и SBC, соответствующими стандарту IEC/EN 61800-5-2, можно также установить опциональную плату OPC-VG1-SAFE. (Данная опция доступна только при управлении двигателем с помощью энкодера обратной связи (замкнутый контур управления.)

# Функция безопасности STO: Безопасное отключение по крутящему моменту

Эта функция позволяет немедленно отключить выход преобразователя частоты (выходной момент двигателя).

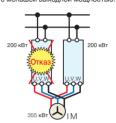
### Функция безопасности SS1: Безопасный останов 1

Эта функция позволяет снизить скорость двигателя для его отключения по крутящему моменту (с помощью функции STO), когда скорость двигатель достигнет заданной величины или истечет заданное время.

# Функция безопасности SLS: Безопасное ограничение скорости

Эта функция позволяет не допустить вращения двигателя с превышением заданного числа оборотов.

# Функция безопасности SBC: Безопасное управление тормозом


С помощью этой функции выдается сигнал безопасного управления тормозом двигателя.

### Как расширить диапазон мощности преобразователей частоты (модульного типа)

Для управления двигателем большой мощности предусмотрены система прямого параллельного соединения и система привода для двигателя с несколькими обмотками.

| Система                                |                        | Система прямого<br>параллельного соединения         | Система привода для двигателя<br>с несколькими обмотками                                                             |  |  |
|----------------------------------------|------------------------|-----------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|--|--|
|                                        | Приводной<br>двигатель | Однообмоточный двигатель                            | Двигатель с несколькими обмотками<br>(Данная система предназначена только<br>для двигателей с несколькими обмотками) |  |  |
| Особенности Ограничение длины проводки |                        | Минимальная длина проводки (L) зависит от мощности. | Конкретное ограничение отсутствует.                                                                                  |  |  |
| Режим сниженной мощности *2            |                        | Доступен                                            | Доступен<br>(Требуется переключение проводов)                                                                        |  |  |
| Количество соединенных ПЧ              |                        | от 2 до 3                                           | от 2 до 6                                                                                                            |  |  |
| Схема соединений                       |                        | При Р Р Р Р Р Р Р Р Р Р Р Р Р Р Р Р Р Р Р           | При Р ПОДКЛЮЧЕНИИ ДВУХ ПЧ                                                                                            |  |  |

- \*1)
- Требуется отдельная клеммная колодка OPC-VG1-TBSI. Работа с пониженной мощностью. В случае отказа одного из модулей при прямом параллельном соединении исправные модули ПЧ продолжают работать с меньшей выходной мощностью.



Пример: Если двигатель мощностью 355 кВт приводится в действие двумя ПЧ мощностью 200 кВт каждый, то в случае отказа одного из преобразователей работа может быть продолжена за счет мощности 200 кВт (мощность одного ПЧ).

(Примечание) Чтобы начать работу на пониженной мощности, необходимо переключить сигналы энкодера (или константы двигателя) и последовательную схему. Подробнее см. в руководстве по эксплуатации.

### ■ Таблица конфигурации систем с прямым параллельным соединением

Для повышения мощности или обеспечения резервирования системы возможно параллельное соединение двух или даже трех преобразователей частоты одинаковой мощности. Типичные комбинации показаны в Таблице 1, однако допустимы и другие конфигурации.

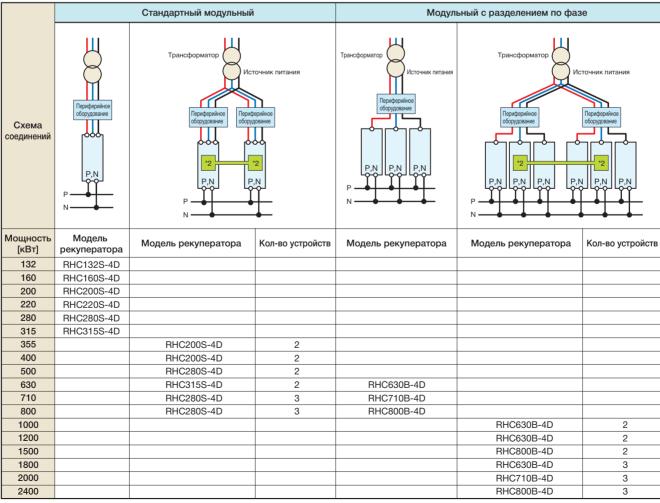
Таблица 1 Пример конфигурации системы с прямым параллельным соединением (серия 400 В, режим МD)

|                     | Стандартный модульный                   |                |                     | Модульный с разделением по фазе |                 |            |                     |            |
|---------------------|-----------------------------------------|----------------|---------------------|---------------------------------|-----------------|------------|---------------------|------------|
| Схема<br>соединений | P N N N N N N N N N N N N N N N N N N N | P,N P,N 11 UVW |                     | P,N P,N P,N W                   | P,N P,N P,N P,I | P,N P      | , N                 |            |
| Мощность<br>[кВт]   | Модель<br>ПЧ                            | Модель ПЧ      | Кол-во<br>устройств | Ток<br>[A]                      | Модель ПЧ       | Модель ПЧ  | Кол-во<br>устройств | Ток<br>[A] |
| 30                  | FRN30SVG1                               |                |                     |                                 |                 |            |                     |            |
| 37                  | FRN37SVG1                               |                |                     |                                 |                 |            |                     |            |
| 45                  | FRN45SVG1                               |                |                     |                                 |                 |            |                     |            |
| 55                  | FRN55SVG1                               |                |                     |                                 |                 |            |                     |            |
| 75                  | FRN75SVG1                               |                |                     |                                 |                 |            |                     |            |
| 90                  | FRN90SVG1                               |                |                     |                                 |                 |            |                     |            |
| 110                 | FRN110SVG1                              |                |                     |                                 |                 |            |                     |            |
| 132                 | FRN132SVG1                              |                |                     |                                 |                 |            |                     |            |
| 160                 | FRN160SVG1                              |                |                     |                                 |                 |            |                     |            |
| 200                 | FRN200SVG1                              |                |                     |                                 |                 |            |                     |            |
| 220                 | FRN220SVG1                              |                |                     |                                 |                 |            |                     |            |
| 250                 | FRN250SVG1                              |                |                     |                                 |                 |            |                     |            |
| 280                 | FRN280SVG1                              |                |                     |                                 |                 |            |                     |            |
| 315                 | FRN315SVG1                              |                |                     |                                 |                 |            |                     |            |
| 355                 |                                         | FRN200SVG1     | 2                   | 716                             |                 |            |                     |            |
| 400                 |                                         | FRN220SVG1     | 2                   | 789                             |                 |            |                     |            |
| 500                 |                                         | FRN280SVG1     | 2                   | 988                             |                 |            |                     |            |
| 630                 |                                         | FRN220SVG1     | 3                   | 1183                            | FRN630BVG1      |            |                     |            |
| 710                 |                                         | FRN280SVG1     | 3                   | 1482                            | FRN710BVG1      |            |                     |            |
| 800                 |                                         | FRN280SVG1     | 3                   | 1482                            | FRN800BVG1      |            |                     |            |
| 1000                |                                         |                |                     |                                 |                 | FRN630BVG1 | 2                   | 2223       |
| 1200                |                                         |                |                     |                                 |                 | FRN630BVG1 | 2                   | 2223       |
| 1500                |                                         |                |                     |                                 |                 | FRN800BVG1 | 2                   | 2812       |
| 1800                |                                         |                |                     |                                 |                 | FRN630BVG1 | 3                   | 3335       |
| 2000                |                                         |                |                     |                                 |                 | FRN710BVG1 | 3                   | 3905       |
| 2400                |                                         |                |                     |                                 |                 | FRN800BVG1 | 3                   | 4218       |

<sup>\*1)</sup> Для каждого модуля требуется клеммная колодка OPC-VG1 -TBSI.



Для увеличения общей мощности рекуператора можно использовать «параллельную систему без трансформатора» и «параллельную систему с трансформаторной развязкой».


|                                      | Параллельная система без трансформаторной развязки                                                                                            | Параллельная система с трансформаторной развязкой                                                                                                                      |  |
|--------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Система                              | Эта система предусматривает подключение входов рекуператора к источнику питания без разделения трансформатором.                               | Эта система предусматривает изолирование соответствующих входов рекуператора с помощью трансформатора.                                                                 |  |
| Режим сниженной мощности             | Доступен                                                                                                                                      | Доступен                                                                                                                                                               |  |
| Количество соединенных рекуператоров | от 2 до 3                                                                                                                                     | от 2 до 6                                                                                                                                                              |  |
| Схема соединений                     | Трансформатор Трансформатор Периферийное оборудование  ШИМ-рекуператор  В Периферийное оборудование  Трансформатор  Периферийное оборудование | При подключении 2 рекуператоров Трехобмоточный трансформатор (12-пульсный) Периферийное оборудование Оборудование Оборудование Твериферийное оборудование Оборудование |  |

<sup>\*2)</sup> Для каждого модуля требуется плата высокоскоростной последовательной связи OPC-VG7-SIR.
\*3) Для каждого модуля требуется плата высокоскоростной последовательной связи OPC-VG7-SI.

### ■ Таблица конфигураций параллельной системы без трансформаторной развязки

Для повышения мощности или обеспечения резервирования системы возможно параллельное соединение двух или даже трех рекуператоров одинаковой мощности. Типичные комбинации показаны в Таблице 2, однако допустимы и другие конфигурации.

Таблица 2 Пример конфигурации параллельной системы без трансформаторной развязки (серия 400 В, режим МD)



<sup>\*2)</sup> Для каждого модуля требуется плата высокоскоростной последовательной связи OPC-VG7-SIR.

# Обзор конфигураций системы

### ■ ШИМ-рекуператор + преобразователь частоты





Трансформатор (многофазный)



Источник питания



Однообмоточный двигатель



Двигатель с несколькими обмотками

CNV: ШИМ-рекуператор INV: Преобразователь частоты

Отдельный контур фильтра или модуль фильтра

Моноблочный (ВНС-С) или модульный (RHC-D)



Моноблочный или модульный ПЧ

Плата оптической связи

|    | фильтра реку                              | ператор                                                                                                                      |                             |                                                                                                                                                                                                                             |                                                                              |
|----|-------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|-----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|
| Nº | Структура системы                         | Исполнение системы                                                                                                           | Модуль фильтра<br>(RHF)(*1) | Фильтр для серии<br>RHC-C (отдельный)                                                                                                                                                                                       | Мощность двигателя<br>(Напр.: FRN315SVG1S-4□,<br>параллельное<br>соединение) |
| 1  | F C I                                     | <ul><li></li></ul>                                                                                                           | <b>©</b> Доступен           | <ul> <li>■ Моноблочный рекуператор (RHC-C)</li> <li>② Доступен</li> <li>■ Модульный рекуператор (RHC-D)</li> <li>• RHC132S 315S-4D</li> <li>→ X Недоступен (*2)</li> <li>• RHC630B 800B-4D</li> <li>→ ② Доступен</li> </ul> | до 1800 кВт<br>(6-обмоточный<br>двигатель)                                   |
| 2  | F C I                                     | X Недоступна (Использовать Систему № 3 для прямого параллельного соединения.)                                                | _                           | _                                                                                                                                                                                                                           | _                                                                            |
| 3  | F C I I I I I I I I I I I I I I I I I I   | <ul> <li>Доступна</li> <li>CNV: макс. 6 (параллельное соединение)</li> <li>INV: макс. 3 (параллельное соединение)</li> </ul> | <b>©</b> Доступен           | ■ Моноблочный рекуператор (RHC-C)  ② Доступен ■ Модульный рекуператор (RHC-D) • RHC132S 31SS-4D                                                                                                                             | до 800 кВт<br>(INV: 3 шт.,<br>параллельное<br>соединение)                    |
| 4  | F C I                                     | <ul><li></li></ul>                                                                                                           | <b>©</b> Доступен           | →× Недоступен (*2) •RHC630B 800B-4D →                                                                                                                                                                                       | до 1800 кВт<br>(6-обмоточный<br>двигатель)                                   |
| 5  | F C TEST                                  | X Недоступна  (При общем использовании выхода рекуператора применять соединение №7.)                                         | _                           | _                                                                                                                                                                                                                           | _                                                                            |
| 6  | F C TEST                                  | X Недоступна  (При общем использовании выхода рекуператора применять соединение №8.)                                         | _                           | _                                                                                                                                                                                                                           | _                                                                            |
| 7  | F C TEST TEST TEST TEST TEST TEST TEST TE | Доступна     СNV: макс. 3 (параллельное соединение) INV: макс. 6 (параллельное соединение)                                   | <b>⊚</b> Доступен           |                                                                                                                                                                                                                             | до 1800 кВт<br>(6-обмоточный<br>двигатель)                                   |
| 8  | F C T T T T T T T T T T T T T T T T T T   | <ul> <li>Доступна</li> <li>CNV: макс. 3 (параллельное соединение)</li> <li>INV: макс. 3 (параллельное соединение)</li> </ul> | <b>⊚</b> Доступен           | ■ Моноблочный рекуператор (RHC-C)  ② Доступен ■ Модульный рекуператор (RHC-D) • RHC132S 315S-4D                                                                                                                             | до 800 кВт<br>(INV: 3 шт.,<br>параллельное<br>соединение)                    |
| 9  | F C TESS                                  | <ul><li></li></ul>                                                                                                           | <b>⊚</b> Доступен           | → X Недоступен (*2) •RHC630В 800В-4D → ⊚ Доступен                                                                                                                                                                           | не более мощности<br>рекуператора                                            |
| 10 | F C TEST TEST                             | Доступна  INV: макс. 3 (параллельное соединение)                                                                             | <b>⊚</b> Доступен           |                                                                                                                                                                                                                             | не более мощности<br>рекуператора                                            |

<sup>(\*1)</sup> Модуль фильтра (RHF-D) предназначен исключительно для использования с модульным ШИМ-рекуператором (RHC-D). Его нельзя использовать с ШИМ-рекуператором моноблочно-

(Примечание 1) При использовании в системе с прямым параллельным соединением или в приводе многообмоточного двигателя необходимо, чтобы все преобразователи частоты имели одинаковую мощность.

одипаковую мощность: (Примечание 2) Если несколько ПЧ питаются от одного рекуператора, мощность рекуператора должна быть больше суммарной мощности преобразователей. (Примечание 3) Если используется система управления двигателем с прямым параллельным соединением, необходимо, чтобы длина проводки между двигателем и ПЧ была как можно

(Примечание 4) Силовое питание для всех рекуператоров должно включаться одновременно.

<sup>(\*2)</sup> Следует обратить внимание, что имеются ограничения при использовании фильтра серии RHC (приобретается отдельно) с ШИМ-рекуператором модульного типа (RHC-D). Для получения дополнительной информации обратиться в Fuji.

### ■ Диодный выпрямитель (RHD-D) + преобразователь частоты



Источник питания



Однообмоточный двигатель

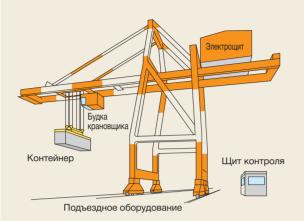


Многообмоточный двигатель

INV: Преобразователь частоты






Моноблочный или модульный ПЧ ТВЫ Плата оптической связи (опция)

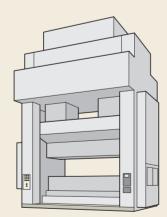
| Nº |                              | Структура системы                                | Тип системы<br>Мощность двигателя<br>(общая) (*1)                                                                                                               | Примечания                                                                                                                                                                                                                                                                                                                        |
|----|------------------------------|--------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1  | RFI:INV= 1:N                 | RFI TBS1 UЛИ                                     | Система с прямым<br>параллельным соединением<br>Многообмоточная система<br>Номинальная длительная<br>мощность (общая)<br>MD: до 315 кВт<br>LD: до 355 кВт       |                                                                                                                                                                                                                                                                                                                                   |
| 2  | RFI:INV= 2:2<br>RFI:INV= 3:3 | RFI TBS:                                         | Многообмоточная<br>система<br>Номинальная длительная<br>мощность (общая)<br>MD: до 945 кВт<br>LD: до 1065 кВт                                                   | Если не применяется общая шина для выхода выпрямителя (выход постоянного тока)     Не применяется с системами с прямым параллельным соединением                                                                                                                                                                                   |
| 3  | RFI:INV= 2:N<br>RFI:INV= 3:N | RFI TBSI NJU | Система с прямым<br>параллельным<br>соединением<br>Многообмоточная<br>система<br>Номинальная длительная<br>мощность (общая)<br>MD: до 869 кВт<br>LD: до 979 кВт | Для выхода выпрямителя (выход постоянного тока) должна применяться общая шина.     Имеются ограничения, касающиеся параметров соединения между трансформатором и ПЧ.     Искажение входного напряжения (3%, по стандартам МЭК)     Имеются ограничения, касающиеся проводки между входом питания и общей шиной постоянного тока.  |
| 4  | RFI:INV= 2:2                 | ACR RFI TBSI                                     | Многообмоточная<br>система<br>Номинальная<br>длительная мощность<br>(общая)<br>MD: до 548 кВт<br>LD: до 617 кВт                                                 | Если не применяется общая шина для выхода выпрямителя (выход постоянного тока)     Не применяется с системами с прямым параллельным соединением     Искажение входного напряжения (3%, по стандартам МЭК)     Использов                                                                                                           |
| 5  | RFI:INV= 2:N                 | ACR RFI TBSI ИЛИ ACR RFI TBSI                    | Система с прямым параллельным соединением Многообмоточная система Номинальная длительная мощность (общая) МD: до 548 кВт LD: до 617 кВт                         | 1) Искажение входного напряжения (3%, по стандартам МЭК) 2) Использовать входной дроссель.                                                                                                                                                                                                                                        |
| 6  | RFI:INV= 4:N                 | ACR RFI I WJJU WJJU WJJU WJJU WJJU WJJU WJJU W   | Система с прямым параллельным соединением Многообмоточная система  Номинальная длительная мощность (общая) МD: до 970 кВт LD: до 1093 кВт                       | При использовании конфигурации с 4-мя или 6-ю выпрямителями  1) Для выхода выпрямителя (выход постоянного тока) должна применяться общая шина.  2) Имеются ограничения, касающиеся параметров соединения между трансформатором и ПЧ.  3) Искажение входного напряжения (3%, по стандартам МЭК)  4) Использовать входной дроссель. |
| 7  | RFI:INV= 6:N                 | RFI I I I I I I I I I I I I I I I I I I          | Система с прямым параллельным соединением Многообмоточная система  Номинальная длительная мощность (общая) МD: до 1450 кВт LD: до 1640 кВт                      | При использовании конфигурации с 6-ю выпрямителями  1) Для выхода выпрямителя (выход постоянного тока) должна применяться общая шина.  2) Имеются ограничения, касающиеся параметров соединения между трансформатором и ПЧ.  3) Искажение входного напряжения (3%, по стандартам МЭК)  4) Использовать входной дроссель.          |

<sup>(\*1)</sup> Мощность двигателя рассчитывается на основе напряжения питания 400 В.
(Примечание 1) В системах с прямым параллельным соединением и в системах привода многообмоточных двигателей следует использовать преобразователи частоты, имеющие одинаковую мощность.
(Примечание 2) Силовое питание для всех рекуператоров должно включаться одновременно.

# Примеры применения

# Большие и мостовые краны




### Высокая надежность

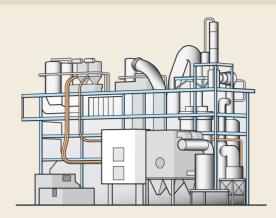
Долговечный и высоконадежный преобразователь частоты серии VG для обслуживания кранового оборудования. Функция отслеживания сообщений о неисправностях позволяет легко диагностировать нарушение.

### Поддержка системы шин

Система шин обеспечивает централизованное управление подъемом, поперечным перемещением и транспортировкой груза на тележке, а также централизованный контроль рабочих условий.

# Сервопрессы: крупногабаритные (автомобилестроение) и малогабаритные (например, станки для обжима клемм)




### Контроль позиционирования

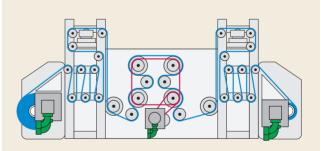
Положение пресса контролируется на основе команд позиционирования, которые непрерывно подает ЧПУ верхнего уровня. Высокочувствительный контроль способствует сокращению рабочего цикла.

### Точная синхронизация

Для увеличения усилия крупногабаритные машины приводятся в действие несколькими двигателями. При помощи высокоскоростной шины можно обеспечить контроль с точной синхронизацией нескольких преобразователей частоты и двигателей.

# Применение на промышленных предприятиях




### Высокоскоростное и высокоточное управление

Помимо высокой скорости и точности, преобразователь частоты серии VG обеспечивает стабильную работу оборудования с большой надежностью и долговечностью. Функция отслеживания сообщений о неисправностях позволяет, в случае нарушения, легко диагностировать причину возникшей проблемы.

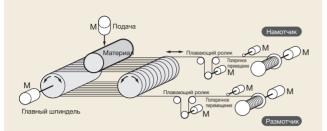
### Поддержка системы шин

Обеспечение централизованного управления и контроля за счет поддержки различных промышленных шин.

# Намоточное оборудование (намотка металлопродукции и бумаги)



### Регулирование натяжения


Усовершенствованная функция регулирования намотки по типу натяжения с высокоточным контролем крутящего момента. Усовершенствованная функция регулирования намотки по типу плавающего ролика за счет управления скоростью с быстрым откликом.

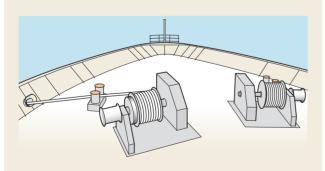
### Системная поддержка

Контроллер, рассчитывающий диаметр намотки, обеспечивает постоянное регулирование натяжения.



# Подающая деталь устройства для изготовления полупроводников, проволочная пила

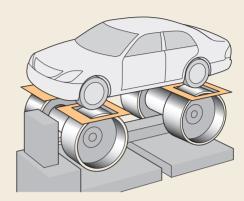



### Плавная характеристика крутящего момента

Плавная характеристика привода с подавлением пульсаций крутящего момента способствует качеству механической обработки.

### Системная поддержка

Система становится более простой и экономичной благодаря использованию одной и той же системы шин для главной оси (шпинделя) и других осей (поперечного перемещения и намотки), приводимых в действие сервоприводами малой мощности.


# Корабельная лебедка

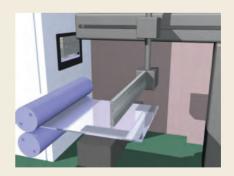


### Высокая надежность и регулирование натяжения

Регулирование крутящего момента вплоть до сверхнизких значений скорости при помощи бессенсорной функции. Обеспечение стабильной работы привода в условиях колебаний нагрузки, вызванных волнами.

# Оборудование для испытания автомобилей




### Высокочувствительное регулирование

Для испытаний двигателей и трансмиссии доступны функции регулирования высокоскоростного вращения и крутящего момента с быстрым откликом.

### Системная поддержка

Возможна поддержка системы, обеспечивающей, в комбинации с контроллером, функцию имитации инерции кузова для аппаратуры испытания тормозов.

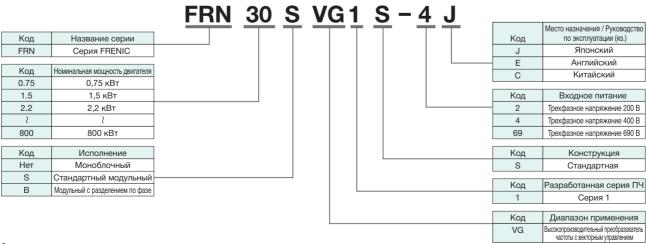
# Летучие ножницы (Резка в процессе движения)



### Контроль позиционирования

Контроль положения выполняется в соответствии с командами позиционирования, подаваемыми ЧПУ верхнего уровня. Станок режет материал, двигаясь с одинаковой с ним скоростью.

### Системная поддержка

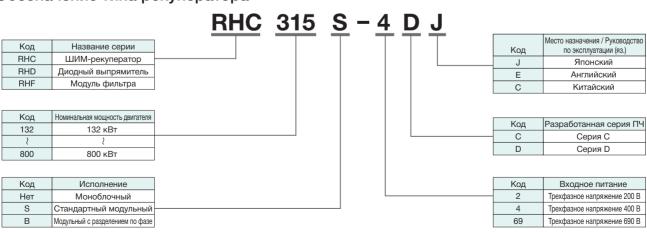

Контроллер верхнего уровня конфигурирует систему, синхронизируя оси подачи материала, подачи ножа и реза.

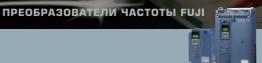
# Модельный ряд (преобразователь частоты)

|                                           | Серия                             | 200 B                 |                                   | Серия 400 В            |                       |
|-------------------------------------------|-----------------------------------|-----------------------|-----------------------------------|------------------------|-----------------------|
|                                           | Монобл                            | почный                |                                   | Моноблочный            |                       |
| оминальная мощность<br>двигателя<br>(кВт) | HD<br>(150%, 1 мин./200%, 3 сек.) | LD<br>(120%, 1 мин.)  | HD<br>(150%, 1 мин./200%, 3 сек.) | МD<br>(150%, 1 мин.)   | LD<br>(120%, 1 мин.)  |
| Режим нагрузки                            | Режим высокой нагрузки            | Режим низкой нагрузки | Режим высокой нагрузки            | Режим средней нагрузки | Режим низкой нагрузки |
| 0.75                                      | FRN0.75VG1S-2                     |                       |                                   |                        |                       |
| 1.5                                       | FRN1.5VG1S-2                      |                       |                                   |                        |                       |
| 2.2                                       | FRN2.2VG1S-2                      |                       |                                   |                        |                       |
| 3.7                                       | FRN3.7VG1S-2                      |                       | FRN3.7VG1S-4                      |                        |                       |
| 5.5                                       | FRN5.5VG1S-2                      |                       | FRN5.5VG1S-4                      |                        |                       |
| 7.5                                       | FRN7.5VG1S-2                      |                       | FRN7.5VG1S-4                      |                        |                       |
| 11 =                                      | FRN11VG1S-2                       |                       | FRN11VG1S-4 □                     |                        |                       |
| 15                                        | FRN15VG1S-2 □                     |                       | FRN15VG1S-4 □                     |                        |                       |
| 18.5                                      | FRN18.5VG1S-2                     |                       | FRN18.5VG1S-4 □                   |                        |                       |
| 22                                        | FRN22VG1S-2                       |                       | FRN22VG1S-4 □                     |                        |                       |
| 30                                        | FRN30VG1S-2                       |                       | FRN30VG1S-4                       |                        |                       |
| 37                                        | FRN37VG1S-2                       | FRN30VG1S-2           | FRN37VG1S-4 □                     |                        | FRN30VG1S-4           |
| 45                                        | FRN45VG1S-2                       | FRN37VG1S-2           | FRN45VG1S-4 □                     |                        | FRN37VG1S-4           |
| 55                                        | FRN55VG1S-2                       | FRN45VG1S-2           | FRN55VG1S-4 □                     |                        | FRN45VG1S-4           |
| 75                                        | FRN75VG1S-2                       | FRN55VG1S-2           | FRN75VG1S-4 □                     |                        | FRN55VG1S-4           |
| 90                                        | FRN90VG1S-2                       | FRN75VG1S-2           | FRN90VG1S-4                       |                        | FRN75VG1S-4           |
| 110                                       |                                   | FRN90VG1S-2           | FRN110VG1S-4                      | FRN90VG1S-4            | FRN90VG1S-4           |
| 132                                       |                                   |                       | FRN132VG1S-4                      | FRN110VG1S-4           | FRN110VG1S-4          |
| 160                                       |                                   |                       | FRN160VG1S-4                      | FRN132VG1S-4 🗌         | FRN132VG1S-4          |
| 200                                       |                                   |                       | FRN200VG1S-4                      | FRN160VG1S-4           | FRN160VG1S-4          |
| 220                                       |                                   |                       | FRN220VG1S-4                      | FRN200VG1S-4           | FRN200VG1S-4          |
| 250                                       |                                   |                       |                                   | FRN220VG1S-4 🗌         |                       |
| 280                                       |                                   |                       | FRN280VG1S-4                      |                        | FRN220VG1S-4          |
| 315                                       |                                   |                       | FRN315VG1S-4                      | FRN280VG1S-4           |                       |
| 355                                       |                                   |                       | FRN355VG1S-4                      | FRN315VG1S-4 🗌         | FRN280VG1S-4 □        |
| 400                                       |                                   |                       | FRN400VG1S-4                      | FRN355VG1S-4 🗌         | FRN315VG1S-4          |
| 450                                       |                                   |                       |                                   | FRN400VG1S-4           | FRN355VG1S-4          |
| 500                                       |                                   |                       | FRN500VG1S-4                      |                        | FRN400VG1S-4 □        |
| 630                                       |                                   |                       | FRN630VG1S-4                      |                        | FRN500VG1S-4          |
| 710                                       |                                   |                       |                                   |                        | FRN630VG1S-4          |
| 800                                       |                                   |                       |                                   |                        |                       |
| 1000                                      |                                   |                       |                                   |                        |                       |

<sup>\*</sup> Если при использовании преобразователя частоты от мод. FRN55VG1S-2J/4J и далее (номинальная мощность двигателя 75 кВт и выше) приводные двигатели превосходят преобразователь на один или более размеров, то предусмотренный в качестве стандартного компонента дроссель звена постоянного тока будет отличаться в зависимости от режима нагрузки (HD, MD и LD). (Мощность двигателя при этом увеличивается на 1 размер.)

### Кодировка номера модели





Внимание! Информация об изделии, приведенная в этом документе, предназначена для выбора модели. При использовании изделия необходимо внимательно прочитать руководство по эксплуатации и обеспечить надлежащее применение.

# Модельный ряд (рекуператор)

|                                            | Серия                    | 200 B                    |                          |                          | Серия 400 В            |                       |                           |
|--------------------------------------------|--------------------------|--------------------------|--------------------------|--------------------------|------------------------|-----------------------|---------------------------|
|                                            |                          | ный (ШИМ)                | Моноблоч                 | ный (ШИМ)                |                        | ый (ШИМ)              | Модуль фильтра            |
| Номинальная мощность<br>двигателя<br>(кВт) | HD(СТ)<br>(150%, 1 мин.) | LD(VT)<br>(120%, 1 мин.) | HD(CT)<br>(150%, 1 мин.) | LD(VT)<br>(120%, 1 мин.) | МD<br>(150%, 1 мин.)   | LD<br>(110%, 1 мин.)  | Отдельный фильтр<br>RHC-D |
| Режим нагрузки                             | Режим высокой нагрузки   | Режим низкой нагрузки    | Режим высокой нагрузки   | Режим низкой нагрузки    | Режим средней нагрузки | Режим низкой нагрузки | -                         |
| 7.5                                        | RHC7.5-2C                |                          | RHC7.5-4C                |                          |                        |                       |                           |
| 11                                         | RHC11-2C                 | RHC7.5-2C                | RHC11-4C                 | RHC7.5-4C                |                        |                       |                           |
| 15                                         | RHC15-2C                 | RHC11-2C                 | RHC15-4C                 | RHC11-4C                 |                        |                       |                           |
| 18.5                                       | RHC18.5-2C               | RHC15-2C                 | RHC18.5-4C               | RHC15-4C                 |                        |                       |                           |
| 22                                         | RHC22-2C                 | RHC18.5-2C               | RHC22-4C                 | RHC18.5-4C               |                        |                       |                           |
| 30                                         | RHC30-2C                 | RHC22-2C                 | RHC30-4C                 | RHC22-4C                 |                        |                       |                           |
| 37                                         | RHC37-2C                 | RHC30-2C                 | RHC37-4C                 | RHC30-4C                 |                        |                       |                           |
| 45                                         | RHC45-2C                 | RHC37-2C                 | RHC45-4C                 | RHC37-4C                 |                        |                       |                           |
| 55                                         | RHC55-2C                 | RHC45-2C                 | RHC55-4C                 | RHC45-4C                 |                        |                       |                           |
| 75                                         | RHC75-2C                 | RHC55-2C                 | RHC75-4C                 | RHC55-4C                 |                        |                       |                           |
| 90                                         | RHC90-2C                 | RHC75-2C                 | RHC90-4C                 | RHC75-4C                 |                        |                       |                           |
| 110                                        |                          | RHC90-2C                 | RHC110-4C                | RHC90-4C                 |                        |                       |                           |
| 132                                        |                          |                          | RHC132-4C                | RHC110-4C                | RHC132S-4D             |                       | RHF160S-4D                |
| 160                                        |                          |                          | RHC160-4C                | RHC132-4C                | RHC160S-4D             | RHC132S-4D□           | RHF160S-4D                |
| 200                                        |                          |                          | RHC200-4C                | RHC160-4C                | RHC200S-4D             | RHC160S-4D            | RHF220S-4D =              |
| 220                                        |                          |                          | RHC220-4C                | RHC200-4C                | RHC220S-4D             | RHC200S-4D            | RHF220S-4D                |
| 250                                        |                          |                          |                          |                          |                        |                       |                           |
| 280                                        |                          |                          | RHC280-4C                | RHC220-4C                | RHC280S-4D             |                       | RHF280S-4D                |
| 315                                        |                          |                          | RHC315-4C                | RHC280-4C                | RHC315S-4D             | RHC280S-4D□           | RHF355S-4D                |
| 355                                        |                          |                          | RHC355-4C                | RHC315-4C                |                        | RHC315S-4D            | RHF355S-4D                |
| 400                                        |                          |                          | RHC400-4C                | RHC355-4C                |                        |                       |                           |
| 450                                        |                          |                          |                          |                          |                        |                       |                           |
| 500                                        |                          |                          | RHC500-4C                | RHC400-4C                |                        |                       |                           |
| 630                                        |                          |                          | RHC630-4C                |                          | RHC630B-4D             |                       |                           |
| 710                                        |                          |                          |                          |                          | RHC710B-4D             | RHC630B-4D□           |                           |
| 800                                        |                          |                          |                          |                          | RHC800B-4D             | RHC710B-4D            |                           |
| 1000                                       |                          |                          |                          |                          |                        | RHC800B-4D            |                           |

# Обозначение типа рекуператора







# Стандартные технические характеристики

# Режим HD для больших перегрузок (моноблочный тип)

### 3-фазное напряжение 200 В

|            | Тиπ FRN⊡ VG1S-2□                                                                | 0.75     | 1.5         | 2.2          | 3.7         | 5.5         | 7.5          | 11            | 15          | 18.5          | 22             | 30           | 37           | 45           | 55                 | 75                  | 90         |
|------------|---------------------------------------------------------------------------------|----------|-------------|--------------|-------------|-------------|--------------|---------------|-------------|---------------|----------------|--------------|--------------|--------------|--------------------|---------------------|------------|
| Ном        | инальная мощность двигателя [кВт]                                               | 0.75     | 1.5         | 2.2          | 3.7         | 5.5         | 7.5          | 11            | 15          | 18.5          | 22             | 30           | 37           | 45           | 55                 | 75                  | 90         |
| Ном        | инальная мощность [кВА] (*1)                                                    | 1.9      | 3.0         | 4.1          | 6.8         | 10          | 14           | 18            | 24          | 28            | 34             | 45           | 55           | 68           | 81                 | 107                 | 131        |
| Ном        | инальный ток [А]                                                                | 5        | 8           | 11           | 18          | 27          | 37           | 49            | 63          | 76            | 90             | 119          | 146          | 180          | 215                | 283                 | 346        |
| Ном        | инальная перегрузочная способность                                              |          |             |              |             | 150%        | номин        | ального       | о тока -    | – 1 мин       | . (*2), 2      | 00% - 3      | 3 c (*3)     |              |                    |                     |            |
| IT.        | Основное электропитание<br>Фазы, напряжение, частота                            | 3 фаз    | вы, 200     | – 230 E      | 3, 50/60    | ) Гц        |              |               |             |               |                | 3 фа         |              |              | B/50 Гі<br>B/60 Гі |                     |            |
| питания    | Дополнительный вход источника питания цепи управления Фазы, напряжение, частота | 1 фаз    | ва, 200     | – 230 E      | 3, 50/60    | Гц          |              |               |             |               |                |              |              |              |                    |                     |            |
| Напряжение | Дополнительный вход питания вентилятора Фазы, напряжение, частота (*5)          |          |             |              |             |             | -            |               |             |               |                |              | 1 фа:        |              |                    | В, 50 Гі<br>В/60 Гі |            |
| РОП        | Допустимые отклонения напряжения/частоты                                        | Напр     | яжение      | е: от +1     | 0 до -1     | 5 % (H      | есимме       | трия на       | апряже      | ний не        | более          | 2 % (*6      | )), част     | ота: от      | +5 до -            | -5 %                |            |
| Ηa         | Номинальный ток [A] (c DCR)                                                     | 3.2      | 6.1         | 8.9          | 15.0        | 21.1        | 28.8         | 42.2          | 57.6        | 71.0          | 84.4           | 114          | 138          | 167          | 203                | 282                 | 334        |
|            | (*7) (без DCR)                                                                  | 5.3      | 9.5         | 13.2         | 22.2        | 31.5        | 42.7         | 60.7          | 80.1        | 97.0          | 112            | 151          | 185          | 225          | 270                | _                   | -          |
|            | Требуемая мощность источника питания [кВА] (*8)                                 | 1.2      | 2.2         | 3.1          | 5.2         | 7.4         | 10           | 15            | 20          | 25            | 30             | 40           | 48           | 58           | 71                 | 98                  | 116        |
| Спо        | соб торможения / тормозной момент                                               | Контроль | разрядки эн | ергии тормоз | ным резисто | ром: 150% т | ормозного мо | омента, отдел | ьный тормоз | вной резистор | о (опция), отд | јельный торм | озной модули | ь (опция для | моделей от F       | RN75VG1S-2          | 🗆 и далее) |
| Hec        | ущая частота [кГц] (*9)                                                         |          |             |              |             |             |              | 2 -           | 15          |               |                |              |              |              |                    | 2 -                 | 10         |
| При        | ібл. вес [кг]                                                                   | 6.2      | 6.2         | 6.2          | 6.2         | 6.2         | 6.2          | 11            | 11          | 11            | 12             | 25           | 32           | 42           | 43                 | 62                  | 105        |
| Исп        | олнение                                                                         |          |             |              | IP20 за     | крыто       | e, UL от     | крытоє        | )           |               |                | IP00 отк     | рытое, UL    | открытое     | (опционал          | 1ьно IP20 з         | акрытое)   |

### 3-фазное напряжение 400 В

|            | paonos nanphikom                                                                |       |          |          |          |        |          |         |          |          |           |          |         |          |           |           |         |                  |          |          |          |          |         |        |          |
|------------|---------------------------------------------------------------------------------|-------|----------|----------|----------|--------|----------|---------|----------|----------|-----------|----------|---------|----------|-----------|-----------|---------|------------------|----------|----------|----------|----------|---------|--------|----------|
|            | Тип FRN□VG1S-4□                                                                 | 3.7   | 5.5      | 7.5      | 11       | 15     | 18.5     | 22      | 30       | 37       | 45        | 55       | 75      | 90       | 110       | 132       | 160     | 200              | 220      | 280      | 315      | 355      | 400     | 500    | 630      |
| Ном        | инальная мощность двигателя [кВт]                                               | 3.7   | 5.5      | 7.5      | 11       | 15     | 18.5     | 22      | 30       | 37       | 45        | 55       | 75      | 90       | 110       | 132       | 160     | 200              | 220      | 280      | 315      | 355      | 400     | 500    | 630      |
| Ном        | инальная мощность [кВА] (*1)                                                    | 6.8   | 10       | 14       | 18       | 24     | 29       | 34      | 45       | 57       | 69        | 85       | 114     | 134      | 160       | 192       | 231     | 287              | 316      | 396      | 445      | 495      | 563     | 731    | 891      |
| Ном        | инальный ток [А]                                                                | 9.0   | 13.5     | 18.5     | 24.5     | 32.0   | 39.0     | 45.0    | 60.0     | 75.0     | 91.0      | 112      | 150     | 176      | 210       | 253       | 304     | 377              | 415      | 520      | 585      | 650      | 740     | 960    | 1170     |
| Ном        | инальная перегрузочная способность                                              | ,     |          |          |          |        |          | 150     | % но     | омин     | альн      | ого т    | ока -   | -1 м     | ин. (*    | 2), 20    | 00%     | - 3 c            | (*3)     |          |          |          |         |        |          |
| Я          | Основное электропитание<br>Фазы, напряжение, частота                            | 3 ф   | азы,     | 380      | - 480    | ) B, 5 | 0/60     | Гц      |          |          |           |          | 3       | фазь     |           |           |         | 3/50 Г<br>3/60 Г |          | )        |          |          |         |        |          |
| питания    | Дополнительный вход источника питания цепи управления Фазы, напряжение, частота | 1 ф   | аза,     | 380 -    | - 480    | B, 5   | 0/60     | Гц      |          |          |           |          |         |          |           |           |         |                  |          |          |          |          |         |        |          |
| Напряжение | Дополнительный вход питания вентилятора Фазы, напряжение, частота (*5)          |       |          |          |          |        | -        |         |          |          |           |          | 1       | фаза     |           |           |         | , 50 Г<br>8/60 Г |          | )        |          |          |         |        |          |
| пря        | Допустимые отклонения напряжения/частоты                                        | Har   | тряж     | ение     | : OT -   | +10 д  | o -15    | 5 % (   | Hecv     | мме      | трия      | напр     | яже     | ний н    | не бо     | лее 2     | 2 % (   | (*6)), '         | часто    | ота: с   | т +5     | до -     | 5 %     |        |          |
| На         | Номинальный ток [A] (c DCR)                                                     | 7.5   | 10.6     | 14.4     | 21.1     | 28.8   | 35.5     | 42.2    | 57.0     | 68.5     | 83.2      | 102      | 138     | 164      | 210       | 238       | 286     | 357              | 390      | 500      | 559      | 628      | 705     | 881    | 1115     |
|            | (*7) (без DCR)                                                                  | 13.0  | 17.3     | 23.2     | 33       | 43.8   | 52.3     | 60.6    | 77.9     | 94.3     | 114       | 140      | _       | _        | _         | _         | -       | _                | _        | _        | _        | -        | -       | -      | -        |
|            | Требуемая мощность источника питания [кВА] (*8                                  | 5.2   | 7.4      | 10       | 15       | 20     | 25       | 30      | 40       | 48       | 58        | 71       | 96      | 114      | 140       | 165       | 199     | 248              | 271      | 347      | 388      | 436      | 489     | 610    | 773      |
| Спо        | соб торможения / тормозной момент                                               | Контр | оль разр | ядки эне | ргии тор | мозным | резистор | юм: 150 | % тормо: | зного мо | мента, от | гдельный | тормозн | юй резис | стор (опь | µя), отде | льный т | ормозноі         | й модуль | (опция д | ля модел | ей от FR | N200VG1 | IS-4⊡I | и далее) |
| Hec        | ущая частота [кГц] (*9)                                                         |       |          |          |          |        | 2 - 1    | 5       |          |          |           |          |         |          |           |           | 1       | 2 - 10           | )        |          |          |          |         | 2 -    | - 5      |
| При        | ібл. вес [кг]                                                                   | 6.2   | 6.2      | 6.2      | 11       | 11     | 11       | 11      | 25       | 26       | 31        | 33       | 42      | 62       | 64        | 94        | 98      | 129              | 140      | 245      | 245      | 330      | 330     | 555    | 555      |
| Исп        | олнение                                                                         | IP2   | 0 зак    | рыт      | oe, U    | L otk  | рытс     | ре      |          | IP(      | 00 от     | крыт     | oe, L   | JL от    | крыт      | oe (o     | пцис    | ональ            | ьно ІГ   | 20 з     | акрь     | ітое)    |         |        |          |
|            |                                                                                 |       |          |          |          |        |          |         |          |          |           |          |         |          |           |           |         |                  |          |          |          |          |         |        |          |

- Примечание 1) Указанные выше характеристики устанавливаются, когда применяется функциональный код F80 = 0 (режим HD).
  Примечание 2) При использовании дросселя звена постоянного тока необходимо руководствоваться следующим.

   Мод. FRN \_ VG1S- \_ J: 55 кВт и ниже: предусмотрен в качестве опции, 75 кВт и выше: входит в стандартную комплектацию.

   Мод. FRN \_ VG1S- \_ E, \_ C: предусмотрен в качестве опции независимо от мощности.

  1) Для серии 200 В номинальное выходное напряжение составляет 220 В, для серии 400 В 440 В.

  2) Если преобразованное значение выходной частоты ПЧ составляет 10 Гц или менее, то в зависимости от условий, например температуры окружающей среды, преобразователь частоты может

- "2) Если преобразованное значение выходной частоты ПЧ составляет 10 Гц или менее, то в зависимости от условий, например температуры окружающей среды, преобразователь частоты может преждевременно отключиться вследствие перегрузки.
  "3) Если преобразованное значение выходной частоты ПЧ составляет 5 Гц или менее, то в зависимости от условий, например температуры окружающей среды, преобразователь частоты может преждевременно отключиться вследствие перегрузки.
  "4) Серия 200 В: Модификации на напряжение 220 230 В/50 Гц приобретаются по отдельному заказу.
  Серия 400 В: Переключение преобразователей частоты с напряжением питания 380 398 В/50 Гц и 380 430 В/60 Гц выполняется с помощью разъема внутри преобразователя.
  В зависимости от ситуации может произойти падение на выходе преобразователя частоты с напряжением питания 380 В. Подробнее см. в Главе 10 Руководства пользователя FRENIC-VG «Моноблочный тип, функциональные коды» 24A7 -0019.
  "5) Дополнительный вход инточника питания используется как вход питания вентилятора переменного тока при работе устройства, например ШИМ-рекуператора с высоким коэффициентом мощности, с функцией рекуперации энергии. (Обычно не используется.)
- \*6) Дисбаланс [%] = Макс. напряжение [В] Мин. напряжение [В] Среднее 3 - фазное напряжение [В]
- Если несимметрия напряжений превышает 2%, следует использовать входной дроссель. Значение вычисляется с допущением, что преобразователь подключен к источнику пита
- , ику питания мощностью 500 кВА (или в 10 раз больше мощности ПЧ, если мощность преобразователя превышает 50 кВА) и
- \* 6) Указанные значения применяются при использовании дросселя звена постоянного тока.
  Генератор, используемый в качестве источника питания, может перегореть от высокочастотного тока преобразователя частоты. Следует использовать генератор, мощность которого в 3-4 раза превышает указанную мощность источника питания.
  (Если дроссель звена постоянного тока не подключен, мощность генератора должна примерно в 4 раза превышать указанную мощность источника питания, при подключении дросселя превышение
- должно быть примерно трехкратным.) должно оыть примерно трехкратным.)
  \*\*9) Преобразователь частоты имеет функцию самозащиты, которая позволяет автоматически снизить несущую частоту в соответствии с температурой окружающей среды или величиной выходного тока.
  Следует с осторожностью отменять функцию автоматического снижения несущей частоты (Н104: число 100), поскольку в зависимости от настройки несущей частоты может произойти падение номинального длительного тока устройства.
  (Подробнее см. в Главе 10 Руководства пользователя FRENIC-VG «Моноблочный тип, функциональные коды» 24А7-—0019.)

# Режим MD для средних перегрузок (моноблочный тип)

### 3-фазное напряжение 400 В

|            | Тип FRN□VG1S-4□                                                                 | 90        | 110                                     | 132         | 160        | 200        | 220         | 280           | 315           | 355                       | 400 |
|------------|---------------------------------------------------------------------------------|-----------|-----------------------------------------|-------------|------------|------------|-------------|---------------|---------------|---------------------------|-----|
| Ном        | иинальная мощность двигателя [кВт]                                              | 110       | 132                                     | 160         | 200        | 220        | 250         | 315           | 355           | 400                       | 450 |
| Hon        | иинальная мощность [кВА] (*1)                                                   | 160       | 192                                     | 231         | 287        | 316        | 356         | 445           | 495           | 563                       | 640 |
| Ном        | иинальный ток [А]                                                               | 210       | 253                                     | 304         | 377        | 415        | 468         | 585           | 650           | 740                       | 840 |
| Ном        | иинальная перегрузочная способность                                             |           |                                         |             | 150% н     | оминальног | го тока – 1 | мин. (*2)     |               |                           |     |
| T.         | Основное электропитание Фазы, напряжение, частота                               |           | 380 – 440 E<br>380 – 480 E              |             |            |            |             |               |               |                           |     |
| питания    | Дополнительный вход источника питания цепи управления Фазы, напряжение, частота | 1 фаза,   | 380 – 480 B                             | , 50/60 Гц  |            |            |             |               |               |                           |     |
| Напряжение | Дополнительный вход питания вентилятора Фазы, напряжение, частота (*5)          |           | 380 – 440 B<br>380 – 480 B              |             |            |            |             |               |               |                           |     |
| ВdП        | Допустимые отклонения напряжения/частоты                                        | Напряже   | ние: от +10                             | до -15 % (  | Несимметр  | ия напряже | ений не бол | nee 2 % (*5)) | ), частота: с | от +5 до -5               | %   |
| Ha         | Номинальный ток [A] (c DCR)                                                     | 210       | 238                                     | 286         | 357        | 390        | 443         | 559           | 628           | 705                       | 789 |
|            | (*7) (без DCR)                                                                  |           |                                         |             |            |            | _           |               |               |                           |     |
|            | Требуемая мощность источника питания [кВА] (*8)                                 | 140       | 165                                     | 199         | 248        | 271        | 312         | 388           | 436           | 489                       | 547 |
| Спо        | особ торможения / тормозной момент                                              |           | азрядки энерг<br>озного момент<br>пция) |             |            | 150% торі  | мозного мом |               | ьный тормоз   | езистором:<br>ной резисто |     |
| Hed        | сущая частота [кГц] (*9)                                                        |           |                                         |             |            | 2 -        | - 4         |               |               |                           |     |
| Прі        | ибл. вес [кг]                                                                   | 62        | 64                                      | 94          | 98         | 129        | 140         | 245           | 245           | 330                       | 330 |
| Исг        | толнение                                                                        | ІР00 откр | ытое, UL о                              | ткрытое (оі | пционально | IP20 закры | ытое)       |               | ·             |                           |     |

Примечание 1) Указанные выше характеристики устанавливаются, когда применяется функциональный код F80 = 3 (режим MD)

- Примечание 1) Указанные выше характеристики устанавливаются, когда применяется функциональный код F80 = 3 (режим MD).

  Если требуется режим MD), его следует указать при размещении заказа.
  В стандартной комплектации мод. FRN VG1S- Ј предусмотрен дроссель звена постоянного тока на номинальную мощность двигателя.
  Примечание 2) При использовании дросселя звена постоянного тока не необходимо руководствоваеться следующим.

   Мод. FRN □VG1S-□ : входит в стандартную комплектацию. (Указать режим MD при размещении заказа.)

   Мод. FRN □VG1S-□ : Опция.

  11 При номинальном выкодном напряжении 440 В.

  22 Если преобразованная выходная частота ПЧ составляет менее 1 Гц, то при определенной температуре окружающей среды преобразователь частоты может отключиться раньше положенного вследствие преострему и вистатова. перегрузки двигателя.

- перегрузки двигателя.

  30 При напряжении питания 380 398 В/50 Гц или 380 430 В/60 Гц необходимо соответствующим образом переключить разъем внутри преобразователя частоты.

  В зависимости от ситуации может произойти падение на выходе преобразователя частоты с напряжением питания 380 В. Подробнее см. в Главе 10 Руководства пользователя FRENIC-VG «Моноблочный тип, функциональные коды» 24А7—10019.

  4) Дополнительный входы коточника питания используется как вход питания вентилятора переменного тока при работе устройства, например ШИМ-рекуператора с высоким коэффициентом мощности, с функцией рекуперации энергии. (Обычно не используется.)
- \*6) Дисбаланс [%] = Макс. напряжение [В] Мин. напряжение [В] Среднее 3 - фазное напряжение [В]

- Если несимметрия напряжений превышает 2%, следует использовать входной дроссель.
  Значение вычисляется с допущением, что ПЧ подключен к источнику питания с мощностью, в 10 раз превышающей мощность преобразователя, и %X равен 5 %.
  Указанные значения применяются при использовании дросселя звена постоянного тока.
  Генератор, используемый в качестве источника питания, может перегореть от высокочастотного тока преобразователя частоты. Следует использовать генератор, мощность которого в 3-4 раза превышает указанную мощность источника питания. (Если дроссель звена постоянного тока не подключен, мощность генератора должна примерно в 4 раза превышать указанную мощность источника питания, при подключении дросселя превышение
- должно быть примерно трехкратным.)
- 18) В зависимомости от режима нагрузки нагрев двигателя может увеличиваться при низкой несущей частоте, поэтому при заказе двигателя следует указывать режим MD.
   19) При работе синкронного двигателя на низкой несущей частоте существует риск размагничивания из-за перегрева постоянных магнитов вследствие наличия гармоник в выходном токе.
   Поскольку несущая частота является низкой (от 2 до 4 кГц, всегда небоходимо проверять допустимую несущую частоту двигателя. Если нельзя использовать двигатель с низкой несущей частотой (от 2 до 4 кГц, следует рассмотреть возможность применения режима НD (Н80 = 0).

# Стандартные технические характеристики

# Режим LD для легких перегрузок (моноблочный тип)

### 3-фазное напряжение 200 В

|            | Тип FRN□ VG1S-2□                                                                | 30                           | 37                             | 45                               | 55                                | 75                               | 90                          |
|------------|---------------------------------------------------------------------------------|------------------------------|--------------------------------|----------------------------------|-----------------------------------|----------------------------------|-----------------------------|
| Ном        | инальная мощность двигателя [кВт]                                               | 37                           | 45                             | 55                               | 75                                | 90                               | 110                         |
| Ном        | инальная мощность [кВА] (*1)                                                    | 55                           | 68                             | 81                               | 107                               | 131                              | 158                         |
| Ном        | инальный ток [А]                                                                | 146                          | 180                            | 215                              | 283                               | 346                              | 415                         |
| Ном        | инальная перегрузочная способность                                              |                              |                                | 120% номинально                  | го тока – 1 мин. (*2)             | )                                |                             |
|            | Основное электропитание<br>Фазы, напряжение, частота                            | 3 фазы, 200 – 22<br>200 – 23 | 20 В/50 Гц,<br>30 В/60 Гц (*3) |                                  |                                   |                                  |                             |
| питания    | Дополнительный вход источника питания цепи управления Фазы, напряжение, частота | 1 фаза, 200 – 23             | 0 В, 50/60 Гц                  |                                  |                                   |                                  |                             |
| Напряжение | Дополнительный вход питания вентилятора Фазы, напряжение, частота (*5)          | -                            | 1 фаза, 200 – 22<br>200 – 23   | 0 В, 50 Гц<br>80 В, 60 Гц (*3)   |                                   |                                  |                             |
| Пря        | Допустимые отклонения напряжения/частоты                                        | Напряжение: от               | +10 до -15 % (Hec              | имметрия напряже                 | ений не более 2 %                 | (*5)), частота: от +5            | 5 до -5 %                   |
| Ξ          | Номинальный ток [A] (c DCR)                                                     | 138                          | 167                            | 203                              | 282                               | 334                              | 410                         |
|            | (*7) (без DCR)                                                                  | 185                          | 225                            | 270                              | -                                 | -                                | -                           |
|            | Требуемая мощность источника питания [кВА] (*8)                                 | 48                           | 58                             | 71                               | 98                                | 116                              | 143                         |
| Спо        | соб торможения / тормозной момент                                               | Контроль разрядки энергии то | рмозным резистором: 110% тормо | озного момента, отдельный тормоз | ной резистор (опция), отдельный т | ормозной модуль (опция для моде. | пей от FRN75VG1S-2 и далее) |
| Hec        | ущая частота [кГц] (*9)                                                         |                              | 2 -                            | 10                               |                                   | 2 -                              | - 5                         |
| При        | 1бл. вес [кг]                                                                   | 25                           | 32                             | 42                               | 43                                | 62                               | 105                         |
| Исп        | олнение                                                                         | IP00 открытое, U             | JL открытое (опцис             | нально IP20 закры                | ытое)                             |                                  |                             |

### 3-фазное напряжение 400 В

| O-C        | разпое папрямені                                                                | IC T         | OO L            | _           |             |             |               |             |                |            |              |              |            |              |              |              |             |          |
|------------|---------------------------------------------------------------------------------|--------------|-----------------|-------------|-------------|-------------|---------------|-------------|----------------|------------|--------------|--------------|------------|--------------|--------------|--------------|-------------|----------|
|            | Тип FRN⊡VG1S-4□                                                                 | 30           | 37              | 45          | 55          | 75          | 90            | 110         | 132            | 160        | 200          | 220          | 280        | 315          | 355          | 400          | 500         | 630      |
| Ном        | инальная мощность двигателя [кВт]                                               | 37           | 45              | 55          | 75          | 90          | 110           | 132         | 160            | 200        | 220          | 280          | 355        | 400          | 450          | 500          | 630         | 710      |
| Ном        | инальная мощность [кВА] (*1)                                                    | 57           | 69              | 85          | 114         | 134         | 160           | 192         | 231            | 287        | 316          | 396          | 495        | 563          | 640          | 731          | 891         | 1044     |
| Ном        | инальный ток [А]                                                                | 75           | 91              | 112         | 150         | 176         | 210           | 253         | 304            | 377        | 415          | 520          | 650        | 740          | 840          | 960          | 1170        | 1370     |
| Ном        | инальная перегрузочная способность                                              |              |                 |             |             |             | 12            | 0% но       | миналь         | ьного т    | ока – 1      | I мин.       | (*2)       |              |              |              |             |          |
| T.         | Основное электропитание<br>Фазы, напряжение, частота                            | 3 фа<br>50/6 | зы, 380<br>Э Гц | 0 – 480     | В,          | 3 фа        | зы, 38<br>38  |             | B/50<br>B/60   |            |              |              |            |              |              |              |             |          |
| питания    | Дополнительный вход источника питания цепи управления Фазы, напряжение, частота | 1 фа         | за, 380         | ) – 480     | B, 50/      | 60 Гц       |               |             |                |            |              |              |            |              |              |              |             |          |
| Напряжение | Дополнительный вход питания вентилятора Фазы, напряжение, частота (*5)          |              | -               | -           |             | 1 фа        | за, 380<br>38 |             | B, 50<br>B, 60 |            |              |              |            |              |              |              |             |          |
| Rdn        | Допустимые отклонения напряжения/частоты                                        | Напр         | эяжени          | іе: от +    | 10 до       | -15 %       | (Несик        | метри       | я напр         | яжени      | й не бо      | лее 2        | % (*5)),   | часто        | та: от -     | ⊦5 до -      | 5 %         |          |
| 표          | Номинальный ток [A] (c DCR)                                                     | 68.5         | 83.2            | 102         | 138         | 164         | 210           | 238         | 286            | 357        | 390          | 500          | 628        | 705          | 789          | 881          | 1115        | 1256     |
|            | (*7) (без DCR)                                                                  | 94.3         | 114             | 140         | -           | -           | -             | _           | _              | -          | -            | _            | -          | -            | -            | -            | -           | -        |
|            | Требуемая мощность источника питания [кВА] (*8)                                 | 48           | 58              | 71          | 96          | 114         | 140           | 165         | 199            | 248        | 271          | 347          | 436        | 489          | 547          | 611          | 773         | 871      |
| Спо        | соб торможения / тормозной момент                                               | Контрол      | ь разрядки з    | нергии торм | иозным рези | стором: 110 | % тормозно    | го момента, | отдельный т    | ормозной р | езистор (опы | ия), отдельн | ый тормозн | ой модуль (о | пция для мод | целей от FRI | N200VG1S-4[ | и далее) |
| Hec        | ущая частота [кГц] (*9)                                                         |              | 2 -             | 10          |             |             |               |             |                |            | 2            | - 5          |            |              |              |              |             | 2        |
| При        | бл. вес [кг]                                                                    | 25           | 26              | 31          | 33          | 42          | 62            | 64          | 94             | 98         | 129          | 140          | 245        | 245          | 330          | 330          | 555         | 555      |
| Исп        | олнение                                                                         | IP00         | откры           | тое, Ul     | _ откры     | ытое (о     | пциона        | ально І     | Р20 за         | крыто      | e)           |              |            |              |              |              |             |          |

- Примечание 1) Указанные выше характеристики относятся к функциональному коду F80=1 (режим LD).

  Если требуется режим LD при мощности 55 кВт и выше, его следует указать при размещении заказа.
  В стандартной комплектации мод. FRN VG1S- J предусмотрен доссель звена постоянного тока на номинальную мощность двигателя.
  Примечание 2) При использовании дросселя звена постоянного тока необходимо руководствоваться оледующим.

   Мод. FRN VG1S- 1.45 кВт и ниже: предусмотрен в качестве опции, 85 кВт и выше: входит в стандартную комплектацию. (Указать режим LD при размещении заказа.)

   Мод. FRN VG1S- □С спредусмотрен в качестве опции независимо от мощности.

  11) Для серии 200 В номинальное выходное напряжение составляет 220 В, для серии 400 В 440 В.

  22) Если преобразованная выходная частота ПЧ составляет менее 10 Гц, то при определенной температуре окружающей среды преобразователь частоты может отключиться раньше положенного вследствие перегрузки двигателя.

  3. Серия 200 В: Модификации на напряжение 220 230 В/50 Гц приобретаются по отдельному заказу.

  Серия 400 В: Переключение ПЧ с напряжение м питания 380 398 В/50 Гц и 380 430 В/60 Гц выполняется с помощью разъема внутри преобразователя.

  В зависимости от ситуации может произобти падение на выходе преобразователя частоты с напряжением питания 380 В. Подробнее см. в Главе 10 Руководства пользователя FRENIC-VG «Моноблочный тип, функциональные коды с 2467—10019.

  4.4) Дополнительный вход источника питания используется как вход питания вентилятора переменного тока при работе устройства, например ШИМ-рекуператора с высоким коэффициентом мощности, с функциональные коды с 2467—10019.

  4.5) В изблазие (КД Мисе извлежение (П) Мисе извлежение (П
- \*6) Дисбаланс [%] = Макс. напряжение [В] Мин. напряжение [В] Среднее 3 - фазное напряжение [В]

Если несимметрия напряжений превышает 2%, следует использовать входной дроссель

- если несимметрия напряжении превышает 2%, следует использовать входной дроссель.

  Значение вычисляется с долущением, что ПЧ подключен к источнику питания мощностью 500 кВА (или в 10 раз больше мощности преобразователя, если мощность ПЧ превышает 50 кВА) и %Х равен 5 %.

  Указанные значения применяются при использовании дросселя звена постоянного тока.

  Генератор, используемый в качестве источника питания, может перегореть от высокочастотного тока преобразователя частоты. Следует использовать генератор, мощность которого в 3 4 раза превышает указанную мощность источника питания,

  (Если дроссель звена постоянного тока не подключен, мощность генератора должна примерно в 4 раза превышать указанную мощность источника питания, при подключении дросселя превышение должно быть примерно трехкраттыми.)

  Преобразователь частоты имеет бумки и пременение должно быть примерно трехкраттыми.
- дожно сонто разметельным, преобразователь частоты имеет функцию самозащиты, которая позволяет автоматически снизить несущую частоту в соответствии с температурой окружающей среды или величиной выходно Следует с осторожностью отменять функцию автоматического снижения несущей частоты (Н104: число 100), поскольку в зависимости от настройки несущей частоты может произойти падение
  - номинального длительного тока устройства. (Подробнее см. в Главе 10 Руководства пользователя FRENIC-VG «Моноблочный тип, функциональные коды» 24А7-—-0019.)

# Режимы MD для средних перегрузок (модульный тип)

### 3-фазное напряжение 400 В

| _          | -p                                                                              |                                                       |          |                     |         |          |        |         |                    |         |        |        |         |        |      |          |          |          |
|------------|---------------------------------------------------------------------------------|-------------------------------------------------------|----------|---------------------|---------|----------|--------|---------|--------------------|---------|--------|--------|---------|--------|------|----------|----------|----------|
|            | Тип FRN □○VG1S-4□                                                               | 30S                                                   | 37S      | 45S                 | 55S     | 75S      | 90S    | 110S    | 132S               | 160S    | 2008   | 220S   | 250S    | 280S   | 315S | 630B(*5) | 710B(*5) | 800B(*5) |
| Ном        | инальная мощность двигателя [кВт]                                               | 30                                                    | 37       | 45                  | 55      | 75       | 90     | 110     | 132                | 160     | 200    | 220    | 250     | 280    | 315  | 630      | 710      | 800      |
| Ном        | инальная мощность [кВА] (*1)                                                    | 45                                                    | 57       | 69                  | 85      | 114      | 134    | 160     | 192                | 231     | 287    | 316    | 356     | 396    | 445  | 891      | 1044     | 1127     |
| Ном        | инальный ток [А]                                                                | 60                                                    | 75       | 91                  | 112     | 150      | 176    | 210     | 253                | 304     | 377    | 415    | 468     | 520    | 585  | 1170     | 1370     | 1480     |
| Ном        | инальная перегрузочная способность                                              |                                                       |          |                     |         |          |        | 150% r  | номина             | льного  | тока – | 1 мин. | (*2)    |        |      |          |          |          |
|            | Основное электропитание                                                         | Вход і                                                | постоя   | нного т             | ока (См | и. хараі | ктерис | гики ди | одного             | выпря   | мителя | и ШИМ  | И-рекуі | перато | pa.) |          |          |          |
| питания    | Дополнительный вход источника питания цепи управления Фазы, напряжение, частота | 1 фаз                                                 | a, 380 - | - 480 B             | 50/60   | Гц       |        |         |                    |         |        |        |         |        |      |          |          |          |
| Напряжение | Дополнительный вход питания вентилятора Фазы, напряжение, частота               |                                                       |          | ьный в:<br>а не тре | • •     |          | 1 фаз  |         | – 440 E<br>– 480 E |         |        |        |         |        |      |          |          |          |
|            | Допустимые отклонения напряжения/частоты                                        | ы Напряжение: от +10 до -15 %, частота: от +5 до -5 % |          |                     |         |          |        |         |                    |         |        |        |         |        |      |          |          |          |
| He         | щая частота [кГц] (*4)                                                          |                                                       |          |                     |         |          |        |         |                    | 2       |        |        |         |        |      |          |          |          |
| Пр         | л. вес [кг] 30 30 3                                                             |                                                       |          |                     | 37      | 37       | 45     | 45      | 95                 | 95      | 95     | 125    | 135     | 135    | 135  | 135×3    | 135×3    | 135×3    |
| Ис         | полнение                                                                        |                                                       |          |                     |         |          |        |         | IP                 | 00 откр | ытое   |        |         |        |      |          |          |          |

### 3-фазное напряжение 690 В

| _          | <del>paonoc nanpa</del>                                                         |                 |                                  |                    |                |                  |               |      |      |
|------------|---------------------------------------------------------------------------------|-----------------|----------------------------------|--------------------|----------------|------------------|---------------|------|------|
| Ti         | ип FRN□○VG1S-69□                                                                | 90S             | 110S                             | 132S               | 160S           | 200S             | 250S          | 280S | 315S |
| Ном        | инальная мощность двигателя [кВт]                                               | 90              | 110                              | 132                | 160            | 200              | 250           | 280  | 315  |
| Ном        | инальная мощность [кВА] (*1)                                                    | 120             | 155                              | 167                | 192            | 258              | 317           | 353  | 394  |
| Ном        | инальный ток [А]                                                                | 100             | 130                              | 140                | 161            | 216              | 265           | 295  | 330  |
| Ном        | инальная перегрузочная способность                                              |                 |                                  | •                  | 150% номиналь  | ьного тока – 1 м | ин. (*2)      |      |      |
|            | Основное электропитание                                                         | Вход постоян    | ного тока (См. :                 | характеристик      | и диодного вып | рямителя и ШИ    | 1М-рекуперато | pa.) |      |
| питания    | Дополнительный вход источника питания цепи управления Фазы, напряжение, частота | 1 фаза, 575 – ( | 690 В, 50/60 Гц                  |                    |                |                  |               |      |      |
| Напряжение | Дополнительный вход питания вентилятора Фазы, напряжение, частота               |                 | 690 В, 50/60 П<br>690 В, 50/60 П |                    |                |                  |               |      |      |
|            | Допустимые отклонения напряжения/частоты                                        | Напряжение: от  | +10 до -15 %, ча                 | астота: от +5 до - | 5 %            |                  |               |      |      |
| Hed        | сущая частота [кГц] (*4)                                                        |                 |                                  |                    | 2              | 2                |               |      |      |
| Прі        | ибл. вес [кг]                                                                   | 45              | 45                               | 95                 | 95             | 95               | 135           | 135  | 135  |
| Исп        | полнение                                                                        |                 |                                  |                    | ІР00 от        | крытое           |               |      |      |

Примечание 1) Указанные выше характеристики применяются, если установлено значение функционального кода F80 = 0, 2, 3 (режим MD). (Заводская настройка = 0). Если F80 = 0, 2, на пульте появляется индикатор "HD".

1) При номинальном выходном напряжении для серии 400 В - 440 В, для серии 690 В - 690 В.

2) Если преобразованная выходная частота ПЧ составляет менее 1 Гц, то при определенной температуре окружающей среды преобразователь частоты может отключиться раньше положенного вследствие перегрузки двигателя.

3) Серия 400 В: При напряжении питания 380 – 398 В/50 Гц или 380 – 430 В/60 Гц необходимо соответствующим образом переключить разъем внутри преобразователя частоты. Серия 690 В: При напряжении питания 575 – 600 В и частоте 50/60 Гц необходимо соответствующим образом переключить разъем внутри преобразователя частоты.

4) При работе синхронного двигателя на низкой несущей частоте существует риск размагничивания из-за перегрева постоянных магнитов вследствие наличия гармоник в выходном токе. Поскольку несущая частота влаялеетя низкой (2 кГш), всегда необходимо проверять допустимую несущую частоту двигателя.

5) Один ПР состоит из трех модулей.

6) Номинальная мощность двигателя относится к двигателю на 690 В. Для двигателей с другим напряжением (а также при более детальном выборе) следует выбрать такую мощность, которая бы гарантировала номинальный ток ПЧ, равный номинальному току двигателя или превышающий его.

# Стандартные технические характеристики

# Режимы LD для легких перегрузок (модульный тип)

### 3-фазное напряжение 400 В

| Т          | ип FRN□○VG1S-4□                                                                 | 308    | 37S                                                 | 45S     | 55S     | 75S      | 908     | 110S          | 132S   | 160S                | 2008   | 2208   | 250S   | 280S   | 315S | 630B(*5) | 710B(*5) | 800B(*5) |
|------------|---------------------------------------------------------------------------------|--------|-----------------------------------------------------|---------|---------|----------|---------|---------------|--------|---------------------|--------|--------|--------|--------|------|----------|----------|----------|
| Ном        | инальная мощность двигателя [кВт]                                               | 37     | 45                                                  | 55      | 75      | 90       | 110     | 132           | 160    | 200                 | 220    | 250    | 280    | 315    | 355  | 710      | 800      | 1000     |
| Ном        | инальная мощность [кВА] (*1)                                                    | 57     | 69                                                  | 85      | 114     | 134      | 160     | 192           | 231    | 287                 | 316    | 356    | 396    | 445    | 495  | 1044     | 1127     | 1409     |
| Ном        | инальный ток [А]                                                                | 75     | 91                                                  | 112     | 150     | 176      | 210     | 253           | 304    | 377                 | 415    | 468    | 520    | 585    | 650  | 1370     | 1480     | 1850     |
| Номы       | нальная перегрузочная способность                                               |        |                                                     |         |         |          |         | 110% F        | юмина. | пьного              | тока – | 1 мин. | (*2)   |        |      |          |          |          |
|            | Основное электропитание                                                         | Вход г | тостоян                                             | ного т  | ока (См | і. хараі | ктерист | гики ди       | одного | выпря               | мителя | и ШИ   | И-реку | перато | pa.) |          |          |          |
| питания    | Дополнительный вход источника питания цепи управления Фазы, напряжение, частота | 1 фаза | a, 380 -                                            | - 480 B | 50/60   | Гц       |         |               |        |                     |        |        |        |        |      |          |          |          |
| Напряжение | Дополнительный вход питания вентилятора<br>Фазы, напряжение, частота            | ١      | ительны<br>вентил                                   |         | требует | ся       | 1 фаз   | a, 380<br>380 |        | , 50 Гц<br>3, 60 Гц | (*3)   |        |        |        |      |          |          |          |
|            | Допустимые отклонения напряжения/частоты                                        | Напря  | Напряжение: от +10 до -15 %, частота: от +5 до -5 % |         |         |          |         |               |        |                     |        |        |        |        |      |          |          |          |
| Hed        | ущая частота [кГц] (*4)                                                         |        |                                                     |         |         | 2        |         |               |        |                     |        |        |        |        |      |          |          |          |
| При        | ибл. вес [кг]                                                                   | 30     | 30                                                  | 30      | 37      | 37       | 45      | 45            | 95     | 95                  | 95     | 125    | 135    | 135    | 135  | 135×3    | 135×3    | 135×3    |
| Исг        | олнение                                                                         |        |                                                     |         |         |          |         |               | IP     | 00 откр             | ытое   |        |        |        | •    |          |          |          |

### 3-фазное напряжение 690 В

| _          | paonos nanpa                                                                    |                |                                    |                    |                |                  |               |      |      |  |  |
|------------|---------------------------------------------------------------------------------|----------------|------------------------------------|--------------------|----------------|------------------|---------------|------|------|--|--|
| Τı         | ıπ FRN □○VG1S-69 □                                                              | 90S            | 110S                               | 132S               | 160S           | 200S             | 250S          | 280S | 315S |  |  |
| Ном        | Номинальная мощность двигателя [кВт] 110 132 160 200 220 280 315 3              |                |                                    |                    |                | 355              |               |      |      |  |  |
| Ном        | инальная мощность [кВА] (*1)                                                    | 155            | 167                                | 192                | 258            | 281              | 353           | 394  | 436  |  |  |
| Ном        | инальный ток [А]                                                                | 130            | 140                                | 161                | 216            | 235              | 295           | 330  | 365  |  |  |
| Ном        | инальная перегрузочная способность                                              |                |                                    |                    | 110% номиналь  | ьного тока – 1 м | ин. (*2)      |      |      |  |  |
|            | Основное электропитание                                                         | Вход постоян   | ного тока (См. :                   | характеристикі     | и диодного вып | рямителя и ШИ    | 1М-рекуперато | pa.) |      |  |  |
| питания    | Дополнительный вход источника питания цепи управления Фазы, напряжение, частота | 1 фаза, 575 –  | I фаза, 575 – 690 B, 50/60 Гц      |                    |                |                  |               |      |      |  |  |
| Напряжение | Дополнительный вход питания вентилятора Фазы, напряжение, частота               |                | 690 В, 50/60 Гі<br>600 В, 50/60 Гі |                    |                |                  |               |      |      |  |  |
|            | Допустимые отклонения напряжения/частоты                                        | Напряжение: от | +10 до -15 %, ч                    | астота: от +5 до - | -5 %           |                  |               |      |      |  |  |
| Hed        | сущая частота [кГц] (*4)                                                        |                |                                    |                    | 2              | 2                |               |      |      |  |  |
| Прі        | ибл. вес [кг]                                                                   | 45             | 45                                 | 95                 | 95             | 95               | 135           | 135  | 135  |  |  |
| Исп        | полнение                                                                        |                |                                    |                    | ІР00 от        | крытое           |               |      |      |  |  |

Примечание 1) Указанные выше характеристики относятся к функциональному коду F80=1 (режим LD).

1) При номинальном выходном напряжении для серии 400 В - 440 В, для серии 990 В - 690 В.

2) Если преобразованная выходная частота ПЧ составляет менее 1 Гц, то при определенной температуре окружающей среды преобразователь частоты может отключиться раньше положенного вследствие перегрузки двигателя.

3) Серия 400 В: При напряжении питания 380 – 398 В/50 Гц или 380 – 430 В/60 Гц необходимо соответствующим образом переключить разъем внутри преобразователя частоты.

4) Серия 990 В: При напряжении питания 575 – 600 В и частоте 50/60 Гц необходимо соответствующим образом переключить разъем внутри преобразователя частоты.

4) При работе синхронного двигателя на низкой несущей частоте существует риск размагничивания из-за перегрева постоянных магнитов вследствие наличия гармоник в выходном токе. Поскольку несущая частота является низкой (2 кГц), всегда необходимо проверять допустимую несущую частоту двигателя.

5) Один ПЧ состоит из трех модулей.

6) Номинальная мощность двигателя относится к двигателю на 690 В.

Для двигателей с другим напряжением (а также при более детальном выборе) следует выбрать такую мощность, которая бы гарантировала номинальный ток ПЧ, равный номинальному току двигателя или превышающий его.

# Общие параметры

# Общие характеристики преобразователей частоты

|                                         | Пара                     | метр                                  |                                                                          | Моноблочный тип                                                                                                                                               | Модульный тип                                                                                                                                                         |  |  |  |
|-----------------------------------------|--------------------------|---------------------------------------|--------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Управление                              | Способ                   | Асинхроннь                            | ый двигатель                                                             | Векторное управление с датчиком скорости<br>Векторное управление без датчика скорости<br>U/f управление                                                       |                                                                                                                                                                       |  |  |  |
|                                         | управления<br>двигателем | Синхронный двигатель                  |                                                                          | Векторное управление с датчиком скорости (включая определение положения магнитного полюса)                                                                    |                                                                                                                                                                       |  |  |  |
|                                         |                          | Режим испы                            | ытаний                                                                   | Имитация режима работы                                                                                                                                        |                                                                                                                                                                       |  |  |  |
|                                         |                          | D                                     | Установка<br>скорости                                                    | Аналоговая установка: 0,005% от максимальной скорости<br>Цифровая установка: 0,005% от максимальной скорости                                                  |                                                                                                                                                                       |  |  |  |
|                                         |                          | Разрешающая<br>способность            | Установка крутящего момента Установка моменто-<br>образующего тока       | 0,01% от номинального момента                                                                                                                                 |                                                                                                                                                                       |  |  |  |
| Управление                              | Векторное                | Точность                              | Скорость                                                                 | Аналоговая установка: $\pm 0.1\%$ от макс. скорости ( $25\pm 10^{\circ}$ C)<br>Цифровая установка: $\pm 0.005\%$ от макс. скорости ( $-10\dots 50^{\circ}$ C) | Аналоговая установка: $\pm 0,1\%$ от макс. скорости ( $25\pm 10^{\circ}$ C) Цифровая установка: $\pm 0,005\%$ от макс. скорости ( $-1040^{\circ}$ C)                  |  |  |  |
| асинхронным                             | управление               | регулирования                         | Момент                                                                   | ±3% от номинального момента (при использова                                                                                                                   | нии профильного двигателя)                                                                                                                                            |  |  |  |
| двигателем                              | с датчиком<br>скорости   | Отклик по скорости                    | Скорость                                                                 | 600 Гц *1                                                                                                                                                     | 100 Гц                                                                                                                                                                |  |  |  |
|                                         | окорости                 | Максимальн                            | ая скорость                                                              | 500 Гц, значение при преобразовании выходной частоты ПЧ *1 *2                                                                                                 | 150 Гц, значение при преобразовании выходной частоты ПЧ                                                                                                               |  |  |  |
|                                         |                          | Диапазон<br>регулирования<br>скорости |                                                                          | 1:1500<br>При базовой скорости 1500 об/мин, от 1 до 1500<br>(при кол-ве импульсов энкодера 1024 имп/об)<br>1:6 (диапазон постоянного момента : диапазон г     |                                                                                                                                                                       |  |  |  |
|                                         |                          | Установка                             |                                                                          | Аналоговая установка: 0,005% от максимальной скорости                                                                                                         |                                                                                                                                                                       |  |  |  |
|                                         | Векторное                | Разрешающая                           | Скорости                                                                 | Цифровая установка: 0,005% от максимальной                                                                                                                    | скорости                                                                                                                                                              |  |  |  |
|                                         |                          | способность                           | Установка<br>крутящего момента<br>Установка моменто-<br>образующего тока | 0,01% от номинального момента                                                                                                                                 |                                                                                                                                                                       |  |  |  |
|                                         |                          | Точность регулирования                | Скорость                                                                 | Аналоговая установка: $\pm 0,1\%$ от макс. скорости ( $25\pm 10^{\circ}$ C)<br>Цифровая установка: $\pm 0,1\%$ от макс. скорости ( $-10\dots 50^{\circ}$ C)   | Аналоговая установка: $\pm 0,1\%$ от макс. скорости (25 $\pm 10^{\circ}$ C) Цифровая установка: $\pm 0,1\%$ от макс. скорости (-10 40°C)                              |  |  |  |
|                                         | управление               | por yamposa: mar                      | Момент                                                                   | ±5% от номинального момента                                                                                                                                   |                                                                                                                                                                       |  |  |  |
|                                         | без датчика<br>скорости  | Отклик по скорости                    | Скорость                                                                 | 40 Гц *1                                                                                                                                                      | 20 Гц                                                                                                                                                                 |  |  |  |
|                                         |                          | Максимальн                            | ая скорость                                                              | 500 Гц, значение при преобразовании выходной частоты ПЧ *1 *3                                                                                                 | 150 Гц, значение при преобразовании выходной частоты ПЧ                                                                                                               |  |  |  |
| Управление<br>асинхронным<br>двигателем |                          | Диапазон<br>регулирования<br>скорости |                                                                          | 1:250<br>При базовой скорости 1500 об/мин, от 6 до 1500 об/мин и до макс. скорости<br>1:4 (диапазон постоянного момента : диапазон постоянной мощности)       |                                                                                                                                                                       |  |  |  |
|                                         |                          | Разрешаюц<br>способност               | т<br>тая                                                                 | Аналоговая установка: 0,005% от максимальной скорости<br>Цифровая установка: 0,005% от максимальной скорости                                                  |                                                                                                                                                                       |  |  |  |
|                                         | U/f                      | Точность рег<br>выходной ча           |                                                                          | Аналоговая установка: ±0,2% от максимальной выходной частоты (25±10°C)<br>Цифровая установка: ±0,01% от максимальной выходной частоты (-10 50°C)              | Аналоговая установка: ±0,2% от максимальной выходной частоты (25±10°C)<br>Цифровая установка: ±0,01% от максимальной выходной частоты (-10 40°C)                      |  |  |  |
|                                         | управление               | Максималы                             | ная частота                                                              | 500 Гц                                                                                                                                                        | 150 Гц                                                                                                                                                                |  |  |  |
|                                         |                          | Диапазон ре                           | гулирования                                                              | от 0,2 до 500 Гц<br>1:4 (диапазон постоянного момента :<br>диапазон постоянной мощности)                                                                      | от 0,2 до 500 Гц<br>1:4 (диапазон постоянного момента :<br>диапазон постоянной мощности)                                                                              |  |  |  |
|                                         |                          | Разрешающая<br>способность            | Установка<br>скорости                                                    | Аналоговая установка: 0,005% от максимальной<br>Цифровая установка: 0,005% от максимальной                                                                    |                                                                                                                                                                       |  |  |  |
|                                         |                          |                                       | Установка<br>крутящего момента                                           | 0,01% от номинального момента                                                                                                                                 |                                                                                                                                                                       |  |  |  |
| Управление<br>синхронным                | Векторное<br>управление  | Точность                              | Скорость                                                                 | Аналоговая установка: ±0,1% от максимальной скорости (25±10°C)<br>Цифровая установка: ±0,005% от максимальной скорости (-10 50°C)                             | Аналоговая установка: $\pm 0,1\%$ от максимальной скорости ( $25\pm 10^{\circ}$ C)<br>Цифровая установка: $\pm 0,005\%$ от максимальной скорости ( $-1040^{\circ}$ C) |  |  |  |
| двигателем                              | с датчиком               | регулирования                         | Момент                                                                   | ±3% от номинального момента (при использова                                                                                                                   | нии профильного двигателя)                                                                                                                                            |  |  |  |
|                                         | скорости                 | Отклик по скорости                    | Скорость                                                                 | 600 Гц *1                                                                                                                                                     | 100 Гц                                                                                                                                                                |  |  |  |
|                                         |                          | Максимальн                            | ная скорость                                                             | 500 Гц, значение при преобразовании выходной частоты ПЧ *1                                                                                                    | 150 Гц, значение при преобразовании выходной частоты ПЧ                                                                                                               |  |  |  |
|                                         |                          |                                       |                                                                          |                                                                                                                                                               |                                                                                                                                                                       |  |  |  |

<sup>\*1)</sup> Максимальное значение при несущей частоте 10 кГц. В зависимости от условий, например настройки несущей частоты и т.п., данное значение может не достигаться.

<sup>\*2)</sup> Векторное управление с датчиком скорости: несущая частота 5 кГц: 400 Гц, несущая частота 2 кГц: 150 Гц
\*3) Векторное управление без датчика скорости: несущая частота 5 кГц: 250 Гц, несущая частота 2 кГц: 120 Гц

# Общие параметры

# Общие характеристики преобразователей частоты

|                                        | Пара                                              | метр                                    | Моноблочный тип Модульный тип                                                                                                                                                                                                                             |                                                                                                                                                 |                                                                                                                                                                                                                            |                                                                                       |                 |  |  |
|----------------------------------------|---------------------------------------------------|-----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|-----------------|--|--|
| Управление<br>синхронным<br>двигателем | Векторное<br>управление<br>с датчиком<br>скорости | Диапазон<br>регулирования<br>скорости   | 1:1500 (при кол-ве импульсов энкодера 1024 имп/об)<br>При базовой скорости 1500 об/мин,<br>от 1 до 1500 об/мин и до макс. скорости                                                                                                                        |                                                                                                                                                 |                                                                                                                                                                                                                            |                                                                                       |                 |  |  |
|                                        | Работа и уп                                       | равление                                | Управление с пульта: управление вращением вперед и назад с помощью клавиш ( от                                                                                                                                        |                                                                                                                                                 |                                                                                                                                                                                                                            |                                                                                       |                 |  |  |
|                                        | Установка с                                       | скорости                                | Установочный резик<br>Аналоговый выход<br>Управление сигналам<br>Пошаговое изменены<br>Дискретный сигнал<br>Управление по посл                                                                                                                            | :0 ±10 В, 4 – 20 мА и UP/DOWN (Вверх/Вниз) : Скорост не скорости : С помощью комби : Установка с помощью сигналов едовательному каналу : RS-485 | ые резисторы) (три клеммы: 1 - 5 кОм)  ъ увеличивается, когда активен сигнал UP (DI), и наций четырех внешних входных сигналов (DI) «16-битного параллельного задания» (возможн (стандарт). Установка возможна при использ | можно выбрать до 15 различ<br>ю при использовании опцион<br>ювании различных опций св | ных скоростей.  |  |  |
|                                        |                                                   |                                         | Принимаемая                                                                                                                                                                                                                                               | частота может быть раз                                                                                                                          | личной в зависимости от исполь                                                                                                                                                                                             | зуемого детектора                                                                     | скорости.       |  |  |
|                                        |                                                   |                                         | Интер                                                                                                                                                                                                                                                     | фейс энкодера                                                                                                                                   | Детектор скорости                                                                                                                                                                                                          | Принимаемая частота                                                                   |                 |  |  |
|                                        |                                                   |                                         | Асинхронный<br>двигатель                                                                                                                                                                                                                                  | Интерфейсная плата энкодера ОРС-VG1-PG0 ОРС-VG1-PG                                                                                              | Энкодер с комплементарным выходом<br>Энкодер с открытым коллектором<br>Энкодер с дифференциальным выходом                                                                                                                  | 100 кГц/макс.                                                                         |                 |  |  |
|                                        | Определени                                        | ие скорости                             |                                                                                                                                                                                                                                                           | OPC-VG1-PMPG                                                                                                                                    | Энкодер с дифференциальным выходс (с функцией определения положения полюса)                                                                                                                                                | -                                                                                     |                 |  |  |
|                                        |                                                   |                                         | Синхронный<br>двигатель                                                                                                                                                                                                                                   | OPC-VG1-PMPGo                                                                                                                                   | Энкодер с открытым коллектором (с функцией определения положения полюса)                                                                                                                                                   | — 100 кГц/макс.                                                                       |                 |  |  |
|                                        |                                                   |                                         | OPC-VG1-SPGT    Знкодер с последовательным выходом (абсолютный энкодер с 17-битным разрешением)  * Для подключения некоторых опциональных интерфейсных плат энкодера требуется специальный кабель.                                                        |                                                                                                                                                 |                                                                                                                                                                                                                            |                                                                                       |                 |  |  |
| Управление                             | Регулирова                                        | ние скорости                            | Расчет констант Р и I (ПИ-регулирование) с алгоритмом упреждающего управления. Переключение параметров управления: Параметр управления можно переключить посредством внешних сигналов.                                                                    |                                                                                                                                                 |                                                                                                                                                                                                                            |                                                                                       |                 |  |  |
|                                        | Сигнал состояния работы                           |                                         | Транзисторный выход: Работа ПЧ, эквивалентность скорости, определение скорости, раннее предупреждение о перегрузке ПЧ, ограничение момента и т.д. Аналоговый выход: Скорость двигателя, выходное напряжение, крутящий момент, коэффициент нагрузки и т.д. |                                                                                                                                                 |                                                                                                                                                                                                                            |                                                                                       |                 |  |  |
|                                        | Время уско                                        | рения/замедления                        | 0,01 – 3600 с (4 независимые настройки времени ускорения и замедления, выбираемые с помощью внешних сигналов) (Линейная и S-образная характеристики ускорения/замедления)                                                                                 |                                                                                                                                                 |                                                                                                                                                                                                                            |                                                                                       |                 |  |  |
|                                        | Коэффициент у                                     | силения для установки частоты           | Задает пропорцио                                                                                                                                                                                                                                          | нальную зависимость между ан                                                                                                                    | алоговой установкой скорости и скорость                                                                                                                                                                                    | ю двигателя в диапазоне о                                                             | от 0 до 200%.   |  |  |
|                                        | Пропуск час                                       | СТОТЫ                                   |                                                                                                                                                                                                                                                           |                                                                                                                                                 | тра) и гистерезис (1 параметр).                                                                                                                                                                                            |                                                                                       |                 |  |  |
|                                        | Подхват вращан                                    | ощегося двигателя (запуск с хода)       | Преобразователь частоты обеспечивает «гладкий» подхват вращающегося двигателя без его остановки. (Эта функция действует при векторном управлении как с датчиком скорости, так и без него.)                                                                |                                                                                                                                                 |                                                                                                                                                                                                                            |                                                                                       |                 |  |  |
|                                        | Авто-перезапуск пос                               | сле кратковременного отключения питания | После кратковременного отключения питания двигатель автоматически перезапускается, не прекращая вращения.                                                                                                                                                 |                                                                                                                                                 |                                                                                                                                                                                                                            |                                                                                       |                 |  |  |
|                                        | Контроль ко                                       | омпенсации скольжения                   | Компенсирует сниж                                                                                                                                                                                                                                         | ение скорости из-за нагрузки и об                                                                                                               | еспечивает стабильную работу (действует при                                                                                                                                                                                | U/f управлении асинхронны                                                             | ым двигателем). |  |  |
|                                        | Выравниван                                        | ние нагрузки                            | Скорость вращен                                                                                                                                                                                                                                           | ия двигателя снижается пропор                                                                                                                   | оционально выходному моменту (функция                                                                                                                                                                                      | отключена в режиме U/f                                                                | f управления).  |  |  |
|                                        | Ограничени                                        | е момента                               | Ограничивает крутящий момент до заданных значений, выбираемых из следующих вариантов: «общий для 4-х квадрантов»,<br>«независимый запуск и торможение» и т.д.). Возможна установка с помощью аналоговых и внешних сигналов (2 шага).                      |                                                                                                                                                 |                                                                                                                                                                                                                            |                                                                                       |                 |  |  |
|                                        | Управление моментом                               |                                         | Аналоговая установка: 0 ±10 В /0 ±150% (до 300% с регулировкой усиления) Цифровая установка: Возможна установка с помощью сигнала «16-битного параллельного задания» (при использовании опциональной платы).                                              |                                                                                                                                                 |                                                                                                                                                                                                                            |                                                                                       |                 |  |  |
|                                        | ПИД-регулирование                                 |                                         | Возможен ана                                                                                                                                                                                                                                              | элоговый ввод при ПИД                                                                                                                           | ц-регулировании.                                                                                                                                                                                                           |                                                                                       |                 |  |  |
|                                        | Управление включени                               | ем/выключением охлаждающих вентиляторов | Для увеличения с<br>вентилятор отклю                                                                                                                                                                                                                      | рока службы охлаждающего в<br>чается при останове двигател:                                                                                     | ентилятора и уменьшения шума, возник<br>я и низкой температуре.                                                                                                                                                            | ающего во время его раб                                                               | боты,           |  |  |
|                                        | Контроль со                                       | остояния линии связи                    | Контролирует                                                                                                                                                                                                                                              | качество связи между гл                                                                                                                         | павным устройством (ПЛК) и пре                                                                                                                                                                                             | образователем част                                                                    | ОТЫ.            |  |  |
|                                        | Задание мо                                        | мента                                   | активируются                                                                                                                                                                                                                                              | комбинацией заданных                                                                                                                            | поговая установка (функция вр<br>х значений (1 шаг, переключени<br>ателя) и внешнего сигнала (DI).                                                                                                                         |                                                                                       |                 |  |  |

|                          | Пара                                           | метр                                        | Моноблочный тип                                                                                                                                                                                                                                                                                                         | Модульный тип                                                                                                                                                                                                                                                                                                  |  |  |  |
|--------------------------|------------------------------------------------|---------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
|                          | Выбор двиг                                     | ателя                                       | С помощью функционального кода (F79)<br>нужный мотор из трех предлагаемых тиг                                                                                                                                                                                                                                           | ) или комбинации внешних сигналов (DI) можно выбрать пов.                                                                                                                                                                                                                                                      |  |  |  |
|                          | Определени                                     | е температуры                               |                                                                                                                                                                                                                                                                                                                         | рэффициентом (NTC) (производства Fuji Electric или его аналог)<br>юэффициентом (РТС) (Уровень срабатывания устанавливается<br>вева двигателя)                                                                                                                                                                  |  |  |  |
|                          | Самодиагностика для схемы обнаружения энкодера |                                             | Функция самодиагностики для схемы обнаружения входного сигнала импульсного энкодера (РА, РВ).                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                |  |  |  |
|                          | Функция ад<br>управления                       |                                             | Эта функция позволяет повысить эффективног устройством вертикального перемещения или                                                                                                                                                                                                                                    | сть работы ПЧ, определяя максимальную скорость подъема груза<br>другим аналогичным оборудованием.                                                                                                                                                                                                              |  |  |  |
|                          |                                                | Привод двигателя                            | Опция: OPC-VG1-TBSI                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                |  |  |  |
|                          | Управление                                     | с несколькими                               | Максимальное количество обмоток дви                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                |  |  |  |
|                          | двигателем                                     | обмотками                                   | Способ управления: Только векторное у                                                                                                                                                                                                                                                                                   | правление с датчиком скорости.                                                                                                                                                                                                                                                                                 |  |  |  |
|                          | с несколькими                                  | Система с прямым                            | Опция: OPC-VG1-TBSI                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                |  |  |  |
|                          | обмотками                                      | параллельным<br>соединением *1              | Максимальное количество параллельных модулей:                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                |  |  |  |
| Управление               |                                                |                                             |                                                                                                                                                                                                                                                                                                                         | спространяются на условия использования, например, длину выходного кабеля                                                                                                                                                                                                                                      |  |  |  |
| Яправление               |                                                | тналами UP/DOWN (Вверх/Вниз)                |                                                                                                                                                                                                                                                                                                                         | ии команд UP, DOWN и установки на нуль посредством внешнего сигнала (DI).                                                                                                                                                                                                                                      |  |  |  |
|                          | Функция ос                                     | танова                                      | Имеются 3 функции останова: STOP 1, 2                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                |  |  |  |
|                          | Вывод импу                                     | льсов энкодера                              |                                                                                                                                                                                                                                                                                                                         | двигателя, путем фиксированного или произвольного частотного разделения.<br>ыход (с тем же напряжением, что и на клемме PGP) можно переключить                                                                                                                                                                 |  |  |  |
|                          | Наблюдател                                     | Ъ                                           | Подавление колебаний нагрузки и вибра                                                                                                                                                                                                                                                                                   | аций.                                                                                                                                                                                                                                                                                                          |  |  |  |
|                          | Настройка і                                    | в режиме офлайн                             | Применяются два типа настройки конст                                                                                                                                                                                                                                                                                    | ант двигателя: поворотный и неповоротный.                                                                                                                                                                                                                                                                      |  |  |  |
|                          | Настройка в режиме онлайн                      |                                             | Используется для непрерывной настройки констант двигателя при изменениях его температуры.                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                |  |  |  |
|                          | Контроль позиционирования                      |                                             | Стандартная функция: контроль позиционирования с помощью функции самоблокировки и встроенной передающей схемы.                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                |  |  |  |
|                          |                                                |                                             |                                                                                                                                                                                                                                                                                                                         | дифференциальным выходом для импульсного входа задания                                                                                                                                                                                                                                                         |  |  |  |
|                          |                                                |                                             | OPC-VG1-PGo (PR) : Плата энкодера с открь                                                                                                                                                                                                                                                                               | ытым коллектором для импульсного входа задания                                                                                                                                                                                                                                                                 |  |  |  |
|                          | Синхронный режим                               |                                             | Опции: OPC-VG1-PG (PR): Плата энкодера с                                                                                                                                                                                                                                                                                | дифференциальным выходом для импульсного входа задания                                                                                                                                                                                                                                                         |  |  |  |
|                          | с посылкой                                     | импульсов                                   |                                                                                                                                                                                                                                                                                                                         | ткрытым коллектором для импульсного входа задания                                                                                                                                                                                                                                                              |  |  |  |
|                          | Дисплей                                        |                                             | 7-сегментный светодиодный индикатор, жидкокристаллический дисплей с подсветкой                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                |  |  |  |
|                          |                                                | Язык дисплея                                | Японский, английский, китайский, корей                                                                                                                                                                                                                                                                                  | йский                                                                                                                                                                                                                                                                                                          |  |  |  |
|                          |                                                | В рабочем<br>режиме/при<br>останове         | Измеренное значение скорости     Заданное значение моиента     Выходное напряжение     Скорость привода     Скорректированное значение     аналогового входа (12)     Наличие дискретного     входного/въходного сигнала     Козффициент нагрузки     Общее время работы двигателя/количество запусков (по каждому двиг | Заданное значение магнитного потока     Обратная связья ПИД     Скорректированное значение аналогового вхорд (А/2)     Температура двигателя     Общая потребляемая мощность (*)     Заданное значение магнитного потока     Вькод ПИД     Опциональный монитор 1-6     Зампература радиатора     Время работы |  |  |  |
|                          |                                                | Режим установки                             | Отображение наименований и данных.                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                |  |  |  |
| Индикация<br>и установка | Пульт<br>управления                            | Аварийный режим                             | Отображение следующих кодов ошибки  « dbH (Перегрев тормозного резистора)(")  « Er1 (Ошибка памяти)  « Er2 (Ошибка связи с пультом)  « Er3 (Ошибка связи RS-48)  « Er3 (Ошибка АЦП)  « Trb (Обрыв NTC термистора)  « OC (Превышение тока)  « OH3 (Внутренний перегрев ПН)  « OH4 (Перегрев двигателя)                   | 1:  • dCF (Выход из строя предохранителя постоянного тока)  • E7 (Ошибка процессора)  • E7 (Ошибка при работе)  • Lin (Орыв фазы на входе)(*)  • Ut (Ререгрев радиатора)  • OH1 (Перегрузка двигателя 1)  • OL2 (Перегрузка двигателя 2)                                                                       |  |  |  |
|                          |                                                |                                             | OL3 (Перегрузка двигателя 3)     P9 (Ошибка знкодера)     PBF (Ошибка закрядной цели) (*)     OPL (Обрыв фазы на выходе)     ETA (Ошибка UPAC) '2     ETI (Ошибка знкодера)     ECF (Отказ схемы функциональной безопасности) '1     ArE (Ошибка E-SX)     ArF (Ошибка управляющих сигналов)                            | ОВ (Превышение скорости)     ов (А (Ошибка тормозного транзистора) (*)     еЕН (Аппаратная ошибка)     еЕС (Ошибка связи между ПЧ)     об (Чрезмерное отклонение при позиционировании)     • LOC (Задержка звлуска)     • SFF (Отказ карты функциональной безопасности) *1                                     |  |  |  |
|                          |                                                | Некритичная ошибка                          | Отображается индикация [L-AL].<br>Сохраняется и отображается точная при                                                                                                                                                                                                                                                 | ичина, вызвавшая ошибку некритичного характера.                                                                                                                                                                                                                                                                |  |  |  |
|                          |                                                | Аварийная<br>игнализация<br>во время работы | Сохраняются и отображаются календарная дата/время а<br>Срок хранения данных: 5 и более лет (при температуре о                                                                                                                                                                                                           | ю моделей мощностью 30 кВт и выше, предлагается в качестве опции                                                                                                                                                                                                                                               |  |  |  |

<sup>\*1:</sup> Поддержка возможна с версией ROM H1/2 0020 или последующей, а также если в серийном номере изделия указана версия ВС или последующая. Моноблочный тип: Может использоваться с моделями FRN37VG1S-2 , FRN45VG1S-4 и выше. Модульный тип: Может использоваться с моделями любой мощности.

\*) Отсутствует на моделях модульного типа.

# Общие параметры

# Общие характеристики преобразователей частоты

|                                                        | Пара                   | аметр                                   | Моноблочный тип                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Модульный тип                                                                                                                                                                                                                                                                                                          |  |  |
|--------------------------------------------------------|------------------------|-----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|                                                        |                        | Архив операций (*1)                     | Загрузка дискретных данных, хранящихся в ПЧ<br>Интервал дискретизации по времени: от 50 мкс                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                        |  |  |
|                                                        |                        | Отслеживание<br>в реальном времени (*1) | Загрузка данных ПЧ в масштабе реального врег<br>Интервал дискретизации по времени: от 1 мс до                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                        |  |  |
| Индикация<br>и установка                               | ΠΟ Loader              | Журнал сообщений<br>о неисправностях    | Загрузка дискретных данных, сохраненных в ПЧ при аварии, для отображени<br>Интервал дискретизации по времени: от 50 мкс до 1 с (Обратите внимание, чт<br>за исключением дискретизации тока.)<br>Дискретные данные хранятся в памяти с резервным питанием от батареи. Ср<br>Батарея: встроенная, входит в стандартную комплектацию моделей мощност<br>для моделей мощностью 22 кВт и ниже (опция: ОРК-ВР).                                                                                                                                                                                                                                                        | го дискретизация запускается при 400 мкс или более,<br>ок хранения данных: 5 и более лет (при температуре окружающей среды 25°C)                                                                                                                                                                                       |  |  |
|                                                        |                        | Монитор работы (*1)                     | Монитор ввода/вывода, монитор системы, мони                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | тор истории аварий                                                                                                                                                                                                                                                                                                     |  |  |
|                                                        |                        | Настройка функциональных кодов          | Можно проверить режимы настройки функциональных кодов. Доступны                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | і также функции редактирования, передачи, сравнения и инициализации.                                                                                                                                                                                                                                                   |  |  |
|                                                        | Индикаторн             | ная лампа зарядки                       | Горит при поступлении электропитания в ПЧ. Го                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | рит даже при подаче управляющего напряжения.                                                                                                                                                                                                                                                                           |  |  |
|                                                        | Срок службы            | конденсатора силовой цепи               | Функция автоматической оценки срока службы                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                        |  |  |
| Техническое<br>обслуживание                            | Общие фун              | кции                                    | <ul> <li>Отображение и регистрация отработанного срока службы конд<br/>вентилятора.</li> <li>Отображение и регистрация времени работы ПЧ.</li> <li>Отображение и регистрация максимального выходного тока и м</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                         | енсатора платы управления и времени работы охлаждающего<br>иаксимальной внутренней температуры в течение последнего часа.                                                                                                                                                                                              |  |  |
|                                                        | RS-485                 |                                         | Вход для подключения компьютеров и программир                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ууемых контроллеров с интерфейсом RS-485.                                                                                                                                                                                                                                                                              |  |  |
| Связь                                                  | USB                    |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | дующие операции активируются с помощью профильного ПО кода, проверка передачи и мониторинг различных состояний.                                                                                                                                                                                                        |  |  |
| Совместимость                                          | VG7                    | Значения функциональных кодов           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Требуется настроить все функциональные коды VG7, за исключением кодов для третьего двигателя, чтобы активировать соответствующие операции.<br>Значения, считываемые с VG7, можно записать без изменения в FRENIC-VG с помощью ПО Loader персонального компьютера<br>(за исключением некоторых специальных параметров). |  |  |
| с предыдущими                                          |                        | Связь                                   | Полная совместимость с сетями T-Link, SX bus и CC-Link. Програ<br>использоваться без каких-либо изменений (за исключением неко                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                        |  |  |
| моделями                                               | Установочн             | ый адаптер                              | В качестве опции доступен адаптер, соответствующий установочным размерам более ранних моделей.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                        |  |  |
| Функция<br>безопасности                                | Стандартная<br>функция | Функция останова                        | Безопасное отключение по крутящему моменту (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ми выходного транзистора ПЧ, а, следовательно,                                                                                                                                                                                                                                                                         |  |  |
| Стандарт<br>изделия                                    | Соответств             | ие стандартам (*3)                      | Стандарты безопасности США и Канады UL, с     Директива на машины и механизмы     IEC/EN ISO13849-1: PL-d     IEC/EN 60204-1: Категория останова 0     IEC/EN 61800-5-2: SIL 2     IEC/EN 62061: SIL 2     Директива по низковольтному оборудованию     EN 61800-5-1: Категория перенапряжения 3     Директива по ЭМС     IEC/EN 61800-3 (Сертификация на утверждени     IEC/EN 61800-3 (Сертификация на утверждени     IEC/EN 61326-3-1     (Электромагнитная эмиссия) Фильтр ЭМС (от     Моноблочный тип (220 кВт и ниже): Категори     Моноблочный тип (280 кВт и выше): Категори     Модульный тип: Категория 3     (Помехоустойчивость) 2-я окружающая сред | іи),<br>пция):<br>я 2<br>яя 3                                                                                                                                                                                                                                                                                          |  |  |
|                                                        | Условия экс            | сплуатации                              | Эксплуатировать только в помещениях. В окружающей среде д и масляный туман (степень загрязнения 2 по стандарту IEC 6060                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | олжны отсутствовать агрессивные и горючие газы, пыль<br>54-1). Размещать вне зоны попадания прямых солнечных лучей.                                                                                                                                                                                                    |  |  |
|                                                        | Температур             | а окружающей среды                      | -10 +50°С (-10 +40°С: ПЧ мощностью 22 кВт и ниже устанавливаются рядом друг с другом без зазора)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -10 +40°C                                                                                                                                                                                                                                                                                                              |  |  |
|                                                        | Влажность              | окружающей среды                        | от 5 до 95% О.В. (Конденсация росы не допуска                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ается)                                                                                                                                                                                                                                                                                                                 |  |  |
| Требования                                             | Высота над             | уровнем моря                            | Не более 3000 м Выходная мощность может понизиться на высоте от 1001 до 3000 м. При использовании на высоте от 2001 до 3000 м класс изоляции цепи управления изменяется с «основной» на «усиленную».                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                        |  |  |
| к внешним<br>условиям<br>при установке<br>оборудования | Вибрация               |                                         | 200 В 55 кВт и ниже, 400 В 75 кВт и ниже 3 мм: от 2 до 9 Гц или ниже, 9,8 м/c2: от 9 до 20 Гц или ниже, 2 м/c2: от 50 до 55 Гц или ниже, 1 м/c2: от 55 до 200 Гц или ниже     200 В 75 кВт и выше, 400 В 90 кВт и выше 3 мм: от 2 до 9 Гц или ниже, 2 м/c2: от 9 до 55 Гц или ниже, 1 м/c2: от 55 до 200 Гц или ниже                                                                                                                                                                                                                                                                                                                                             | 0,3 мм: от 2 до 9 Гц<br>1м/с2 : от 9 до 200 Гц                                                                                                                                                                                                                                                                         |  |  |
|                                                        | Температур             | а хранения                              | -25 +70°C (-10 +30°C при длительном хран                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ении)                                                                                                                                                                                                                                                                                                                  |  |  |
|                                                        | Влажность              | при хранении                            | от 5 до 95% О.В. (Конденсация росы не допуска                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ается)                                                                                                                                                                                                                                                                                                                 |  |  |
|                                                        |                        |                                         | INVOLUED TO EDENIC VC Londor (MDS VC1 DCL)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                        |  |  |

<sup>\*1)</sup> Эта функция доступна при использовании лицензионного ПО FRENIC VG Loader (WPS-VG1-PCL).
\*2) Соответствие стандарту C22.2 № 14 не распространяется на модели FRN160, 200, 220, 355 и 400VG1S-4J.
\*3) В настоящее время ожидается сертификация серии ПЧ модульного типа на трехфазное напряжение 690 В.

# Функции клемм

# Клеммы силовой цепи и аналоговых входов

| Категория          | Обозначение                                        | Название клеммы                                                   | Моноблочный тип                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Модульный тип                                                                                                                                                                     |  |  |
|--------------------|----------------------------------------------------|-------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|                    | L1/R,L2/S,L3/T                                     | Вход питания                                                      | Подключение трехфазного входного напряжения.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Отсутствует в модульных ПЧ.                                                                                                                                                       |  |  |
|                    | U,V,W                                              | Выходы ПЧ                                                         | Подключение трехфазного двигателя.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Подключение трехфазного двигателя.<br>Что касается количества модулей на фазу,<br>то на каждую фазу (модуль) выделяется одна клемма.                                              |  |  |
|                    | P (+),P1                                           | Клеммы подключения<br>дросселя звена<br>постоянного тока          | Подключение дросселя звена постоянного тока.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Клемма "Р1" для подключения дросселя звена постоянного тока отсутствует в модульных ПЧ.                                                                                           |  |  |
|                    | P (+),N (-)                                        | Клеммы подключения<br>ТОРМОЗНОГО МОДУЛЯ/<br>шины постоянного тока | Подключение тормозного резистора через тормозной модуль.<br>Используется для системы соединения по шине постоянного тока.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Используется в качестве шины постоянного тока.                                                                                                                                    |  |  |
| Силовая<br>цепь    | P (+),DB                                           | Клеммы подключения<br>ВНЕШНЕГО ТОРМОЗНОГО<br>РЕЗИСТОРА            | Подключение внешнего тормозного резистора (опция).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Клемма "DB" для подключения внешнего тормозного резистора отсутствует в модульных ПЧ.                                                                                             |  |  |
|                    | <b>G</b> G                                         | Заземление ПЧ                                                     | Клеммы заземления шасси ПЧ.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                   |  |  |
|                    | R0,T0                                              | Дополнительный вход питания цепи управления                       | Подключение к тому же источнику питания переменного тока, которы                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | й обеспечивает силовую цепь, для резервного питания цепи управления.                                                                                                              |  |  |
|                    | R1,T1 Дополнительный вход питания для вентиляторов |                                                                   | Используется как вход питания охлаждающего вентилятора переменного<br>тока, установленного внутри ПЧ, который работает в конфигурации<br>с ШИМ-рекуператором с высоким коэффициентом мощности, обладающим<br>функцией рекуперации энергии (на моделях серии 200 В мощностью 37 кВт<br>и выше, а также моделях серии 400 В мощностью 75 кВт и выше). Обычно<br>в этом нет необходимости, если ПЧ используется без рекуператора.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Используется как вход питания охлаждающего вентилятора переменного тока в преобразователях частоты мощностью 90 кВт и выше. Подключение невозможно на ПЧ мощностью 75 кВт и ниже. |  |  |
|                    | DCF1<br>DCF2                                       | Вход обнаружения перегорания предохранителя постоянного тока      | Отсутствует в ПЧ моноблочного типа.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Подключает микровыключатель для обнаружения перегорания предохранителя постоянного тока, соответствует выходу "b". Тип 24 В пост. тока 12 мА                                      |  |  |
|                    | 13                                                 | Питание потенциометра                                             | Используется для питания потенциометра установки скорост                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | и (переменный резистор: 1 - 5 кОм). Макс. пост. ток 10 B, 10 мА.                                                                                                                  |  |  |
| Установка          | 12                                                 | Вход по напряжению для установки скорости                         | Используется для аналогового входа заданного напряжен с помощью сигналов ±: от 0 до +10 В пост. тока / от 0 до н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ния. Инверсный режим управления можно выбрать макс. скорости.                                                                                                                     |  |  |
| скорости           | 11                                                 | Общий аналоговых входов                                           | Общая клемма для входных сигналов.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ·                                                                                                                                                                                 |  |  |
| Аналоговый<br>вход | Ai1                                                | Аналоговый вход 1                                                 | Следующие функции можно выбрать и установить по напряжению внешнего аналогового входного сигнала.  ©. Входной сигнал выключен (DFF) 1: Дополнительная установка скорости 1 [AUX-N1] 2: Дополнительная установка скорости 2 [AUX-N2] 3: От крутящего момента (уровень 1) [ПREF1] 6: Задание смещения момента [ТВ-REF] 6: Задание момента [ТВ-REF] 6: Задание момента [ТВ-REF] 7: Задание мом составляющей тока [ТР-REF]  8: Ползучая скорость 1 в настройке UP/DOWN (повышение/понижение) [СRP-N1] 9: Ползучая скорость 2 в настройке UP/DOWN [СRP-N2] 10: магнитного потока [МГ-REF]  11: Измеренная скорость [LINE-N] 12: Температура двигателя [М-ТМР] 13: Игнорирование задания скорости [N-DR] 14: Уннеросланый анало 15: Обратная связь ПИД 1 [PID-F8] 16: Заданное значение ПИД [PID-REF] 17: Поправочный коэффициент усиля ПИД-регулятора [PID-G]  18-24: Аналоговый вход, выбранный пользователем [АП – 7] (С-АП – 7] 25: Настройка скорости [N-REF1] 26: Зпавная установка скорости [N-FEP1] 26: Зпавная установка скорости [N-FEP |                                                                                                                                                                                   |  |  |
|                    | Ai2                                                | Аналоговый вход 2                                                 | С помощью внутреннего переключателя можно переключать A/2 с входа напр<br>функция «Установка скорости».                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ляжения на вход тока и ооратно. Однако для токового входа доступна только                                                                                                         |  |  |
|                    | М                                                  | Общий аналоговых входов                                           | Общая клемма для входных сигналов.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                   |  |  |

# Клеммы дискретных входов

|                                         | Параме | гр                                 | Моноблочный тип                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Модульный тип                                                                                                                                                                              |  |  |
|-----------------------------------------|--------|------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|                                         | FWD    | Команды вращения вперед и останова | [FWD-CM] ВКЛ.: Двигатель вращается в переднем направлени                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | и. [FWD-CM] ВЫКЛ.: Двигатель замедляется и останавливается.                                                                                                                                |  |  |
|                                         | REV    | Команды вращения назад и останова  | [REV - CM] ВКЛ.: Двигатель вращается в обратном направлен                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ии. [REV - CM] ВЫКЛ.: Двигатель замедляется и останавливается.                                                                                                                             |  |  |
|                                         | X1     | Дискретный вход 1                  | 0, 1, 2, 3: Выбор режима пошагового изменения скорости (шаги 1 - 15) [0: SS1, 1: SS2, 2: SS4, 3: SS8] 4, 5: Автоматический регулятор скорости (АSR), выбор времени ускорения/замедления (4 шага) [4: RT1, 5: RT2] 6: Выбор самоудержания [HLD] 7: Команда останова на выбете [ВХ] 8: Сброс аварии [RST] 9: Команда отключения (Внешяяя ошибкд) ПТНВ 10: Толичовый режим [JOG] 11: Установка скорости № 2/Установка скорос                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                            |  |  |
|                                         | X2     | Дискретный вход 2                  | <ol> <li>У. Команда отключения (Внешняя ошибка) [ТНН] 10: Іолчковый режим (JOG) 11: Установка окорости № 2/Установка скорости № 2/Установка окорости № 12/ № 15: Команда установки на нуль времени ускорения/замедления [CLR] 16: Переключение ползучей скорости в настройки UP/DOWN [CPR-N2/N1]</li> <li>17: Команда повышения в настройке UP/DOWN [UP] 18: Команда понижения в настройке UP/DOWN [DOWN]</li> <li>19: Разрешить запись с пульта (разрешение изменения данных) [WE-KP] 20: Отмена ПИД-регулирования [КР/РІD]</li> <li>21: Переключение на инверсный режим управления [IVS] 22: Сигнал контроля состояния выходного контактора для 52</li> <li>23: Разрешить запись по линии связи [WE-LK] 24: Выбор управления по линии связи [LE]</li> <li>25: Универсальный дискретный вход DI [U-DI] 26: Режим подхвата двигателя при запуске [STM]</li> <li>27: Команда понедворить ного каматичивания [ЕКТЕ] 30: Отмена задания скорости [LOCK]</li> <li>29: Команда предварительного наматичивания [ЕКТЕ] 30: Отмена задания скорости [LOCK]</li> <li>33: Отмена Н41 (задание момента) [Н41-ССL] 32: Отмена Н42 (задание моментной составляющей тока) [Н42-ССL]</li> <li>33: Отмена Н43 (задание матитного потока) [Н43-ССL] 34: Отмена F40 (Режим управления моментом 1) [F40-ССL]</li> <li>35: Отраничение момента (Выбор уровоня 1 или 2 [Т12/Т.1] 36: Шунтирование [ВРS] 37, 38: Задание смещения моментом [ВРS] 37, 38: Задание мещения моментом [ВРS] 47, 38: Задание матитного потока) [REV-A1]</li> <li>44: Изменение полярокоги на нагогового входа А1 [ZH-A1] 43: Удержание нуля аналогового входа А1 [ZH-A1]</li> <li>44: Изменение полярокоги на нагогового входа А1 [ZH-A1] 44: Изменение полярокоги нагогового входа А1 [ZH-A1]</li> <li>44: Изменение полярокоги нагогового входа А1 [ZH-A1]</li> <li>44: Изменение полярокоги нагогового входа А1 [ZH-A1]</li> <li>44: Изменение полярокоги нагогового входа А1 [ZH</li></ol> | H3] 14: Команда торможения постоянным током [DCBRK] [CLR] 16: Переключение ползучей скорости в настройке                                                                                   |  |  |
|                                         | Х3     | Дискретный вход 3                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | [WE-KP] 20: Отмена ПИД-регулирования [KP/PID]<br>игнал контроля состояния выходного контактора для 52-2 [IL]<br>эления по линии связи [LE]                                                 |  |  |
| Дискретный<br>вход<br>(Возможно         | X4     | Дискретный вход 4                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | овка» при нулевой скорости [LOCK]<br>вена задания скорости [N-LIM]<br>задание моментной составляющей тока) [H42-CCL]                                                                       |  |  |
| переключение<br>между                   | X5     | Дискретный вход 5                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Шунтирование [BPS] 37, 38: Задание смещения момента 1 / 2<br>ООР] 40: Удержание нуля [ZH-Al1] 41: Удержание нуля аналогового<br>[ZH-Al3] 43: Удержание нуля аналогового входа Ai4 [ZH-Al4] |  |  |
| отрицательной и положительной логикой.) | X6     | Дискретный вход 6                  | 46: Изменение полярности аналогового входа Al3 [REV-Al3] 47: Изменение полярности аналогового входа Al4 [REV-48: Переключение выхода ПИД на инверсный режим [PID-INV] 49: Отмена ошибки энкодера [PG-CCL] 50: Отмена онизкого напряжения [LU-CCL]  — 51: Удержание смещения момента на аналоговом входе Ai [H-TB] 52: ОСТАНОВ 1 (Двигатель останавливается со с                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                            |  |  |
|                                         | X7     | Дискретный вход 7                  | 31.7 держатие систем и может на напалоговом в ходе за јит-<br>временем замедления) [STOP1]<br>53: ОСТАНОВ 2 (Двигатель замедляется и останавливается с в<br>54: ОСТАНОВ 3 (Двигатель останавливается при помощи огран<br>55: Включить плату DIA [DIA] 56: Включить плату DIB [DIB] 57: С                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ременем замедления 4) [STOP2]<br>ичителя момента) [STOP3]                                                                                                                                  |  |  |
|                                         | X8     | Дискретный вход 8                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | II 1 – 10] 68: Выбор параметра адаптивного управления нагрузкой<br>улировании [PID-FF] 72: Управляющий сигнал 1 [TGL1]                                                                     |  |  |
|                                         | X9     | Дискретный вход 9                  | 75: Отмена ошибки NTC термистора (NTC-CCL) 76: Отмена ран<br>78: Сигнал переключения обратной связи ПИД (PID-1/2)<br>79: Выбор смещения момента при ПИД-регулировании [ТВ-РІD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | него предупреждения об окончании срока службы [LF-CCL]                                                                                                                                     |  |  |

# Функции клемм

# Клеммы дискретных входов

|        | Параметр                    |                           |                                                                                                                                                                   | Моноблочный тип Модульный тип                                              |  |  |  |  |
|--------|-----------------------------|---------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|--|--|--|--|
| PLC Пи |                             | Питание ПЛК               | Подключение внешнего питания ПЛК. Эту клемму можно также использовать для питания нагрузок, подключенных к транзисторным выходам. +24 B (22 – 27 B), макс. 100 мА |                                                                            |  |  |  |  |
|        |                             |                           |                                                                                                                                                                   | Общая клемма для дискретных входных сигналов.                              |  |  |  |  |
|        | Дискретный вход<br>(Функция | вход EN1,EN2 Вход функции |                                                                                                                                                                   | При размыкании цепи между клеммами EN1-PS или EN2-PS происходит выключение |  |  |  |  |
|        | безопасности)               | PS                        | безопасности                                                                                                                                                      | переключающих элементов силовой цепи ПЧ и отключение выхода.               |  |  |  |  |

# Клеммы аналоговых и транзисторных выходов

|                            | Параме      | тр                                                   | Моноблочный тип Модульный тип                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |        |  |
|----------------------------|-------------|------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--|
|                            | AO1         | Аналоговый выход 1                                   | Аналоговые выходы, позволяющие выдавать напряжение пост. тока от 0 до ±10 В для следующих сигналов:  0: Измеренная скорость (Тахометр, однополюсный) [N-FB1+] 1: Измеренная скорость (Тахометр, двухполюсный) [F-FB1±]  2: Установка скорости 2 (Перед расчетом времени ускорения/замедления) [N-REF2] 3: Установка скорости 4 (Вход АSR) [N-REF4] 4: Измеренная скорость [N-FB2±]  5: Измеренная линейная скорость [LINE-N+] 6: Задание моментной составляющей тока (Магнитоэлектрический амперметр,                                                                                                                                                                                                                                                                                                                           | 4:     |  |
| Аналоговый<br>выход        | AO2         | Аналоговый выход 2                                   | двухполюсный) [Т-REF+] 7: Задание моментной составляющей тока (Магнитоэлектрический амперметр, однополюсный) [Т-REF+] 8: Задание момента (Моментомер, двухполюсный) [Т-REF+] 8: Задание момента (Моментомер, двухполюсный) [Т-REF+] 10: Среднеквадратическое значение тока двигателя [V-AC] 11: Среднеквадратическое значение напряжения двигателя [V-AC]                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |        |  |
| Быход                      | AO3         | Аналоговый выход 3                                   | 12: Входная мощность (Выходная мощность двигателя) [PWR] 13: Напряжение звена постоянного тока [V-DC] 14: Вывод тестового напряжения +10 В [P10] 15: Вывод тестового напряжения -10 В [N10] 30: Универсальный аналоговый выход АО [U-AO] 31-37: Аналоговые выходы АО1 – 7, выбираемые пользователем [C-AO1 - 7] 38: Входная мощность [PWR-IN] 39: Сигнал положения магнитного полюса [SMP] 40: Выход ПИД [PID-OUT]                                                                                                                                                                                                                                                                                                                                                                                                              |        |  |
|                            | М           | Общий аналоговых выходов                             | Общая клемма для входных сигналов.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        |  |
|                            | Y1          | Транзисторный выход 1                                | Предназначены для вывода сигналов, выбранных из следующего перечня:  0: Работа ПЧ [RUN] 1: Сигнал наличия скорсти [N-EX] 2: Сигнал согласования скорости [N-AG1]  3: Эквивалентность скорости [N-AR]  4, 5, 6: Измеренная скорости [N-AR]  9: Ограничение момента [Т1] 10, 11: Превышение момента [10: Т-DT1, 11: Т-DT2] 12: Управление с пульта ПЧ [КР] 13: Останов ПЧ [STOP]  14: Завершение подготовки к работе [RDY] 15: Сигнал определения магнитного потока [MF-DT]  16: Выбран двигатель М2 [16: SW-M2]  17: Выбран двигатель М3 [16: SW-M3] 18: Сигнал отпускания тормоза [BFK] 19: Индикация вварии 1 [AL1] 20: Индикация вварии 2 [AL2]                                                                                                                                                                               |        |  |
| <b>.</b>                   | Y2          | Транзисторный выход 2                                | 21: Индикация аварии 3 [AL4] 22: Индикация аварии 4 [ALB] 23: Сигнал работы вентилитора [FAN] 24: Авто-перезатурс ([TRY] 25: Унверсальный дискретный выход [U-DO] 26: Предупреждение о перегреве раркатора [INV-OH] 27: Сигнал завершения синхронизации [SY-C] 28: Сигнал окончания срока службы [LIFE] 29: Ускорение [U-AC 30: Замедление [U-DEC] 31: Предупреждение о перегрузке рагитателя [M-OH] 33: Предупреждение о перегрузке двигателя [M-OL] 34: Предупреждение о перегрузке тормозното резистора (DB) [DB-OL] 35: Ошибка передачи по линии связи [LI-EFR] 36: Ограниченный режим адаптивного управления нагрузкой [ANC] 37: Расчетный режим адаптивного управления нагрузкой [ANC] 38: Удержание а напогового омещения момента [ТВН]                                                                                  | (CC]   |  |
| Транзисторный<br>выход     | Y3          | Транзисторный выход 3                                | 36. Удержание анализион о мещения минетна (тог) 39.94-8. Дихоргий выход DO 1 – 10), выбраемый пользователем [C-DO 1 – 10] 50: Сигнал определения фазы Z [Z-RDY] 51: Выбран режим управления иногообмоточным двигателем [MTS] 52: Отилик при отмене режима управления иногообмоточным двигателем [MEC-AB] 53: Выбран режим главного устройства [MSS] 54: Аварийный сигнал станции системы с параллельных сединением [AL-SF] 55: Останов из-за сшибки связи [LES] 56: Релейный выход аварии [ALM] 57: Некритичная ошибка [L-ALM] 58: Предупреждение о приближении срока ТО [ММТ] 59: Неисправность тормозного транхистор. [DBAL] 60: Сигнал блокировки вентилятора пост. тока [DCR] 61: Сигнал согласования скорости 2 [N-AG2] 62: Сигнал согласования скорости 3 [N-AG3] 63: Сигнал остановки работы освекото вентилятора [МFAN] |        |  |
|                            | Y4          | Транзисторный выход 4                                | ос. с ин нал согласованию кодрости в ун-кноз юс. от нал остановки расоты осевого вентивнора унгачу 66: Отклик при включение вызравлевания нагрузство (БАВ) 67: Отклик при отмене режима ограничения момента [F40-AB] 71: Команда на включение нагрузки 73 [PRT-73] 72: Включение вывода тестового напряжения на клемме Y [Y-ON] 73: Выключение вывода тестового напряжения на клемме Y [Y-OF] 75: Срок службы батареи часов 80: Непогравачость входа разрешения [ВЛ) (БСС) *1 81: Вход разрешения [ЕN] отключен [ENOFF] *1 82: Работа функции безопасности [SF-RUN] *1 84: Диатностика с помощью функции безопасности STO [SF-TST] *1                                                                                                                                                                                           |        |  |
|                            | CMY         | Общий транзисторных выходов                          | Общая клемма для сигналов транзисторных выходов.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |  |
|                            | Y5A,Y5C     | Релейный выход                                       | Этому выходу могут быть назначены те же функции, что и транзисторным выходам Ү1 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | - Y4.  |  |
| Релейный<br>выход          | 30A,30B,30C | Выход реле аварийной сигнализации (для любой ошибки) | Выдает сигнал беспотенциального контакта (1c) при отключении ПЧ срабатыванием защит функции. Можно выбрать аварийный сигнал для замкнутого и разомкнутого состояния кле                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |        |  |
| Связь                      | DX+,DX-     | Вход/выход связи RS-485                              | Входы/выходы для связи по интерфейсу RS-485. Можно подключить 31 ПЧ по схеме многоточечного (гирляндного) соединения. Полудуплексная св                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ЭВЯЗЬ. |  |
|                            | USB port    | USB порт                                             | Расположен на передней панели, тип разъема: mini-B, USB 2.0 Full Speed (полноскорост                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | тной)  |  |
|                            | PA,PB       | Вход двухфазного сигнала энкодера                    | Входы для приема двухфазных сигналов энкодера.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |        |  |
|                            | PGP,PGM     | Питание энкодера                                     | Подача напряжения +15 В пост. тока на энкодер (можно переключить на +12 В).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        |  |
| Определение<br>скорости    | FA,FB       | Выход энкодера                                       | Предназначены для вывода сигнала энкодера с частотой, которую можно разделить с помощью настраиваемого знаменателя (устанавливается посредством функционального кода). Возможно переключение между выходом с открытым коллектором и комплементарным выходом (с те же напряжением, что и на клемме PGP).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | тем    |  |
|                            | СМ          | Общий выход энкодера                                 | Общие клеммы для сигналов FA и FB.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        |  |
| Определение<br>температуры | TH1,THC     | Подключение NTC и PTC термисторов                    | Температуру двигателя можно определить при помощи термисторов с отрицательным (NTC) и положительным температурным коэффициентом (PTC).  Уровень защиты от перегрева двигателя можно задать с помощью функции E32 PTC-термистора.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |  |

<sup>\*1:</sup> Поддержка возможна с версией ROM H1/2 0020 или последующей, а также если в серийном номере изделия указана версия ВС или последующая.
\*) Не поддерживается на моделях модульного типа.

# Защитные функции

# Описание защитных функций

| Категория           | Параметр                                       | Описание функции                                                                                                                                                                                                                                                                                                                                                                                                                                    | Индикация   | Соответствующие функциональные коды    |
|---------------------|------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|----------------------------------------|
|                     | Ошибка тормозного транзистора (*)              | Останов ПЧ в случае обнаружения ошибки тормозного транзистора. (Моноблочный тип: 200 В, 55 кВт или ниже; 400 В, 160 кВт или ниже) При обнаружении этого аварийного состояния следует обязательно отключить ПЧ от основного источника питания.                                                                                                                                                                                                       | <i>4</i> 68 | H103                                   |
|                     | Перегрев тормозного резистора (*)              | Оценка температуры тормозного резистора и останов ПЧ, если допустимое значение превышено.<br>В зависимости от используемого резистора требуется настройка функциональных кодов E35 - E37.                                                                                                                                                                                                                                                           | дЬН         | E35 - E37                              |
|                     | Выход из строя предохранителя постоянного тока | Эта индикация отображается при перегорании предохранителя цепи питания постоянного тока из-за короткого замыкания в цепи БТИЗ или по другой причине. Данная функция предусмотрена для предотвращения вторичных отказов. В случае возможного повреждения ПЧ следует немедленно связаться с Fuji.  Моноблочный тип: не ниже 200 В и 75 кВт, не ниже 400 В, 90 кВт Модульный тип: Любой мощности                                                       | dEF         |                                        |
|                     | Чрезмерное отклонение при позиционировании     | Активируется, если позиционное отклонение между заданным и измеренным<br>значениями в десять раз превышает функциональный код o18 «Чрезмерное<br>отклонение» при работе в синхронизированном режиме.                                                                                                                                                                                                                                                | d0          | o18                                    |
|                     | Ошибка связи с энкодером                       | Активируется, если обнаружена ошибка связи с 17-битным высокоразрешающим абсолютным энкодером (опциональная плата OPC-VG1-SPGT).                                                                                                                                                                                                                                                                                                                    | EE          |                                        |
|                     | Отказ схемы функциональной<br>безопасности *1  | Активируется только при отключении входа EN1 или EN2 (несоответствие определяется при превышении значения 50 мс). Для сброса сигналов защитной функции необходимо перезапустить питание.                                                                                                                                                                                                                                                            | EEF         |                                        |
|                     | Замыкание на землю                             | Активируется при замыкании на землю в выходной цепи инвертора. При большой величине тока замыкания на землю может активироваться функция защиты от токовой перегрузки. Эта функция предусмотрена для защиты ПЧ. Рекомендуется подключить отдельное реле защиты от утечки на землю или автоматический выключатель тока утечки на землю, если это необходимо для предотвращения несчастного случая или пожара.                                        | EF          | H103                                   |
|                     | Ошибка памяти                                  | Активируется, если в памяти возникает ошибка, например, «ошибка при записи». (Запись в память (энергонезависимую) можно выполнить ограниченное число раз (от 100 000 до 1 000 000). При частой и необязательной записи данных с помощью функции «сохранить все» возможна блокировка функции изменения и сохранения данных, что вызывает возникновение ошибки памяти.)                                                                               | Erl         |                                        |
|                     | Ошибка связи с пультом                         | Активируется в случае обнаружения ошибки связи между цепью управления ПЧ и пультом при активной команде запуска/останова с пульта (код F02 = 0). ПРИМЕЧАНИЕ: При данной ошибке аварийный сигнал не отображается и не выдается, если ПЧ управляется посредством внешних входных сигналов или сетевой функции. Преобразователь продолжает работать.                                                                                                   | Er2         | F02                                    |
| Защитные<br>функции | Ошибка процессора                              | Активируется в случае возникновения ошибки центрального процессора.                                                                                                                                                                                                                                                                                                                                                                                 | ЕгЗ         |                                        |
| ,,                  | Ошибка сетевой платы                           | Активируется, если при работе ПЧ через T-Link, шину SX, шину E-SX, CC-Link, промышленную шину и т.д., возникает ошибка связи, вызванная помехами и т.п.                                                                                                                                                                                                                                                                                             | ЕгЧ         | o30,o31,H107<br>E01 - E14<br>E15 - E28 |
|                     | Ошибка связи RS-485                            | Активируется, если при работе ПЧ через интерфейс RS-485 нарушается связь по RS-485 (код H32 = 02, код H38 = 0,160,0). Эта функция активируется, если продолжительность отключения цепи связи больше времени, установленного в H38.                                                                                                                                                                                                                  | Er5         | H32,H33<br>H38,H107                    |
|                     | Ошибка при работе                              | Эта функция активируется в следующих случаях:  1) Если установлено несколько опциональных плат.  2) Если используются энкодеры разных типов, а два переключателя выбора функций установлены одинаково.  3) Если запускается автонастройка Н01 при включенном состоянии любого из выбранных дискретных входов [ВХ], [STOP1], [STOP2] или [STP3].  4) Если после выбора автонастройки Н01 клавища тирьте не нажимается в течение 20 секунд или более. | Er8         | H01                                    |
|                     | Ошибка подключения на выходе                   | Активируется, если во время автонастройки не подключена проводка выходной цепи ПЧ.                                                                                                                                                                                                                                                                                                                                                                  | Er7         | H01                                    |
|                     | Ошибка АЦП                                     | Активируется при возникновении ошибки в цепи аналогово-цифрового преобразователя.                                                                                                                                                                                                                                                                                                                                                                   | Er8         |                                        |
|                     | Несоответствие скорости                        | Активируется при чрезмерно большой разнице между заданием скорости (установкой скоросты) и скоростью двигателя (измеренной скоростью, прогнозируемой скоростью). Уровень и время обнаружения можно установить с помощью функциональных кодов.                                                                                                                                                                                                       | Er9         | E43,E44,E45<br>H108,H149               |
|                     | Ошибка UPAC *1                                 | Активируется в случае аппаратной ошибки опциональной платы UPAC, ошибки связи с цепью управления ПЧ или израсходовании заряда резервной батареи.                                                                                                                                                                                                                                                                                                    | ErA         |                                        |
|                     | Ошибка связи между ПЧ                          | Активируется при возникновении ошибки передачи в процессе обмена данными между ПЧ, выполняемого с помощью клемм высокоскоростной последовательной связи (опция).                                                                                                                                                                                                                                                                                    |             | H107                                   |
|                     | Имитация аварии                                | Имитацию аварийного состояния можно инициировать с пульта оператора или с компьютера с ПО Loader.                                                                                                                                                                                                                                                                                                                                                   | Err         | E01 - E14<br>H108,H142                 |
|                     | Ошибка энкодера                                | Активируется в случае обнаружения ошибки или отказа 17-битного высокоразрешающего абсолютного энкодера (опциональная плата OPC-VG1-SPGT).                                                                                                                                                                                                                                                                                                           | EE I        |                                        |

<sup>\*1:</sup> Поддержка возможна с версией ROM H1/2 0020 или последующей, а также если в серийном номере изделия указана версия ВС или последующая.

<sup>\*)</sup> Не поддерживается на моделях модульного типа.

# Защитные функции

# Описание защитных функций

| Категория | Параметр                                   | Описание функции                                                                                                                                                                                                                                                                                                                                                                                                                   | Индикация   | Соответствующие функциональные коды |
|-----------|--------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-------------------------------------|
|           | Обрыв фазы на входе (*)                    | ПЧ защищен от повреждений, вызванных обрывом фазы на входе. Обрыв фазы нельзя обнаружить, если подключенная нагрузка мала или если подсоединен дроссель звена постоянного тока.                                                                                                                                                                                                                                                    | Lin         | E45                                 |
|           | Задержка запуска                           | Активируется, если заданное значение моментной составляющей тока равно или выше уровня, установленного в функциональном коде Н140, а также если измеренное или расчетное значение скорости равно или ниже значения, установленного в коде F37 «Скорость останова» в течение периода времени, заданного в коде Н141. Уровень и время обнаружения можно установить с помощью функциональных кодов.                                   | LOE         | H108,H140,H141                      |
|           | Низкое напряжение                          | Активируется, если вследствие понижения напряжения питания напряжение звена постоянного тока уменьшается до уровня низкого напряжения. Если напряжение звена постоянного тока снижается, но значение функционального кода F14 установлено в диапазоне от 3 до 5, сигнал аварии не выдается.  • Уровень обнаружения низкого напряжения: серия 200 В: 180 В пост. тока; серия 400 В: 360 В пост. тока; серия 690 В: 470 В пост. тока | LU          | F14                                 |
|           | Обрыв NTC термистора                       | Активируется в случае обрыва цепи термистора, если настройка функциональных кодов Р30, А31 и А131 предусматривает использование NTC термисторов с двигателями М1, 2, 3. Также активируется при экстремально низких температурах (около -30°С или ниже).                                                                                                                                                                            | nrb         | P30,A31,A131<br>H106                |
|           | Превышение тока                            | Отрезает выход, если ток двигателя превышает уставку перегрузки по току ПЧ. Также активируется, если при управлении синхронным двигателем выходной ток для двигателя превышает заданный уровень максимальной токовой защиты (Р44, A64, A164).                                                                                                                                                                                      | OC .        | P44,A64,A164                        |
|           | Перегрев радиатора                         | Активируется, если температура радиатора, охлаждающего диоды выпрямителя и БТИЗ, повышается из-за остановки вентилятора.                                                                                                                                                                                                                                                                                                           | OH I        |                                     |
|           | Внешний аварийный сигнал                   | ПЧ останавливается при активации внешнего аварийного сигнала (ТНR). Сигнал ТНR активируется через клеммы управления (назначенные этому сигналу), которые соединяются с клеммами аварийной сигнализации внешних устройств, например тормозного модуля или тормозного резистора, в случае отключения этих устройств.                                                                                                                 | DH2         | E01 - E14<br>F106                   |
|           | Внутренний перегрев ПЧ                     | Активируется, если окружающая температура платы управления повышается из-за плохой вентиляции ПЧ.                                                                                                                                                                                                                                                                                                                                  | 0H3         |                                     |
|           | Перегрев двигателя                         | Активируется, если измеренная температура встроенного NTC-термистора, определяющего температуру двигателя, превышает значение функционального кода E30 «Защита от перегрева двигателя».                                                                                                                                                                                                                                            |             | E30,H106                            |
| Защитные  | Перегрузка двигателя 1                     | Активируется, если ток двигателя 1 (выходной ток ПЧ) превышает уровень, заданный функциональным кодом F11.                                                                                                                                                                                                                                                                                                                         | OL I        | F11,H106                            |
| функции   | Перегрузка двигателя 2                     | Активируется, если ток двигателя 2 (выходной ток ПЧ) превышает уровень, заданный функциональным кодом АЗЗ.                                                                                                                                                                                                                                                                                                                         | 0L2         | A33,H106                            |
|           | Перегрузка двигателя 3                     | Активируется, если ток двигателя 3 (выходной ток ПЧ) превышает уровень, заданный функциональным кодом А133.                                                                                                                                                                                                                                                                                                                        | 0L3         | A133,H106                           |
|           | Перегрузка ПЧ                              | Активируется, если выходной ток превышает значение перегрузки, предусмотренное обратной<br>времятоковой характеристикой. Останов ПЧ производится в зависимости от температур охлаждающего<br>устройства и переключающего элемента, которые рассчитываются исходя из выходного тока.                                                                                                                                                | OLU         | F80                                 |
|           | Обрыв фазы на выходе                       | Останавливает ПЧ, если в процессе его работы обнаруживается обрыв фазы в выходной проводке.                                                                                                                                                                                                                                                                                                                                        | OPL         | H103,P01,A01,A101                   |
|           | Превышение скорости                        | Активируется, если скорость двигателя (измеренное или расчетное значение) превышает 120% (эту установку можно изменить в Н90) от значения, заданного в функциональном коде «Максимальная скорость» (F03, A06, A106).                                                                                                                                                                                                               | <i>0</i> 5  | H90                                 |
|           | Перенапряжение                             | Активируется, если напряжение звена постоянного тока превышает уровень перенапряжения, вызванного увеличением напряжения питания или током рекуперативного торможения двигателя. Однако ПЧ нельзя защитить от избыточного напряжения (например, высокого напряжения), поданного по ошибке.  • Уровень обнаружения перенапряжения Серия 200 В: 405 В пост. тока; серия 400 В: 820 В пост. тока; серия 690 В: 1230 В пост. тока      | OU          |                                     |
|           | Ошибка энкодера                            | Активируется в случае разъединения входов РА, РВ или разрыва цепи питания платы энкодера. Однако ошибка энкодера не активируется в режиме управления без датчика скорости или U/f управления.                                                                                                                                                                                                                                      | PS          | H104                                |
|           | Ошибка зарядной цепи (*)                   | Активируется, если шунтирующая цепь звена постоянного тока (электромагнитный контактор для шунтирования зарядной цепи) не замыкается после подачи питания (200 В, 37 кВт или выше; 400 В, 75 кВт или выше).                                                                                                                                                                                                                        | PbF         |                                     |
|           | Блокировка вентилятора (*)                 | Активируется в случае остановки вентилятора постоянного тока (200 В, 45 кВт или выше; 400 В, 75 кВт или выше).                                                                                                                                                                                                                                                                                                                     | dFR         | H108                                |
|           | Аппаратная ошибка                          | Обнаруживает ошибки БИС на печатной плате и останавливает ПЧ.                                                                                                                                                                                                                                                                                                                                                                      | ЕгН         |                                     |
|           | Ошибка тактовой синхронизации шины E-SX    | Возникает, если тактовый цикл шины E-SX и цикл управления ПЧ не синхронизированы.                                                                                                                                                                                                                                                                                                                                                  | Rr E        | H108                                |
|           | Ошибка управляющих сигналов                | Возникает, если ПЛК контролирует 2-битные управляющие сигналы 1 [TGL1]                                                                                                                                                                                                                                                                                                                                                             |             |                                     |
|           | Отказ карты функциональной безопасности *1 | Защитная функция, предусмотренная для карты функциональной безопасности. Подробнее см. в руководстве по использованию карт функциональной безопасности. Руководство по использованию карт функциональной безопасности INR-SI47-1541                                                                                                                                                                                                | 5 iF<br>5rF |                                     |

<sup>\*1:</sup> Поддержка возможна с версией ROM H1/2 0020 или последующей, а также если в серийном номере изделия указана версия ВС или последующая.

<sup>\*)</sup> Не поддерживается на моделях модульного типа.



#### примечания.

- · Все защитные функции автоматически сбрасываются, если управляющее напряжение понижается до уровня, при котором обеспечение работы цепи управления ПЧ становится невозможным.
- становится невозможным.

   Сохраняриста самый последний и последние десять кодов ошибки, а также самая последняя и последних три подробных истории аварий.

   Останов из-за срабатывания защитной функции можно сбросить с помощью клавиши RST на пульте или путем размыкания и последующего замыкания цепи между клеммой X (назначенной сигналу RST) и клеммой CM. Это действие недоступно, если причина аварии не установлена и не устранена. При одновременном поступлении нескольких аварийных сигналов это состояние не может быть сброшено до тех пор, пока не будут устранены причины всех аварий (неустраненную причину аварии можно проверить на пульте ПЧ).

  Выходы "30А/B/C" не работают в случае прерывания из-за некритичной ошибки.

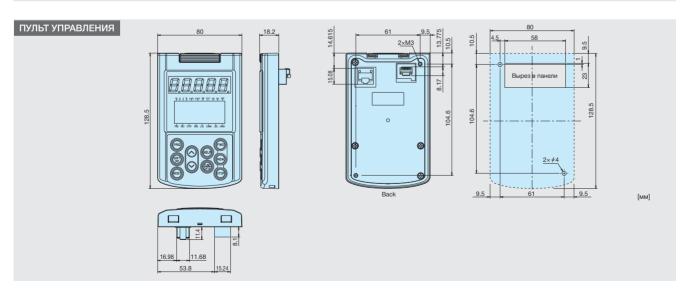
  Недоступно в ПЧ модульного типа

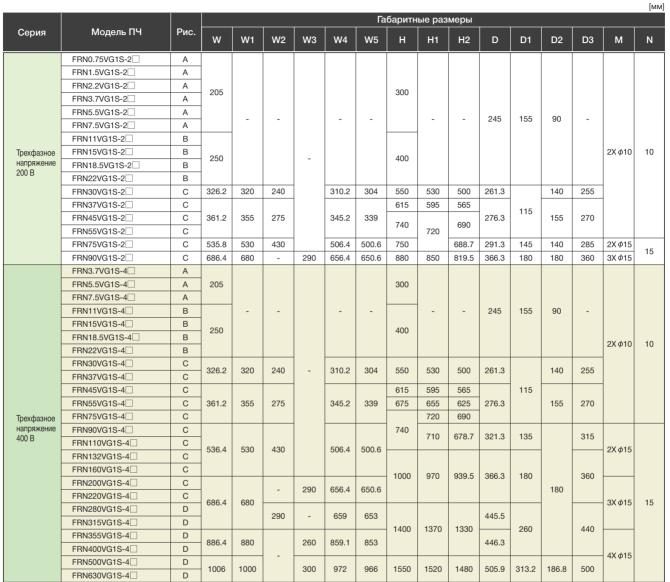
### Предохранители и микровыключатели для ПЧ модульного типа

### 3-фазное напряжение 400 В

|                |                                      | Режим MD           |        |                                      | Режим LD           |        | Микровыкл | очатель |
|----------------|--------------------------------------|--------------------|--------|--------------------------------------|--------------------|--------|-----------|---------|
| Модель ПЧ      | Номинальная мощность двигателя [кВт] | Тип предохранителя | Кол-во | Номинальная мощность двигателя [кВт] | Тип предохранителя | Кол-во | Тип       | Кол-во  |
| FRN30SVG1S-4□  | 30                                   | 170M0004 VA        | _      | 37                                   | 170M3394-XA        | 1      |           |         |
| FRN37SVG1S-4□  | 37                                   | 170M3394-XA        | '      | 45                                   | 1701013394-XA      | '      |           |         |
| FRN45SVG1S-4□  | 45                                   | 170M3395-XA        | 4      | 55                                   | 170M3395-XA        | 1      |           |         |
| FRN55SVG1S-4□  | 55                                   | 1701013395-XA      | '      | 75                                   | 170M3396-XA        | 1      |           |         |
| FRN75SVG1S-4□  | 75                                   | 170M3396-XA        | 1      | 90                                   | 170M3448-XA        | 1      |           |         |
| FRN90SVG1S-4□  | 90                                   | 170M3448-XA        | -1     | 110                                  | 170IVI3446-XA   1  | '      |           |         |
| FRN110SVG1S-4□ | 110                                  | 1701013440-AA      | '      | 132                                  | 170M4445-XA        | 1      | 170H3027  | 4       |
| FRN132SVG1S-4□ | 132                                  | 170M4445-XA        | 1      | 160                                  | 170M5446-XA        | 1      | 17003027  | '       |
| FRN160SVG1S-4  | 160                                  | 170M5446-XA        | 1      | 200                                  | 170M6546-XA        | 1      |           |         |
| FRN200SVG1S-4  | 200                                  | 170M6546-XA        | 4      | 220                                  | 1701010540-AA      | '      |           |         |
| FRN220SVG1S-4  | 220                                  | 170100040-AA       | '      | 250                                  | 170M6547-XA        | 1      |           |         |
| FRN250SVG1S-4□ | 250                                  | 170M6547-XA        | 1      | 280                                  | 170M6548-XA        | 1      |           |         |
| FRN280SVG1S-4  | 280                                  | 170M6548-XA        | 1      | 315                                  | 170M6500-XA        | 1      |           |         |
| FRN315SVG1S-4□ | 315                                  | 170M6500-XA        | 1      | 355                                  | 1701010500-AA      | '      |           |         |
| FRN630BVG1S-4□ | 630                                  | 170M7532           | 3      | 710                                  | 170M7633           | 3      |           |         |
| FRN710BVG1S-4□ | 710                                  | 170M7633           | 3      | 800                                  | 1701017033         | 3      | 170H3027  | 3       |
| FRN800BVG1S-4□ | 800                                  | 1701017033         | 3      | 1000                                 | 170M7595           | 3      |           |         |


### 3-фазное напряжение 690 В

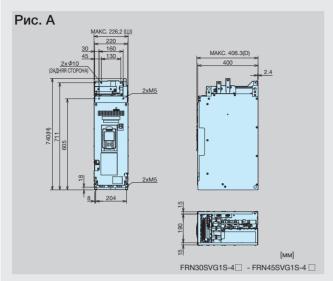

|                 | Режим MD                             |                    |        | Режим LD                                   |                    |        | Микровыключатель |        |
|-----------------|--------------------------------------|--------------------|--------|--------------------------------------------|--------------------|--------|------------------|--------|
| Модель ПЧ       | Номинальная мощность двигателя [кВт] | Тип предохранителя | Кол-во | Номинальная<br>мощность двигателя<br>[кВт] | Тип предохранителя | Кол-во | Тип              | Кол-во |
| FRN90SVG1S-69□  | 90                                   | 170M3448           | 2      | 110                                        | 170M3448           | 2      | - 170H3027       | 2      |
| FRN110SVG1S-69□ | 110                                  |                    |        | 132                                        |                    |        |                  |        |
| FRN132SVG1S-69□ | 132                                  |                    |        | 160                                        |                    |        |                  |        |
| FRN160SVG1S-69□ | 160                                  |                    |        | 200                                        |                    |        |                  |        |
| FRN200SVG1S-69□ | 200                                  | 170M4445           | 2      | 220                                        | 170M4445           | 2      |                  |        |
| FRN250SVG1S-69□ | 250                                  | 170M6546           | 2      | 280                                        | 170M6546           | 2      |                  |        |
| FRN280SVG1S-69□ | 280                                  |                    |        | 315                                        |                    |        |                  |        |
| FRN315SVG1S-69□ | 315                                  |                    |        | 355                                        |                    |        |                  |        |

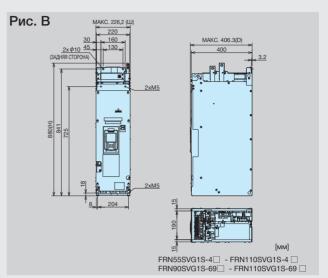

<sup>\*</sup> Указаны предохранители и микровыключатели производства фирмы Cooper Bussmann. Данные изделия также можно заказать у компании Fuji

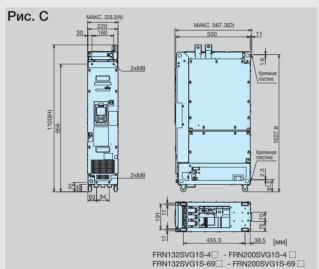
# Габаритные размеры

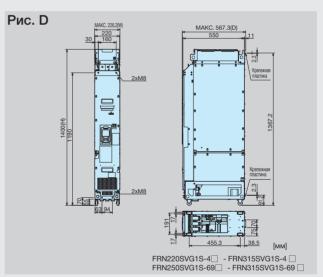
# Габаритные размеры (Моноблочный тип)

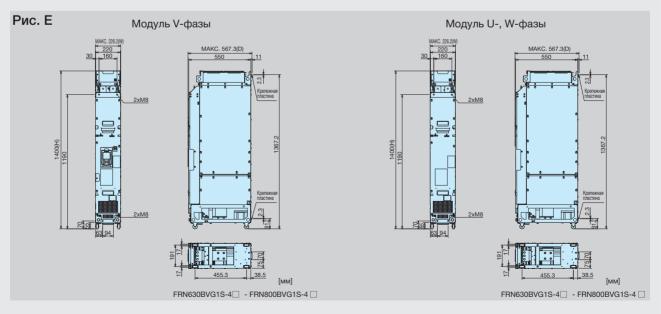






<sup>\*</sup> См. на с. 18 информацию о том, какие символы используются вместо 🗌 в кодовом обозначении модели ПЧ и что они означают.


# Габаритные размеры


# Габаритные размеры (Модульный тип)











# Габаритные размеры / Названия и функции клавиш пульта управления

| Į | 1 | N | N | Λ | J |
|---|---|---|---|---|---|
|   |   |   |   |   |   |

|                          |                    |      |       | Габаритные размеры | [мм]  |
|--------------------------|--------------------|------|-------|--------------------|-------|
| Серия                    | Модель ПЧ          | Рис. | ш     | В                  | Г     |
|                          | FRN30SVG1S-4       | A    |       |                    |       |
|                          | FRN37SVG1S-4       | A    | 226.2 | 740                | 406.3 |
|                          | FRN45SVG1S-4       | А    |       |                    |       |
|                          | FRN55SVG1S-4       | В    |       |                    |       |
|                          | FRN75SVG1S-4       | В    | 226.2 | 880                | 406.3 |
|                          | FRN90SVG1S-4       | В    | 226.2 | 880                | 406.3 |
|                          | FRN110SVG1S-4      | В    |       |                    |       |
| Taavehaariaa             | FRN132SVG1S-4      | С    |       |                    |       |
| Трехфазное<br>напряжение | FRN160SVG1S-4      | С    | 226.2 | 1100               | 567.3 |
| 400 B                    | FRN200SVG1S-4      | С    |       |                    |       |
|                          | FRN220SVG1S-4      | D    |       |                    |       |
|                          | FRN250SVG1S-4      | D    | 900.0 | 1.400              | 507.0 |
|                          | FRN280SVG1S-4      | D    | 226.2 | 1400               | 567.3 |
|                          | FRN315SVG1S-4      | D    |       |                    |       |
|                          | FRN630BVG1S-4 (*1) | E.   |       |                    |       |
|                          | FRN710BVG1S-4 (*1) | Е    | 226.2 | 1400               | 567.3 |
|                          | FRN800BVG1S-4 (*1) | E    |       |                    |       |
|                          | FRN90SVG1S-69□     | В    | 200.0 | 000                | 400.0 |
|                          | FRN110SVG1S-69     | В    | 226.2 | 880                | 406.3 |
| Трехфазное               | FRN132SVG1S-69     | С    |       |                    |       |
| напряжение               | FRN160SVG1S-69     | С    | 226.2 | 1100               | 567.3 |
| 690 B                    | FRN200SVG1S-69     | С    |       |                    |       |
|                          | FRN250SVG1S-69     | D    |       |                    |       |
|                          | FRN280SVG1S-69     | D    | 226.2 | 1400               | 567.3 |
|                          | FRN315SVG1S-69     | D    |       |                    |       |

<sup>\*1)</sup> Один ПЧ состоит из трех модулей. Пульт входит в комплект только модуля V-фазы.

# Названия и функции клавиш пульта управления

#### Клавиши ВВЕРХ и ВНИЗ

Режим работы:

Увеличение или уменьшение скорости.

Режим программирования:

Изменение функциональных кодов и заданных значений

#### Клавиша «Программирование»

Переключает дисплей на экран меню или на начальные экраны режима работы и аварийного режима.

#### Клавиша перемещения (перемещение в столбец)

Используется для перемещения курсора по горизонтали для изменения данных и перехода к другим функциональным блокам (при одновременном нажатии клавиш UP/DOWN).

#### Клавиша «Сброс»

Режим программирования:

Отмена текущего ввода данных и переключение экрана

Аварийный режим:

Сброс аварийного сигнала.

## Клавиша выбора функций/параметров

Используется для переключения значений, отображаемых на СД-индикаторе, ввода установки скорости и сохранения

# Индикатор единиц

Показывает единицу измерения параметров, отображаемых на СД-индикаторе.



#### Клавиша СТОП

При нажатии этой клавиши двигатель останавливается.

#### СД-индикатор

Режим работы:

Отображает заданную частоту, выходной ток, выходное напряжение, скорость двигателя и линейную скорость.

Аварийный режим: Отображает причину аварии.

### ЖК-дисплей

Отображает различную информацию, от рабочего состояния ПЧ до значений функций.

В стандартном исполнении установлены часы реального времени.

Подсказки оператору отображаются в режиме прокрутки в нижней части экрана.

#### Клавиша ПУСК

При нажатии этой клавиши двигатель запускается.

# СД-индикатор работы "RUN"

Горит при запуске посредством сигнала FWD/REV или команды связи.

#### Клавиша вызова подсказки



Отображает подсказки, в том числе информацию по работе с клавишами, для каждого экрана ЖК-дисплея.

<sup>\*</sup> См. на с. 18 информацию о том, какие символы используются вместо □в кодовом обозначении модели ПЧ и что они означают.

# Стандартные технические характеристики моделей с 3-фазным напряжением 200 В

| Параметр                           |                                | Харак  | терист  | ики                   |         |         |         |                   |          |         |          |        |       |       |                  |             |            |
|------------------------------------|--------------------------------|--------|---------|-----------------------|---------|---------|---------|-------------------|----------|---------|----------|--------|-------|-------|------------------|-------------|------------|
| Номинальная вых<br>профильного дви | одная мощность<br>гателя [кВт] | 0.75   | 1.5     | 2.2                   | 3.7     | 5.5     | 7.5     | 11                | 15       | 18.5    | 22       | 30     | 37    | 45    | 55               | 75          | 90         |
| Тип двигателя                      | (MVK_)                         | 8095A  | 8097A   | 8107A                 | 8115A   | 8133A   | 8135A   | 8165A             | 8167A    | 8184A   | 8185A    | 8187A  | 8207A | 8208A | 9224A            | 9254A       | 9256A      |
| Момент инерции                     | ротора J [кг•м²]               | 0.009  | 0.009   | 0.009                 | 0.016   | 0.030   | 0.037   | 0.085             | 0.11     | 0.21    | 0.23     | 0.34   | 0.41  | 0.47  | 0.53             | 0.88        | 1.03       |
| Маховый момент р                   | отора (GD) [кгс•м²]            | 0.036  | 0.036   | 0.036                 | 0.065   | 0.12    | 0.15    | 0.34              | 0.47     | 0.83    | 0.92     | 1.34   | 1.65  | 1.87  | 2.12             | 3.52        | 4.12       |
| Базовая скорость/М                 | акс. скорость [об/мин]         | 1500/3 | 600     |                       |         |         |         |                   |          | •       | •        | 1500/3 | 000   | •     | 1500/2           | 400         | 1500/2000  |
| Оценка вибра                       | ации                           | не выц | ле V10  |                       |         |         |         |                   |          |         |          |        |       |       | не выц           | ле V15      |            |
|                                    | Напряжение [В], Частота [Гц]   | -      | 200 – 2 | 10 B/50               | Гц, 200 | – 230 E | 3/60 Гц |                   |          |         |          |        |       |       | 200 B/50         | Гц, 200, 22 | 0 В/ 60 Гц |
|                                    | Количество фаз/полюсов         | -      | Одна ф  | раза, 4 г             | олюса   |         |         | Три фа            | зы, 4 по | олюса   |          |        |       |       |                  |             |            |
| Охлаждающий                        | Входная мощность [Вт]          | -      | 40/50   |                       |         |         |         | 90/120            |          | 150/21  | 0        |        |       |       | 80/120           | 270/39      | 0          |
| вентилятор*                        | Ток [А]                        | -      | 0.29/0. | 27 - 0.3 <sup>-</sup> | 1       |         |         | 0.49/<br>0.44 - 0 | 0.48     | 0.75/0. | 77 - 0.8 |        |       |       | 0.76/<br>0.8.0.8 | 1.9/2.0     | ,2.0       |
| Прибл. вес [к                      | ]<br>рибл. вес [кг]            |        |         | 32                    | 46      | 63      | 73      | 111               | 133      | 190     | 197      | 235    | 280   | 296   | 380              | 510         | 570        |

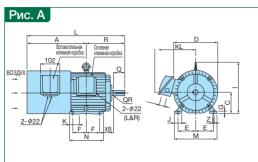
 $<sup>^{\</sup>star}$  Только мод. MVK8095A (0,75 кВт) имеет естественное охлаждение.

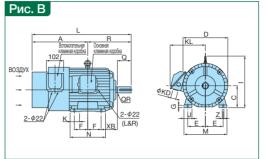
# Стандартные технические характеристики моделей с 3-фазным напряжением 400 В

| Параметр                           |                                 | Xapa               | ктерис    | тики  |                 |        |          |           |         |       |       |                  |         |         |         |       |        |       |                 |
|------------------------------------|---------------------------------|--------------------|-----------|-------|-----------------|--------|----------|-----------|---------|-------|-------|------------------|---------|---------|---------|-------|--------|-------|-----------------|
| Номинальная вых<br>профильного дви | одная мощность<br>гателя [кВт]  | 3.7                | 5.5       | 7.5   | 11              | 15     | 18.5     | 22        | 30      | 37    | 45    | 55               | 75      | 90      | 110     | 132   | 160    | 200   | 220             |
| Тип двигателя                      | (MVK_)                          | 8115A              | 8133A     | 8135A | 8165A           | 8167A  | 8184A    | 8185A     | 8187A   | 8207A | 8208A | 9224A            | 9254A   | 9256A   | 9284A   | 9286A | 528KA  | 528LA | 531FA           |
| Момент инерции                     | ротора J [кг•м²]                | 0.016              | 0.030     | 0.037 | 0.085           | 0.11   | 0.21     | 0.23      | 0.34    | 0.41  | 0.47  | 0.53             | 0.88    | 1.03    | 1.54    | 1.77  | 1.72   | 1.83  | 2.33            |
| Маховый момент р                   | отора (GD) [кгс∙м²]             | 0.065              | 0.12      | 0.15  | 0.34            | 0.47   | 0.83     | 0.92      | 1.34    | 1.65  | 1.87  | 2.12             | 3.52    | 4.12    | 6.16    | 7.08  | 6.88   | 7.32  | 9.32            |
| Базовая скорость/М                 | акс. скорость [об/мин]          | 1500/3             | 3600      |       |                 |        |          |           | 1500/3  | 3000  |       | 1500/2           | 2400    | 1500/2  | 2000    |       |        |       |                 |
| Оценка вибра                       | щии                             | не выі             | ше V10    |       |                 |        |          |           |         |       |       | не вы            | ше V15  |         |         |       |        |       |                 |
|                                    | Напряжение [В],<br>Частота [Гц] | 200 – 2<br>200 – 2 |           |       | 400 –           | 420 B/ | 50 Гц, 4 | 100 – 44  | 10 B/60 | Гц    |       | 400 B            | /50 Гц; | 400, 44 | 10 B/60 | Гц    |        |       |                 |
|                                    | Количество фаз/полюсов          | Одна ф             | аза, 4 по | олюса | Три ф           | азы, 4 | полюса   | a         |         |       |       |                  |         |         |         |       |        |       |                 |
| Охлаждающий<br>вентилятор*         | хлаждающий                      |                    |           |       | 90/120          | )      | 150/2    | 10        |         |       |       | 80/<br>120       | 270/39  | 90      |         |       | 2200   |       | 3700            |
|                                    | Ток [А]                         | 0.29/0             | .27 - 0.  | 31    | 0.27/<br>0.24 - | 0.25   | 0.38/0   | ).39 - 0. | 4       |       |       | 0.39/<br>0.4,0.4 | 1.0/1.0 | 0,1.0   |         |       | 4.6/4. | 3,4.1 | 7.8/<br>7.1,7.6 |
| Прибл. вес [кі                     | рибл. вес [кг]                  |                    | 63        | 73    | 111             | 133    | 190      | 197       | 235     | 280   | 296   | 380              | 510     | 570     | 710     | 760   | 1270   | 1310  | 1630            |

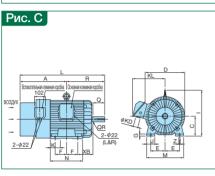
# Стандартные технические характеристики моделей с 3-фазным напряжением 400 В

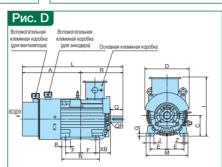
| Параметр                       |                                    | Xapa  | ктери   | стики   |       |         |       |
|--------------------------------|------------------------------------|-------|---------|---------|-------|---------|-------|
| Номинальная в<br>профильного д | ыходная мощность<br>вигателя [кВт] | 250   | 280     | 300     | 315   | 355     | 400   |
| Тип двигател                   | я (MVK_)                           | 531GA | 531HA   | 535GA   | 535GA | 535HA   | 535JA |
| Момент инерці                  | ии ротора J [кг•м²]                | 2.52  | 2.76    | 5.99    | 5.99  | 6.53    | 7.18  |
| Маховый момен                  | т ротора (GD) [кгс•м²]             | 10.08 | 11.04   | 23.96   | 23.96 | 26.12   | 28.72 |
| Базовая скорость/              | Макс. скорость [об/мин]            | 1500  | /2000   |         |       |         |       |
| Оценка виб                     | рации                              | не в  | ыше V   | 15      |       |         |       |
|                                | Напряжение [В],<br>Частота [Гц]    | 400 I | В/50 Гі | ц; 400, | 440 B | 3/60 Гц |       |
|                                | Количество фаз/полюсов             | Три   | фазы,   | 4 поль  | oca   |         |       |
| Охлаждающий<br>вентилятор*     | Входная мощность [Вт]              | 3700  | ١       |         |       |         |       |
|                                | Ток [А]                            | 7.8/7 | 7.1,7.6 |         |       |         |       |
| Прибл. вес                     | [кг]                               | 1685  | 1745    | 2230    | 2230  | 2310    | 2420  |

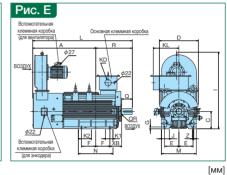

# Общие характеристики


|                                                    | V                                                                                                                                                                                                                                                                                                   |
|----------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Параметр                                           | Характеристики                                                                                                                                                                                                                                                                                      |
| Класс нагревостойкости изоляции/Количество полюсов | F/4 полюса                                                                                                                                                                                                                                                                                          |
| Конструкция клемм                                  | Основная клеммная коробка (с зажимами под наконечник): 3 или 6 клемм силовой цепи, клеммы NTC-термистора = 2 шт. (серия MVK 8), 3 шт. (серия MVK 9, серия MVK 5, 1 шт резерв). Вспомогательная клеммная коробка (клеммный блок): Энкодер (Р6Р, Р6М,РА, РВ, SS), охлаждающий вентилятор (FU, FV, FW) |
| Монтажное исполнение                               | Крепление на лапах (IMB3) ПРИМЕЧАНИЕ: Чтобы узнать о других вариантах исполнения, свяжитесь с FUJI.                                                                                                                                                                                                 |
| Степень защиты,<br>способ охлаждения               | ПР44, полностью закрытая система с принудительной вентиляцией,<br>включающая в себя двигатель охлаждающего вентилятора. Охлаждающий вентилятор направляет воздух над двигателем к стороне привода. * Только мод. МVК8095A (0,75 кВт) имеет естественное охлаждение.                                 |
| Место установки                                    | В помещении, высота над уровнем моря не более 1000 м.                                                                                                                                                                                                                                               |
| Температура окружающей среды, влажность            | -10 +40°C, не более 90% О.В. (без конденсации)                                                                                                                                                                                                                                                      |
| Цвет                                               | Munsell N5                                                                                                                                                                                                                                                                                          |
| Соответствие стандарту                             | Серия MVK8: JEM1466 или JEC-2137-2000,<br>Серия MVK9 и MVK5: JEC-2137-2000                                                                                                                                                                                                                          |
| Стандартные<br>встроенные детали                   | Импульсный энкодер (разрешение 1024 точки, +5 В пост. тока, дифференциальный выход А, В, Z, U, V, W), NTC-термистор - 1 шт. (2 шт. для моделей мощностью 110 кВт и выше), охлаждающий вентилятор                                                                                                    |

Примечание 1) Для двигателей мощностью 55 кВт и выше точность крутящего момента составляет ±5%. Если вам требуется более высокая точность, обратитесь в компанию Fuji. Примечание 2) Если нужен двигатель, отличный от профильного двигателя с 4 полюсами и базовой скоростью 1500 об/мин, обратитесь в компанию Fuji Electric.


# Габаритные размеры профильных двигателей (Асинхронный двигатель с датчиком скорости)


# MVK














| Номинальная<br>выходная        |          |      |        |     |     |       |       |      |      |      | Pa   | азмер | ы   |     |     |       |     |     |       |     |      |     |     | Конец | , вала |     |    | Прибл.      |
|--------------------------------|----------|------|--------|-----|-----|-------|-------|------|------|------|------|-------|-----|-----|-----|-------|-----|-----|-------|-----|------|-----|-----|-------|--------|-----|----|-------------|
| мощность<br>двигателя<br>[кВт] | Модель   | Рис. | Α      | С   | D   | Е     | F     | G    | 1    | J    | К    | K1    | K2  | KD  | KL  | L     | М   | N   | R     | ХВ  | Z    | Q   | QR  | S     | Т      | U   | w  | вес<br>[кг] |
|                                | MVK8095A |      | 201.5  |     | 204 |       |       |      |      |      |      |       |     |     |     | 370   |     |     |       |     |      |     |     |       |        |     |    | 28          |
| 1.5                            | MVK8097A |      | 277.5  | 90  |     | 70    | 62.5  | 10   | 195  | 35.5 | 35.5 |       |     |     | 189 | 446   | 170 | 150 | 168.5 | 56  | 10   | 50  |     | 24j6  |        |     |    | 29          |
| 2.2                            | MVK8107A | Α    | 292    | 100 | 203 | 80    |       | 12.5 | 238  |      | 40   |       |     | 27  | 190 | 485   | 195 | 170 | 193   | 63  |      |     |     |       | 7      | 4   | 8  | 32          |
| 3.7                            | MVK8115A |      | 299    | 112 | 236 | 95    | 70    | 14   | 270  | 40   |      |       |     |     | 205 | 499   | 224 | 175 | 200   | 70  |      | 60  | 0.5 | 28j6  |        |     |    | 46          |
| 5.5                            | MVK8133A | В    | 309    |     |     |       |       |      |      |      | 50   |       |     |     |     | 548   |     | 180 | 239   |     | 12   |     |     |       |        |     |    | 63          |
| 7.5                            | MVK8135A | В    | 328    | 132 | 273 | 108   | 89    | 17   | 311  | 45   |      |       |     | 34  | 223 | 586   | 250 | 212 | 258   | 89  |      | 80  |     | 38k6  |        | _   | 10 | 73          |
| 11                             | MVK8165A |      | 400    |     |     |       | 105   |      |      |      |      |       |     |     |     | 723   |     | 250 | 323   |     |      |     |     |       | 8      | 5   |    | 111         |
| 15                             | MVK8167A |      | 422    | 160 | 321 | 127   | 127   | 18   | 376  | 50   | 63   |       |     |     | 272 | 767   | 300 | 300 | 345   | 108 |      |     | 1   | 42k6  |        |     | 12 | 133         |
| 18.5                           | MVK8184A | Α    |        |     |     |       |       |      |      |      |      |       |     | 48  |     |       |     |     |       |     | 14.5 | 110 |     |       |        |     |    | 190         |
| 22                             | MVK8185A |      | 435    | 180 | 376 | 139.5 | 120.5 | 20   | 428  | 75   | 75   | -     | -   |     | 305 | 786.5 | 350 | 292 | 351.5 | 121 |      |     | 1.5 | 48k6  | 9      | 5.5 | 14 | 197         |
| 30                             | MVK8187A |      | 454    |     |     |       | 139.5 |      |      |      |      |       |     | 60  |     | 824.5 |     | 330 | 370.5 |     |      |     |     | 55m6  | 10     | 6   | 16 | 235         |
| 37                             | MVK8207A |      |        |     |     |       |       |      |      |      |      |       |     |     |     |       |     |     |       |     |      |     |     |       |        |     |    | 280         |
| 45                             | MVK8208A | С    | 490    | 200 | 411 | 159   | 152.5 | 25   | 466  | 80   | 85   |       |     |     | 364 | 915.5 | 390 | 360 | 425.5 | 133 | 18.5 |     |     | 60m6  | 11     | 7   | 18 | 296         |
| 55                             | MVK9224A |      | 723    | 225 | 445 | 178   | 143   |      | 515  |      | 95   |       |     |     | 391 | 1155  | 436 | 366 | 432   | 149 |      | 140 |     | 65m6  |        |     |    | 380         |
| 75                             | MVK9254A |      | 693.5  |     |     |       | 155.5 |      |      |      |      |       |     | 80  |     | 1157  |     | 411 | 463.5 |     |      |     | 2   |       |        |     |    | 510         |
| 90                             | MVK9256A |      | 711.5  | 250 | 545 | 203   | 174.5 | 30   | 743  |      |      |       |     |     | 106 | 1194  | 506 | 449 | 483.5 | 168 |      |     |     | 75m6  | 12     | 7.5 | 20 | 570         |
| 110                            | MVK9284A | D    | 764    |     |     |       | 184   |      |      | 100  | 120  |       |     |     |     | 1308  |     | 468 | 544   |     |      |     |     |       |        |     |    | 710         |
| 132                            | MVK9286A |      | 789.5  |     | 605 |       | 209.5 | 35   | 798  |      |      |       |     |     | 203 | 1359  | 557 | 519 | 569.5 |     | 24   |     |     |       |        |     |    | 760         |
| 160                            | MVK528JA |      |        | 280 |     | 228.5 |       |      |      |      |      |       |     |     |     |       |     |     |       | 190 |      |     |     | 85m6  |        |     | 22 | 1230        |
| 200                            | MVK528LA |      | 1015.5 |     | 628 |       | 228.5 | 30   | 1234 | 125  |      | 120   | 210 |     |     | 1604  | 560 | 557 | 588.5 |     |      | 170 | 1   |       | 14     | 9   |    | 1350        |
| 220                            | MVK531FA |      |        |     |     |       |       |      |      |      |      |       |     |     |     |       |     |     |       |     |      |     |     |       |        |     |    | 1690        |
| 250                            | MVK531GA |      | 1073   | 315 | 689 | 254   | 254   |      | 1425 | 150  |      | 140   | 240 |     |     | 1713  | 630 | 648 | 640   | 216 |      |     |     | 95m6  |        |     | 25 | 1750        |
| 280                            | MVK531HA | E    |        |     |     |       |       |      |      |      | -    |       |     | 102 | 413 |       |     |     |       |     |      |     |     |       |        |     |    | 1820        |
| 300                            |          |      |        |     |     |       |       | 36   |      |      |      |       |     |     |     |       |     |     |       |     | 28   |     | 2   |       |        |     |    |             |
| 315                            | MVK535GA |      |        |     |     |       |       |      |      |      |      |       |     |     |     |       |     |     |       |     |      |     |     |       |        |     |    | 2230        |
| 355                            | MVK535HA |      | 1111   | 355 | 778 | 305   | 355   |      | 1510 | 160  |      | 180   | 330 |     |     | 1956  | 730 | 890 | 845   | 280 |      | 210 |     | 100m6 | 16     | 10  | 28 | 2310        |
| 400                            | MVK535JA |      |        |     |     |       |       |      |      |      |      |       |     |     |     |       |     |     |       |     |      |     |     |       |        |     |    | 2420        |

# Стандартные технические характеристики моделей с 3-фазным напряжением 200 В

| Параметр                        |                                 | Характе    | ристики     |       |       |            |             |         |           |              |           |         |         |
|---------------------------------|---------------------------------|------------|-------------|-------|-------|------------|-------------|---------|-----------|--------------|-----------|---------|---------|
| Номинальная вых профильного дви | кодная мощность<br>гателя [кВт] | 5.5        | 7.5         | 11    | 15    | 18.5       | 22          | 30      | 37        | 45           | 55        | 75      | 90      |
| Тип профильного                 | двигателя (GNF_)                | 2114A      | 2115A       | 2117A | 2118A | 2136A      | 2137A       | 2139A   | 2165A     | 2167A        | 2185A     | 2187A   | 2207A   |
| Момент инерции                  | ротора J [кг•м²]                | 0.018      | 0.021       | 0.027 | 0.036 | 0.065      | 0.070       | 0.090   | 0.153     | 0.191        | 0.350     | 0.467   | 0.805   |
| Маховый момент р                | отора (GD) [кгс•м²]             | 0.072      | 0.084       | 0.107 | 0.143 | 0.259      | 0.281       | 0.360   | 0.610     | 0.763        | 1.401     | 1.868   | 3.220   |
| Базовая скорость/Ма             | акс. скорость [об/мин]          | 1500/200   | 0           |       |       |            |             |         |           |              |           |         |         |
| Номинальный                     | ток [А]                         | 20/20      | 29/29       | 42/42 | 57/57 | 71/70      | 82/81       | 113/108 | 144/144   | 165/165      | 200/200   | 270/270 | 316/316 |
| Оценка вибра                    | ции                             | не выше    | V10         |       |       |            |             |         |           |              |           |         |         |
|                                 | Напряжение [В], Частота [Гц]    | 200 - 240  | , 50/60     |       |       |            |             |         | 200 - 210 | /50, 200 - 2 | 230/60    |         |         |
| Охлаждающий                     | Количество фаз/полюсов          | Три фазь   | і, 2 полюса | а     |       |            |             |         | Три фазь  | і, 4 полюса  | а         |         |         |
| вентилятор                      | ентилятор Входная мощность [Вт] |            | 6 - 58      |       |       | 54 - 58/7  | 0 - 78      |         | 90/120    |              | 150/210   |         |         |
|                                 | Ток [А]                         | 0.13 - 0.1 | 6/0.18 - 0. | 16    |       | 0.18 - 0.1 | 8/0.22 - 0. | 21      | 0.49/0.44 | - 0.48       | 0.75/0.77 | - 0.8   |         |
| Прибл. вес [кг                  | -]                              | 51         | 55          | 69    | 78    | 100        | 106         | 127     | 170       | 192          | 247       | 325     | 420     |

# Стандартные технические характеристики моделей с 3-фазным напряжением 400 В

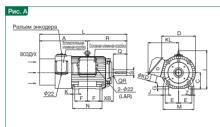
| Параметр                        |                                 | Характе    | ристики     |       |       |            |             |       |           |             |           |         |         |
|---------------------------------|---------------------------------|------------|-------------|-------|-------|------------|-------------|-------|-----------|-------------|-----------|---------|---------|
| Номинальная вых профильного дви | кодная мощность<br>гателя [кВт] | 5.5        | 7.5         | 11    | 15    | 18.5       | 22          | 30    | 37        | 45          | 55        | 75      | 90      |
| Тип профильного                 | двигателя (GNF_)                | 2114A      | 2115A       | 2117A | 2118A | 2136A      | 2137A       | 2139A | 2165A     | 2167A       | 2185A     | 2187A   | 2207A   |
| Момент инерции                  | ротора J [кг•м²]                | 0.018      | 0.021       | 0.027 | 0.036 | 0.065      | 0.070       | 0.090 | 0.153     | 0.191       | 0.350     | 0.467   | 0.805   |
| Маховый момент р                | отора (GD) [кгс•м²]             | 0.072      | 0.084       | 0.107 | 0.143 | 0.259      | 0.281       | 0.360 | 0.610     | 0.763       | 1.401     | 1.868   | 3.220   |
| Базовая скорость/Ма             | акс. скорость [об/мин]          | 1500/200   | 0           |       |       |            |             |       |           |             |           |         |         |
| Номинальный                     | ток [А]                         | 10/10      | 15/15       | 21/21 | 29/29 | 36/35      | 41/41       | 57/54 | 72/72     | 83/83       | 100/100   | 135/135 | 158/158 |
| Оценка вибра                    | ции                             | не выше    | V10         |       |       |            |             |       |           |             |           |         |         |
|                                 | Напряжение [В], Частота [Гц]    | 200 - 240  | ,50/60      |       |       |            |             |       | 400 - 420 | /50,400 - 4 | 40/60     |         |         |
| Охлаждающий                     | Количество фаз/полюсов          | Три фазь   | і, 2 полюса | а     |       |            |             |       | Три фазь  | і, 4 полюса | а         |         |         |
| вентилятор                      | Входная мощность [Вт]           | 38 - 44/56 | 6 - 58      |       |       | 54 - 58/7  | 0 - 78      |       | 90/120    |             | 150/210   |         |         |
|                                 | Ток [А]                         | 0.13 - 0.1 | 6/0.18 - 0. | 16    |       | 0.18 - 0.1 | 8/0.22 - 0. | 21    | 0.27/0.24 | - 0.25      | 0.38/0.39 | - 0.4   |         |
| Прибл. вес [кг                  | 1                               | 51         | 55          | 69    | 78    | 100        | 106         | 127   | 170       | 192         | 247       | 325     | 420     |

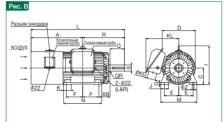
# Стандартные технические характеристики моделей с 3-фазным напряжением 400 В

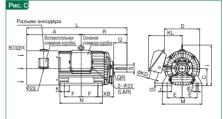
| Параметр                         |                                   | Харак     | стерист  | ики      |          |       |       |       |
|----------------------------------|-----------------------------------|-----------|----------|----------|----------|-------|-------|-------|
| Номинальная вь<br>профильного дв | іходная мощность<br>игателя [кВт] | 110       | 132      | 160      | 200      | 220   | 250   | 280   |
| Тип профильного                  | о двигателя (GNF_)                | 2224B     | 2226B    | 2254B    | 2256B    | 228FB | 228GB | 228HB |
| Момент инерции                   | ротора Ј [кг•м²]                  | 0.882     | 0.994    | 1.96     | 2.22     | 2.79  | 3.12  | 3.47  |
| Маховый момент р                 | отора (GD) [кгс•м²]               | 3.53      | 3.98     | 7.84     | 8.88     | 11.2  | 12.5  | 13.9  |
| Базовая скорость/N               | акс. скорость [об/мин]            | 1500/2    | 000      |          |          |       |       |       |
| Номинальный                      | й ток [А]                         | 198       | 232      | 273      | 340      | 390   | 445   | 475   |
| Оценка вибра                     | ации                              | не выц    | µе V10   |          |          |       |       |       |
|                                  | Напряжение [В]                    | 380,40    | 0,415/4  | 00,415,4 | 440,460  |       |       |       |
|                                  | Количество фаз/полюсов            | Три фа    | азы, 4 п | олюса    |          |       |       |       |
| Охлаждающий                      | Частота сети                      | 50/60     |          |          |          |       |       |       |
| вентилятор                       | Входная мощность [Вт]             | 80/120    | )        | 270/39   | 0        |       |       |       |
|                                  | Tay [A]                           | 0.36,0.3  | 8,0.41/  | 0.95,0.  | 95,1/1,1 | ,1,1  |       |       |
|                                  | Ток [А]                           | 0.4,0.4,0 | 0.4,0.4  |          |          |       |       |       |
| Прибл. вес [к                    | Γ]                                | 520       | 580      | 760      | 810      | 1000  | 1050  | 1100  |

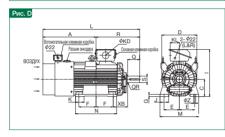
# Общие характеристики

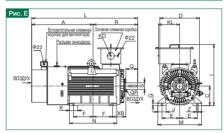
| Параметр                                           | Характеристики                                                                                                                                                                                                                                     |
|----------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Класс нагревостойкости изоляции Количество полюсов | F/6 полюсов                                                                                                                                                                                                                                        |
| Конструкция клемм                                  | Основная клеммная коробка (с зажимами под наконечник):<br>3 или 6 клемм силовой цепи<br>Клеммы NTC-термистора = 2 шт. (1 шт. – резерв), 110 кВт и выше<br>Вспомогательная клеммная коробка (клеммный блок):<br>охлаждающий вентилятор (FU, FV, FW) |
|                                                    | Импульсный энкодер (с разъемным подключением),<br>охлаждающий вентилятор (FU, FV, FW)                                                                                                                                                              |
| Направление вращения                               | Против часовой стрелки при взгляде со стороны оператора                                                                                                                                                                                            |
| Монтажное исполнение                               | Крепление на лапах (ІМВЗ) примечание чтобы уджать о других вариантах исполнения, свяжитесь с Р.И.                                                                                                                                                  |
| Перегрузочная способность                          | 150% в теч. 1 мин. (*1)                                                                                                                                                                                                                            |
| Номинальный режим работы                           | S1                                                                                                                                                                                                                                                 |
| Степень защиты,<br>способ охлаждения               | ІР44, полностью закрытая система с принудительной вентиляцией,<br>включающая в себя двигатель охлаждающего вентилятора. Охлаждающий<br>вентилятор направляет воздух над двигателем к стороне привода.                                              |
| Место установки                                    | В помещении, высота над уровнем моря не более 1000 м.                                                                                                                                                                                              |
| Температура окружающей среды, влажность            | -10 +40°C, не более 90% О.В. (без конденсации)                                                                                                                                                                                                     |
| Шум                                                | 5,5 90 кВт: не более 80 дБ (A) на расстоянии 1 м, 110 300 кВт: не более 90 дБ (A) на расстоянии 1 м                                                                                                                                                |
| Виброустойчивость                                  | 6,86 m/c <sup>2</sup> (0.7G)                                                                                                                                                                                                                       |
| Цвет                                               | Munsell N1.2                                                                                                                                                                                                                                       |
| Соответствие стандарту                             | JEM 1487: 2005                                                                                                                                                                                                                                     |
| Стандартные<br>встроенные детали                   | Импульсный энкодер (разрешение 1024 точки, +5 В пост. тока, дифференциальный выход А, В, Z, U, V, W), NTC-термистор - 1 шт. (2 шт. для моделей мощностью 110 кВт и выше), охлаждающий вентилятор                                                   |

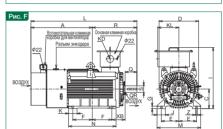

<sup>\*1)</sup> В режиме НD, 150% в течение 1 минуты ввиду ограничительных характеристик двигателя.


# Габаритные размеры профильных двигателей (Синхронный двигатель с датчиком скорости


# GNF2


#### Конец вала



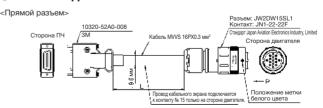


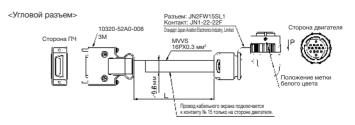






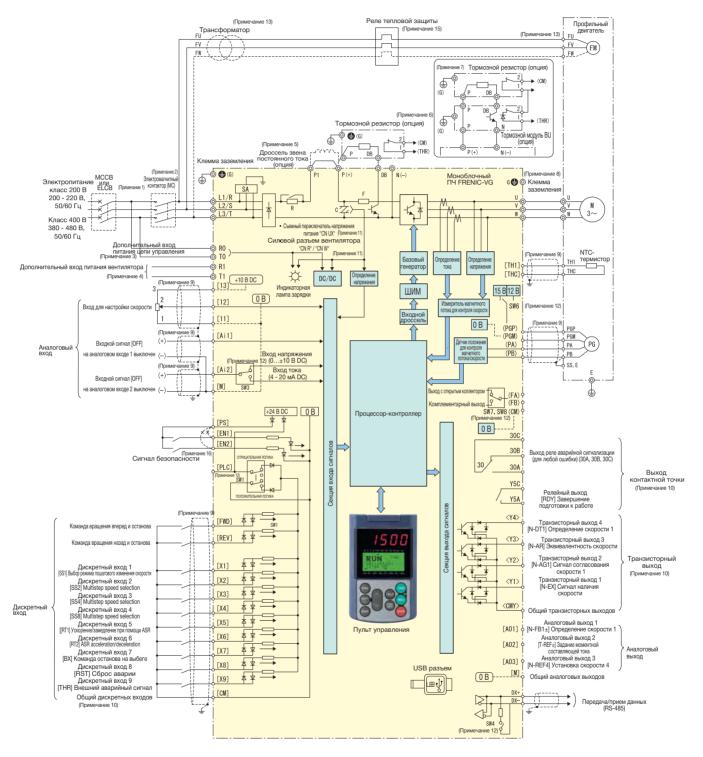




|                                     |          |            |      |       |     |     |       |       |    |     |     |       |     |     |        |     |     |       |     |      |     |     |      |       |     |    |        | [MM]          |
|-------------------------------------|----------|------------|------|-------|-----|-----|-------|-------|----|-----|-----|-------|-----|-----|--------|-----|-----|-------|-----|------|-----|-----|------|-------|-----|----|--------|---------------|
| Номикалькая<br>выходная<br>мошность |          | Типоразмер | . I  |       |     |     |       |       |    |     | P   | азмер | ы   |     |        |     |     |       |     |      |     |     | Кон  | ец ва | ла  |    |        | Прибл.<br>вес |
| двигателя<br>[кВт]                  | Модель   | корпуса    | PWC. | Α     | С   | D   | E     | F     | G  | 1   | J   | K     | KD  | KL  | L      | М   | N   | R     | ХВ  | z    | Q   | QR  | s    | Т     | U   | w  | Y      | [Kr]          |
| 5.5                                 | GNF2114A | 112Mh      |      | 335.5 | 112 | 235 | 95    | 70    | 14 | 270 | 40  | 50    | 34  | 200 | 555.5  | 224 | 175 | 220   | 70  | 12   | 80  | 0.5 | 38k6 | 8     | 5   | 10 | M10X20 | 51            |
| 7.5                                 | GNF2115A | 1 I ZIVIII |      | 335.5 | 112 | 235 | 95    | 70    | 14 | 270 | 40  | 50    | 34  | 200 | 555.5  | 224 | 175 | 220   | 70  | 12   | 80  | 0.5 | 38k6 | 8     | 5   | 10 | M10X20 | 55            |
| 11                                  | GNF2117A | 112Jh      |      | 380.5 | 112 | 235 | 95    | 100   | 18 | 270 | 55  | 50    | 48  | 235 | 698.5  | 228 | 238 | 318   | 108 | 14.5 | 110 | 1   | 42k6 | 8     | 5   | 12 | M10X20 | 69            |
| 15                                  | GNF2118A | HIZJII     | Α    | 380.5 | 112 | 235 | 95    | 100   | 18 | 270 | 55  | 50    | 48  | 235 | 698.5  | 228 | 238 | 318   | 108 | 14.5 | 110 | 1   | 42k6 | 8     | 5   | 12 | M10X20 | 78            |
| 18.5                                | GNF2136A | 132Lh      |      | 386   | 132 | 272 | 108   | 101.5 | 20 | 311 | 45  | 50    | 48  | 247 | 705.5  | 250 | 238 | 319.5 | 108 | 14.5 | 110 | 1.5 | 48k6 | 9     | 5.5 | 14 | M10X20 | 100           |
| 22                                  | GNF2137A | 132111     |      | 386   | 132 | 272 | 108   | 101.5 | 20 | 311 | 45  | 50    | 48  | 247 | 705.5  | 250 | 238 | 319.5 | 108 | 14.5 | 110 | 1.5 | 48k6 | 9     | 5.5 | 14 | M10X20 | 106           |
| 30                                  | GNF2139A | 132Hh      |      | 424.5 | 132 | 272 | 108   | 140   | 20 | 311 | 45  | 50    | 60  | 247 | 782.5  | 250 | 313 | 358   | 108 | 14.5 | 110 | 1.5 | 55m6 | 10    | 6   | 16 | M10X20 | 127           |
| 37                                  | GNF2165A | 160Lg      |      | 470.5 | 160 | 319 | 139.5 | 127   | 20 | 376 | 75  | 75    | 80  | 320 | 845.5  | 350 | 300 | 375   | 108 | 18.5 | 140 | 2   | 60m6 | 11    | 7   | 18 | M12X25 | 170           |
| 45                                  | GNF2167A | 160Jg      | В    | 501   | 160 | 319 | 139.5 | 157.5 | 20 | 376 | 75  | 75    | 80  | 320 | 906.5  | 350 | 370 | 405.5 | 108 | 18.5 | 140 | 2   | 60m6 | 11    | 7   | 18 | M12X25 | 192           |
| 55                                  | GNF2185A | 180Lg      |      | 510   | 180 | 375 | 159   | 139.5 | 25 | 428 | 80  | 85    | 80  | 356 | 910.5  | 390 | 330 | 400.5 | 121 | 18.5 | 140 | 2   | 65m6 | 11    | 7   | 18 | M12X25 | 247           |
| 75                                  | GNF2187A | 180Jg      | С    | 576   | 180 | 375 | 159   | 177.5 | 25 | 428 | 100 | 100   | 80  | 356 | 1061.5 | 420 | 450 | 485.5 | 168 | 24   | 140 | 2   | 75m6 | 12    | 7.5 | 20 | M12X25 | 325           |
| 90                                  | GNF2207A | 200Jg      |      | 618.5 | 200 | 410 | 178   | 200   | 25 | 549 | 100 | 100   | 80  | 107 | 1126.5 | 450 | 479 | 508   | 168 | 24   | 140 | 2   | 75m6 | 12    | 7.5 | 20 | M12X25 | 420           |
| 110                                 | GNF2224B | 225Kg      | D    | 711   | 225 | 446 | 203   | 200   | 28 | 628 | 100 | 120   | 80  | 142 | 1249   | 506 | 526 | 538   | 168 | 24   | 170 | 1   | 85m6 | 14    | 9   | 22 | M20×35 | 520           |
| 132                                 | GNF2226B | 225Hg      |      | 761   | 225 | 446 | 203   | 250   | 28 | 628 | 100 | 120   | 80  | 142 | 1349   | 506 | 626 | 588   | 168 | 24   | 170 | 1   | 85m6 | 14    | 9   | 22 | M20×35 | 580           |
| 160                                 | GNF2254B | 250Hg      | _    | 829   | 250 | 508 | 228.5 | 280   | 32 | 763 | 100 | 120   | 80  | 203 | 1469   | 557 | 677 | 640   | 190 | 24   | 170 | 1   | 95m6 | 14    | 9   | 25 | M20×35 | 760           |
| 200                                 | GNF2256B | ZOUTY      |      | 829   | 250 | 505 | 228.5 | 280   | 32 | 763 | 100 | 120   | 80  | 203 | 1469   | 557 | 677 | 640   | 190 | 24   | 170 | 1   | 95m6 | 14    | 9   | 25 | M20×35 | 810           |
| 220                                 | GNF2284B |            |      | 881   | 280 | 570 | 254   | 280   | 35 | 878 | 120 | 120   | 102 | 303 | 1521   | 628 | 680 | 640   | 190 | 28   | 170 | 1   | 95m6 | 14    | 9   | 25 | M20×35 | 1020          |
| 250                                 | GNF2284B | 280Jf      | F    | 881   | 280 | 570 | 254   | 280   | 35 | 878 | 120 | 120   | 102 | 303 | 1521   | 628 | 680 | 640   | 190 | 28   | 170 | 1   | 95m6 | 14    | 9   | 25 | M20×35 | 1020          |
| 280                                 | GNF2286B | 20001      | Г    | 881   | 280 | 570 | 254   | 280   | 35 | 878 | 120 | 120   | 102 | 303 | 1521   | 628 | 680 | 640   | 190 | 28   | 170 | 1   | 95m6 | 14    | 9   | 25 | M20×35 | 1080          |
| 300                                 | GNF2286B |            |      | 881   | 280 | 570 | 254   | 280   | 35 | 878 | 120 | 120   | 102 | 303 | 1521   | 628 | 680 | 640   | 190 | 28   | 170 | 1   | 95m6 | 14    | 9   | 25 | M20×35 | 1080          |


Примечание 1) Модели мощностью 110 кВт и выше предназначены для прямого соединения с нагрузкой. Если вам требуется соединение с ремнем, обратитесь в компанию Fuji. Примечание 2) Допуск на размер: Высота оси вращения C ≤ 250 мм······ \_0.5 мм, C > 250 мм······ \_0.5 мм.

### • Профильные соединительные кабели для ПЧ

| - 1    |              |                                         |                 |  |  |  |  |  |
|--------|--------------|-----------------------------------------|-----------------|--|--|--|--|--|
|        | Длина кабеля | Тип разъема для подключения к двигателю |                 |  |  |  |  |  |
|        | (размер L)   | Прямой разъем                           | Угловой разъем  |  |  |  |  |  |
| Тип    | 5 м          | CB-VG1-PMPG-05S                         | CB-VG1-PMPG-05A |  |  |  |  |  |
| кабеля | 15 м         | CB-VG1-PMPG-15S                         | CB-VG1-PMPG-15A |  |  |  |  |  |
|        | 30 м         | CB-VG1-PMPG-30S                         | CB-VG1-PMPG-30A |  |  |  |  |  |
|        | 50 м         | CB-VG1-PMPG-50S                         | CB-VG1-PMPG-50A |  |  |  |  |  |


### Схема подключения кабеля





# Схема соединений

# Основная схема соединений (моноблочный тип)



(Примечание 1) Установить рекомендованный автоматический выключатель в литом корпусе (МССВ) или выключатель тока утечки на землю (ЕLCB) с функцией защиты от перегрузки по току в первичную цель ПЧ для защиты подключения. Убедиться в том, что мощность автоматического выключателя равва или ниже рекомендуемой мощности. (Примечание 2) При необходимости установить электромагнитный контактор (МС) для каждого ПЧ для отключения ПЧ от стевеого правиты в дополнение к автоматическому выключателю (МССВ) или выключателю тока утечки на землю (ЕLCB). Подключить ограничитель напряжения параллельно катушке контактора, или электромагниту, если он расположен рядом с ПЧ.

с ГГЧ, 
ше 31 Для сохранения заврийного сигнала реле при срабатывании защиты, или сохранения информации на дисплее при отключении напряжения главной цели ПЧ, подключить эту клемму к источнику питания. Без подачи напряжения на эту клемму ПЧ может работать. 
ие 41 Обычно нет необходимости для подключения этих клемм. Использовать эти клеммы, если ПЧ используется в сочетании с ШИМ-рекуператором с высоким коэффициентом мощности (серии ЯНС). (Серия 20 В: 37 кВт и выше) 4/00 В: 75 кВт и выше)

обченаем с штим режунератиром и высилия мозирищентом мощности (режим 200 в.) я Кв и выше, серим (примечаем 5) При подключения доросеия зеаме постоянного тока (опцаю ОСП) удалить перевымие у можим установ и при 11 (н) (примечаем 5) При подключения доросеия зеаме постоянного тока (опцаю ОСП) удалить перевымие и мощностью 75 кВ г и выше колоской цели ПН. Модель ТН VGIS— ОСИ 20 для Ягонии) мощностью 55 кВ г в 10 режиме и мощностью 75 кВ г и выше колоской при 10 кВ г и в 1

(Примечание 8) Это клемма заземления двигателя. Для подавления шумов ПЧ рекомендуется использовать эту клемму, чтобы

(Примечание 8) Это клемма заземления двигателя. Для подавления шумов ПЧ рекомендуется использовать эту клемму, чтобы заземлить двигатель.

(Примечание 9); "Для передвачи сигналов управления использовать скрученные многожильные или экранированные кабели. Провод экрана обычно заземляется, однако при значительных помехах от внешних устройств их можно подавить, подключен провод экрана к обычно заземляется, однако при значительных помехах от внешних устройств их можно подавить, подключен провод экрана к лемми травления в одном канал. При Пересенени проводов целя управления с осиовена на как можно большее расстояние от проводов сигновые цели и цели управления в осиовена и проводам цели управления с осиовена на как можно старьться располагать их практически перпендкулярно друг другу.


(Примечание 10) На скаме подключения указамь заводские насторийк функций дискретных входов [X1] - [X9], транзисторных выходов [X1] - [X9] и релейного выхода (УБАС).

(Примечание 11) Поемпений преключатель на плата управления (РСВ).

(Примечание 12) Переключатель на плата управления (РСВ).

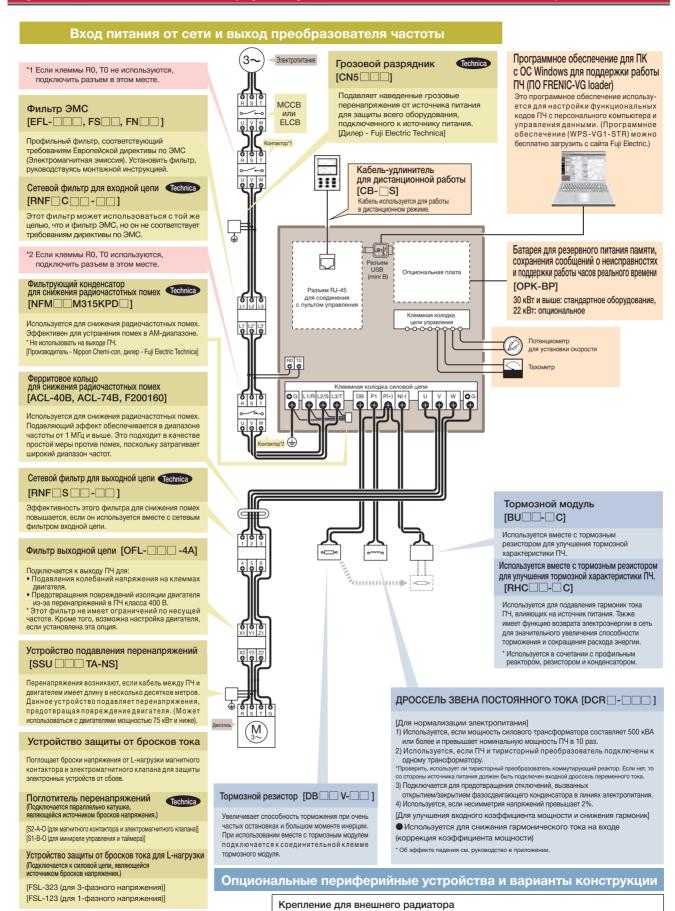
(Примечание 13) двигатель мощностью з 75. КВТ или менее имеет вентилятор с однофазной подвчей питания. В этом случае требуется соеринить клеммы ЕU и FV. Двигатель серии 400 В мощностью 10 В мощностью 1 кВТ или менеи мижет охлаждающим вентилятор с напряжением питания 200 № 50 Гц и (примечание 13 В мощностью 1 кВТ или менеи мижет охлаждающим вентилятор с напряжением питания 400 - 420 В/ 50 Гц или 400 - 440 В/ 60 Гц (грежфазное). Если напряжение питания отичнается от теры (примечание 15). Оледует убедиться, что дологительный контакт реле тепловой защиты может отключать личейный выключатель (МСОВ) или электроматичным истанатор (МСОВ) или электроматичным контактор (МСОВ).

# Основная схема соединений (модульный тип)



(Примечание 1) Установить рекомендованный автоматический выключатель в литом корпусе (МССВ) или выключатель тока утечки на землю (ЕLCВ) с функцией защиты от перегрузки по току в первичную цель ПЧ для защиты подключения. Убедиться в том, что мощность автоматического выключателя привечание 2) Установить электромагниятный контактор (МС,) рекомендованный для каждого преобразователя, для стиключателя от сетевого питания (в дополнение к автоматическому выключателю (МССВ) или выключателю тока утечки на землю (ЕLСВ)). Подключить ограничитель напряжения параллельно контактору, амектромагниту идругой катушке, если она расположена рядом с преобразователем.

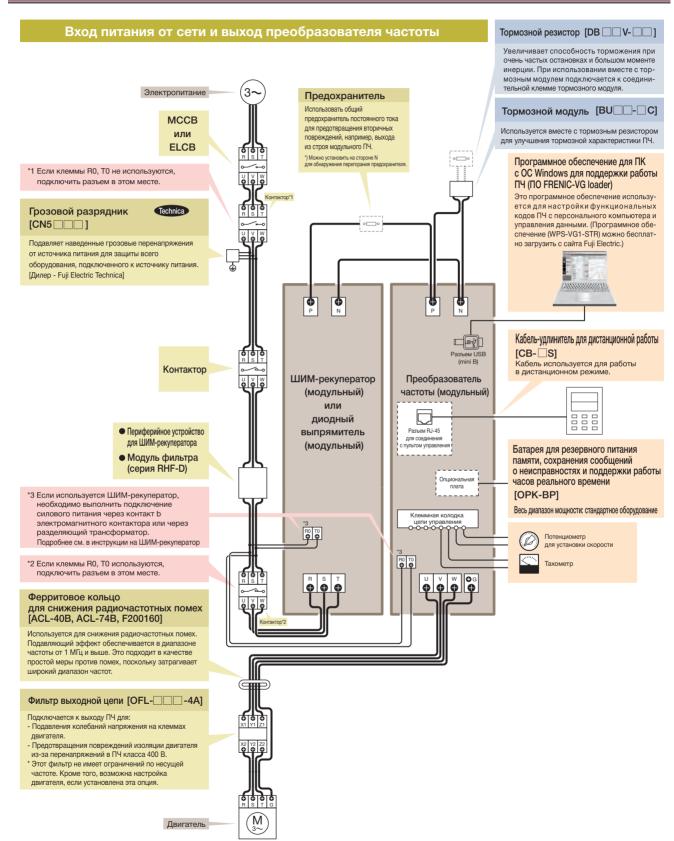
(Примечание 3) Для сохранения аварийного сигнала реле при срабатывании защиты, или сохранения информации на дисплее при отключении напряжения павной цели ПЧ, подключить эту клемму к источнику питания. Без подачи напряжения на эту клемму ПЧ может работать.


(Примечание 5) Это клемма заземления раклателя. Для подавления шумов ПЧ рекомендуется использовать эту клемму, чтобы заземлить двитатель.

(Примечание 6) Страния передачи сигналов управления использовать скрученные многожильные или экранированные кабели. Провод экрана обычно экземляется, однако при значительных помехах от внешних устройств их можно подамить, подключия провод экрана и к клеммам (ЕВ) (∭, Для передачи сигналов управления истользовать с куменным коможно от внешних устройств их можно подамить, подключия провод знача к клеммам (ЕВ) (МЛ, [11], ПРО и и прособы забели в одном качаль. При пересечении проводов цели управления с килем можно подамить прокладывать сповые цели и чели управления в одном качаль. При пересечении проводов цели управления с килем можно подамить прокладывать сповые цели и чели управления в одном качаль. При пересечении проводов цели управления с килем можно подамить прокладывать сповые цели управления в силем качаль. При пересечении проводов цели управления с килемам проводов цели у

(Примечание 7) На схеме подключения указаны заводские настройки функций дискретных входов [X1] - [X9], транзисторных въкходов [Y1] - [Y4] и релейного выхода [Y5A/C]. (Примечание 8) Переключателы на плате угравления (РСВ). (Примечание 9) Напряжение питания охлаждающего вентилятора двигателя 400 - 420 В / 50 Гц или 400 - 440 В / 60 Гц. Если используется другое напряжение, оно должно регулироваться трансформатором. аны 10 Клеммы (2B) ((M), [11], [THC]) и (8B) ((CM), [PGM)) на преобразователе частоты являются изолироватными.

(примечание п) лютеммы (шв) (шм), [ттн.] и [св] (шм), [тчм) и [св] (шм), [тчм) на преооразователе частоты являются изолированными. 
(Примечание 11) Следует убедиться, что дополнительный контакт (с ручным возвратом) реле тепловой адмиты может отключить личейный выключатель (мССВ) или электромагнитный контактор (мС). 
(Примечание 12), Клеммы функции безопасности [ЕМ1] [ЕМ2] и [РS] соединяются короткозамывающей перемычкой (заводская установка). Для использования этой функции безопасности перед подключением необходимо удалить короткозамывающую перемычку. 
(Примечание 13) Подробные сведения о подключении ШИМ-рекуператоря (ВНС-D) и модуля фильтра (ПНГ-D) см. в инструкциях на ШИМ-рекуператор и фильтр. 
(Примечание 14) Всегда использовать предохранитель (Ебс). На преобразователях класса 400 В его следует подключить к стороне Р(+), а на преобразователях класса 690 В - к обеми сторонам Р(+) и № (-). 
(Примечание 15) Для изолирования цепи должен использоваться разделяющий трансформатор или контакты В (NC) электромагнитного контактора, катушка которого подключается со стороны источника питания.


# Руководство по опциям (Пример для ПЧ моноблочного типа)



<sup>\*</sup> Дилером изделий, помеченных логотипом **Technica** является Fuji Electric Technica

Крепление для установки радиатора ПЧ вне панели. [PBVG7-7.5 (до 7.5 кВт)] [PB-F1-30 (от 11 до 22 кВт)]

# Руководство по опциям (Пример для ПЧ модульного типа)



<sup>\*</sup> Дилером изделий, помеченных логотипом Technica является Fuji Electric Technica.

# Опциональные платы

| Категория                     | Название                                                     | Тип           | Переключение с помощью переключателя на плате Pt | Характеристики                                                                                                                                                                                            | Примечания            |
|-------------------------------|--------------------------------------------------------------|---------------|--------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| Аналоговая плата              | Синхронизированный интерфейс                                 | OPC-VG1-SN    |                                                  | Синкронизация интерфейсных сием преобразователя «частота-напряжение» для регулирования намотки с помощью плавающего ролика                                                                                |                       |
|                               | Преобразователь «частота-напряжение»                         | OPC-VG1-FV    |                                                  | F/V Рекуператор                                                                                                                                                                                           | Ожидается поступление |
| Цифровая плата                | Плата расширения аналогового ввода-вывода                    | OPC-VG1-AIO   |                                                  | Плата расширения аналогового ввода (2 точки) и аналогового вывода (2 точки)                                                                                                                               |                       |
| (8-разрядная)                 | Плата дискретного ввода                                      | OPC-VG1-DI    | OPC-VG1-DI (A)                                   | 16-разрядный дискретный вход с двоичным кодом или 4-разрядный с двоично-десятичным кодом + знак                                                                                                           |                       |
|                               |                                                              |               | OPC-VG1-DI (B)                                   | Для установки скорости, задания момента и моментной составляющей тока.                                                                                                                                    |                       |
|                               | Плата расширения дискретного ввода-вывода                    | OPC-VG1-DIO   | OPC-VG1-DIO (A)                                  | Расширение дискретного ввода (DI) (4 бита) и дискретного вывода (Do) (8 бит) для выбора функций.<br>Опциональная плата дискретного ввода-вывода для прямого контроля опускания. Di x 16 бит + Do x 10 бит |                       |
|                               |                                                              |               | OPC-VG1-DIO (B)                                  | Только при использовании UPAC                                                                                                                                                                             |                       |
|                               | Плата расширения энкодера                                    | OPC-VG1-PG    | OPC-VG1-PG (SD)                                  | Энкодеры с дифференциальным выходом, выходное                                                                                                                                                             |                       |
|                               |                                                              |               | OPC-VG1-PG (LD)                                  | напряжение +5 В (сигналы А, В и Z-фаз).                                                                                                                                                                   |                       |
|                               |                                                              |               | OPC-VG1-PG (PR)                                  | Используется для определения скорости двигателя, линейной                                                                                                                                                 |                       |
|                               |                                                              |               | OPC-VG1-PG (PD)                                  | скорости, задания положения и определения положения.                                                                                                                                                      |                       |
|                               |                                                              | OPC-VG1-PGo   | OPC-VG1-PGo (SD)                                 | Энкодеры с открытым коллектором, выходное напряжение                                                                                                                                                      |                       |
|                               |                                                              |               | OPC-VG1-PGo (LD)                                 | (сигналы А, В и Z-фаз).                                                                                                                                                                                   |                       |
|                               |                                                              |               | OPC-VG1-PGo (PR)                                 | Используется для определения скорости двигателя, линейной                                                                                                                                                 |                       |
|                               |                                                              |               | OPC-VG1-PGo (PD)                                 | скорости, задания положения и определения положения.                                                                                                                                                      |                       |
|                               |                                                              | OPC-VG1-SPGT  |                                                  | Высокоразрешающий абсолютный энкодер с 17-битным разрешением                                                                                                                                              |                       |
|                               | Плата энкодера для привода синхронного двигателя             | OPC-VG1-PMPG  |                                                  | Дифференциальный выход +5 В А, В + положение магнитного                                                                                                                                                   |                       |
|                               |                                                              | OPC-VG1-PMPGo |                                                  | Выход с открытым коллектором полюса (макс. 4 бита)                                                                                                                                                        |                       |
|                               | Плата связи T-Link                                           | OPC-VG1-TL    |                                                  | Интерфейсная плата связи T-Link                                                                                                                                                                           |                       |
|                               | Плата связи СС-Link                                          | OPC-VG1-CCL   |                                                  | Плата, совместимая с CC-Link (Ver2.00)                                                                                                                                                                    | Ожидается поступление |
| Цифровая плата                | Плата высокоскоростной последовательной связи с UPAC         | OPC-VG1-SIU   |                                                  | Используется для связи с платой UPAC                                                                                                                                                                      | Ожидается поступление |
| (16-разрядная)                | SX bus                                                       | OPC-VG1-SX    |                                                  | Плата связи по шине SX bus                                                                                                                                                                                |                       |
|                               | E-SX bus                                                     | OPC-VG1-ESX   |                                                  | Плата связи по шине E-SX                                                                                                                                                                                  |                       |
|                               | PROFINET-IRT                                                 | OPC-VG1-PNET  |                                                  | Плата связи PROFINET-IRT                                                                                                                                                                                  |                       |
|                               |                                                              |               |                                                  | Совместима только с ПЧ специального типа VG1S- PN                                                                                                                                                         |                       |
| Интерфейсная плата            | Плата программирования                                       | OPC-VG1-UPAC  |                                                  | Плата программирования, выполняемого пользователем                                                                                                                                                        |                       |
| промышленной шины (Field bus) | PROFIBUS-DP                                                  | OPC-VG1-PDP   |                                                  | Плата связи PROFIBUS-DP                                                                                                                                                                                   |                       |
| Плата безопасности            | DeviceNet                                                    | OPC-VG1-DEV   |                                                  | Плата связи DeviceNet                                                                                                                                                                                     |                       |
| Клеммы управления             | Плата функций безопасности                                   | OPC-VG1-SAFE  |                                                  | Плата, совместимая со стандартными функциями безопасности                                                                                                                                                 |                       |
| Программное                   | Клеминая колодка для высокоскоростной последовательной связи | OPC-VG1-TBSI  |                                                  | Используется в системе привода многообмоточного двигателя и в системе подключения с дросселем                                                                                                             |                       |
| обеспечение Loader            | Профильное ПО для поддержки работы ПЧ                        | WPS-VG1-STR   |                                                  | Для Windows (бесплатная версия)                                                                                                                                                                           |                       |
| Пакет                         |                                                              | WPS-VG1-PCL   |                                                  | Для Windows (платная версия)                                                                                                                                                                              |                       |
| программного                  | ПО для регулирования натяжения                               | WPS-VG1-TEN   |                                                  | Для Windows.                                                                                                                                                                                              | Ожидается поступление |
| обеспечения                   | ПО для регулирования намотки с помощью плавающего ролика     | WPS-VG1-DAN   |                                                  | Поставляется в комплекте с CD-ROM с профильным                                                                                                                                                            | Ожидается поступление |
|                               | ПО для контроля позиционирования                             | WPS-VG1-POS   |                                                  | ПО (Loader) для поддержки работы ПЧ (платное).                                                                                                                                                            |                       |

# Кабели

| Категория | Название                    | Тип             | Длина (м) | Характеристики                                         |
|-----------|-----------------------------|-----------------|-----------|--------------------------------------------------------|
| Кабель    | Кабель-удлинитель           | CB-5S           | 5 м       | Кабель для соединения ПЧ с пультом управления          |
|           | для дистанционной работы    | CB-3S           | 3 м       |                                                        |
|           |                             | CB-1S           | 1 м       |                                                        |
|           |                             | CB-VG1-PMPG-05S | 5 м       | Прямой разъем                                          |
|           |                             | CB-VG1-PMPG-15S | 15 м      |                                                        |
|           | Кабель энкодера             | CB-VG1-PMPG-30S | 30 м      |                                                        |
|           | для двигателя GNF2          | CB-VG1-PMPG-50S | 50 м      |                                                        |
|           |                             | CB-VG1-PMPG-05A | 5 м       | Угловой разъем                                         |
|           |                             | CB-VG1-PMPG-15A | 15 м      |                                                        |
|           |                             | CB-VG1-PMPG-30A | 30 м      |                                                        |
|           |                             | CB-VG1-PMPG-50A | 50 м      |                                                        |
|           | Специальный кабель для UPAC | CB-VG1-UPAC-3S  | 3 м       | Кабель для соединения платы OPC-VG1-UPAC с компьютером |

Порт Е

(Конт. 16]

101

Порт С (Конт. 6]

Порт А (Конт. 3]

Порт В (Конт. 2]

Ha!

Порт D

# Комбинация с встроенной опцией управления

| Конт. | Порт | Категория                                               | Комбинация 1 | Комбинация 2 | Комбинация 3 |
|-------|------|---------------------------------------------------------|--------------|--------------|--------------|
| 3     | Α    | Цифровая плата (для 8-разрядной шины), аналоговая плата | 1            | 1            | 1            |
| 2     | В    | Цифровая плата (для 8-разрядной шины)                   | 1            | 0            | 0            |
| 6     | С    | Интерфейсная плата промышленной шины                    | 0            | 0            | 1            |
| 10    | D    | Цифровая плата (для 16-разрядной шины)                  | 1            | 1            | 0            |
| 16    | Е    | Плата безопасности                                      | 0            | 1            | 1            |
| 1     | F    | Клемма цепи управления                                  | 1            | 1            | 1            |

- (1) Некоторые опциональные платы связи (OPC-VG1-TL, OPC-VG1-CCL и др.) не могут быть установлены одновременно. В случае одновременной установки этих плат возникает «Ошибка при работе» (Егб).

  (2) Режим использования плат ОРС-VG1-DI, DIO, PG и PGo можно выбрать, установив соответствующим образом переключатель (SW) на печатной плате. Можно установки в слитать любого из типов ОРС-VG1-DI, DIO, PG и PGo, однако если переключатели выбора режима использования будут установлены в одно положение, на индикаторе появится «Ошибка при работе» (Егб).

  (3) При использовании платы ОРС-VG1-PG для определения скорости двигателя вход с клемм (РА, PB) на плату управления главного устройства отключается.

  (4) При установке плат ОРС-VG1-PG/PG и ОРС-VG1-PMPG/PMPG применяются ограничения, указанные в следующей таблице.

|                                  | VG1-PG/PGo(SD)<br>VG1-PMPG/PMPGo | VG1-PG/PGo(LD) | VG1-PG/PGo(PR) | VG1-PG/PGo(PD) |
|----------------------------------|----------------------------------|----------------|----------------|----------------|
| VG1-PG/PGo(SD)<br>VG1-PMPG/PMPGo |                                  |                |                |                |
| VG1-PG/PGo(LD)                   | OK                               | NG             |                |                |
| VG1-PG/PGo(PR)                   | OK                               | NG             | NG             |                |
| VG1-PG/PGo(PD)                   | OK                               | NG             | NG             | NG             |

ОК – годится NG – не годится

<sup>(5)</sup> При установке ОРС-VG1-PMPG необходимо выбрать клеммы в соответствии со способом управления. Клеммы (РА, РВ) на плате управления главного устройства включены, если выбран режим векторного управления с датчиком скорости для асинхронного двигателя. Плата ОРС-VG1-PMPG включена, если выбрано векторное управление с датчиком скорости для синхронного двигателя.

(6) Плату ОРС-VG1-SPGТ можно устанавливать только в порт В.

# Тормозной резистор, тормозной модуль (макс. крутящий момент 150%, стандартный рабочий цикл 10% ED)

| Напряжение | Номинальная<br>мощность | Модель ПЧ                       | Тормозной мо<br>Для многоблочн |        | Тормозной   | й резистор            |        | (150% | ывное торм<br>преобразо<br>ящего мом | вание        | Периодическо<br>(продолжи<br>цикла не б |                            |
|------------|-------------------------|---------------------------------|--------------------------------|--------|-------------|-----------------------|--------|-------|--------------------------------------|--------------|-----------------------------------------|----------------------------|
| питания    | двигателя<br>(кВт)      | Моноблочный тип *<br>(Режим HD) | Тип                            | Кол-во | Тип         | Омическое<br>значение | Кол-во | Макс. | Время<br>торможения<br>[c]           | Рассеивающая |                                         | Средние<br>потери<br>[кВт] |
|            | 0.75                    | FRN0.75VG1S-2                   |                                |        |             |                       |        |       | [-]                                  | (all visit   | [,,,]                                   | []                         |
|            | 1.5                     | FRN1.5VG1S-2□                   |                                |        | DB2.2V-21B  | 30Ω                   | 1      |       |                                      | 16.5         |                                         | 0.165                      |
|            | 2.2                     | FRN2.2VG1S-2                    |                                |        |             |                       |        |       |                                      |              |                                         |                            |
|            | 3.7                     | FRN3.7VG1S-2                    |                                |        | DB3.7V-21B  | 24Ω                   | 1      |       |                                      | 27.75        |                                         | 0.2775                     |
|            | 5.5                     | FRN5.5VG1S-2                    |                                |        | DB5.5V-21B  | 16Ω                   | 1      |       |                                      | 41.25        |                                         | 0.4125                     |
|            | 7.5                     | FRN7.5VG1S-2                    |                                |        | DB7.5V-21B  | 12Ω                   | 1      |       |                                      | 56.25        |                                         | 0.5625                     |
|            | 11                      | FRN11VG1S-2                     | Dampaauuu                      |        | DB11V-21B   | 8Ω                    | 1      |       |                                      | 82.5         |                                         | 0.825                      |
| Трехфазное | 15                      | FRN15VG1S-2                     | Встроеннь                      | ш      | DB15V-21B   | 6Ω                    | 1      | 150%  | 10s                                  | 112.5        | 10%ED                                   | 1.125                      |
| 200 B      | 18.5                    | FRN18.5VG1S-2                   |                                |        | DB18.5V-21B | 4.5Ω                  | 1      | 150%  | 108                                  | 138.75       | 10 /0LD                                 | 1.3875                     |
|            | 22                      | FRN22VG1S-2                     | -                              |        | DB22V-21B   | 4Ω                    | 1      |       |                                      | 165          |                                         | 1.65                       |
|            | 30                      | FRN30VG1S-2                     |                                |        | DB30V-21B   | 2.5Ω                  | 1      |       |                                      | 225          |                                         | 2.25                       |
|            | 37                      | FRN37VG1S-2                     |                                |        | DB37V-21B   | 2.25Ω                 | 1      |       |                                      | 277.5        |                                         | 2.775                      |
|            | 45                      | FRN45VG1S-2                     |                                |        | DB45V-21B   | 2Ω                    | 1      |       |                                      | 337.5        |                                         | 3.375                      |
|            | 55                      | FRN55VG1S-2                     | -                              |        | DB55V-21C   | 1.6Ω                  | 1      |       |                                      | 412.5        |                                         | 4.125                      |
|            | 75                      | FRN75VG1S-2                     | BU55-2C                        | 2      | DB75V-21C   | 2.4Ω/2                | 1      |       |                                      | 562.5        | -                                       | 5.625                      |
|            | 90                      | FRN90VG1S-2                     | BU90-2C                        | 2      | DB90V-21C   | 2Ω/2                  | 1      |       |                                      | 675          | -                                       | 6.75                       |
|            | 3.7                     | FRN3.7VG1S-4                    | 2000 20                        |        | DB3.7V-41B  | 96Ω                   | 1      |       |                                      | 27.75        |                                         | 0.2775                     |
|            | 5.5                     | FRN5.5VG1S-4                    |                                |        | DB5.5V-41B  | 64Ω                   | 1      |       |                                      | 41.25        |                                         | 0.4125                     |
|            | 7.5                     | FRN7.5VG1S-4                    | _                              |        | DB3.5V-41B  | 48Ω                   | 1      |       |                                      | 56.25        | _                                       | 0.5625                     |
|            | 11                      | FRN11VG1S-4                     | -                              |        |             | 32Ω                   | 1      |       |                                      | 82.5         | -                                       | 0.825                      |
|            |                         |                                 | -                              |        | DB11V-41B   |                       |        |       |                                      |              |                                         |                            |
|            | 15                      | FRN15VG1S-4                     | _                              |        | DB15V-41B   | 24Ω                   | 1      |       |                                      | 112.5        | _                                       | 1.125                      |
|            | 18.5                    | FRN18.5VG1S-4                   | _                              |        | DB18.5V-41B | 18Ω                   | 1      |       |                                      | 138.75       | -                                       | 1.3875                     |
|            | 22                      | FRN22VG1S-4                     | _                              |        | DB22V-41B   | 16Ω                   | 1      |       |                                      | 165          | -                                       | 1.65                       |
|            | 30                      | FRN30VG1S-4                     | Встроеннь                      | ій     | DB30V-41B   | 10Ω                   | 1      |       |                                      | 225          |                                         | 2.25                       |
|            | 37                      | FRN37VG1S-4                     | -                              |        | DB37V-41B   | 9Ω                    | 1      | _     |                                      | 277.5        |                                         | 2.775                      |
|            | 45                      | FRN45VG1S-4                     | -                              |        | DB45V-41B   | 8Ω                    | 1      |       | 10 c                                 | 337.5        |                                         | 3.375                      |
|            | 55                      | FRN55VG1S-4                     | _                              |        | DB55V-41C   | 6.5Ω                  | 1      |       |                                      | 412.5        |                                         | 4.125                      |
|            | 75                      | FRN75VG1S-4                     |                                |        | DB75V-41C   | 4.7Ω                  | 1      |       |                                      | 562.5        |                                         | 5.625                      |
| Трехфазное | 90                      | FRN90VG1S-4                     |                                |        | DB90V-41C   | 3.9Ω                  | 1      | 150%  |                                      | 675          | 10%ED                                   | 6.75                       |
| 400 B      | 110                     | FRN110VG1S-4                    |                                |        | DB110V-41C  | 3.2Ω                  | 1      |       |                                      | 825          |                                         | 8.25                       |
| 100 B      | 132                     | FRN132VG1S-4□                   |                                |        | DB132V-41C  | 2.6Ω                  | 1      |       |                                      | 990          |                                         | 9.9                        |
|            | 160                     | FRN160VG1S-4□                   |                                |        | DB160V-41C  | 2.2Ω                  | 1      |       |                                      | 1200         |                                         | 12.0                       |
|            | 200                     | FRN200VG1S-4                    | BU220-4C                       | 2      | DB200V-41C  | 3.5Ω/2                | 1      |       |                                      | 1500         |                                         | 15.0                       |
|            | 220                     | FRN220VG1S-4□                   | DU220-40                       | 2      | DB220V-41C  | 3.2Ω/2                | 1      |       |                                      | 1650         |                                         | 16.5                       |
|            | 250                     | -                               | _                              | -      |             |                       |        |       |                                      |              |                                         |                            |
|            | 280                     | FRN280VG1S-4                    | DI 1000 40                     |        | DB160V-41C  | 2.2Ω/2                | 2      |       |                                      | 2100         |                                         | 21.0                       |
|            | 315                     | FRN315VG1S-4                    | BU220-4C                       | 2      | DB160V-41C  | 2.2Ω/2                | 2      |       |                                      | 2363         |                                         | 23.6                       |
|            | 355                     | FRN355VG1S-4                    |                                |        | DB132V-41C  | 2.6Ω/3                | 3      |       |                                      | 2663         |                                         | 26.6                       |
|            | 400                     | FRN400VG1S-4                    |                                | 3      | DB132V-41C  | 2.6Ω/3                | 3      |       |                                      | 3000         |                                         | 30.0                       |
|            | 500                     | FRN500VG1S-4                    | BU220-4C                       |        | DB132V-41C  | 2.6Ω/4                | 4      |       |                                      | 3750         |                                         | 37.5                       |
|            | 630                     | FRN630VG1S-4                    |                                | 4      | DB160V-41C  | 2.2Ω/4                | 4      |       |                                      | 4725         |                                         | 47.3                       |
|            | 710                     | -                               | _                              | _      | 221007 410  | L.L3E/ ¬              | 1      |       |                                      | 1,20         |                                         |                            |
|            | 710                     |                                 | _                              |        |             |                       |        |       |                                      |              |                                         |                            |

<sup>\*</sup> Характеристики для моноблочного типа (в режимах MD и LD) и модульного типа (в режиме LD) см. в Руководстве пользователя. характеристики для моноолочного типа (в режимах мід и съ) и модульного типа (в режима съ) см. в Руководстве пользователя. (Издание 24А7- □-0018 «Модульный тип, функциональные коды») (Примечание 1) Рабочий цикл [% ЕD] рассчитывается как 150% от тормозного момента, используемого для замедления, см. ниже. (Примечание 2) Требуются по два тормозных резистора типов DB160V-41C, DB200V-41C и DB220V-41C. (Примечание 3) При парадлельном подключении трех или более тормозных модулей следует руководствоваться приложением

к Инструкции на модули DB INR-HF51614 (примечания, касающиеся подключения нескольких устройств).



[Порядок выбора] Все нижеперечисленные условия должны выполняться одновременно.

- 1 «Максимальный тормозной момент» не превышает значения, указанного на таблице.

  2 Энергия, рассеиваемая на резисторе при каждом торможении (область треугольника на рисунке слева и область прямоугольника на рисунке справа), не превышает «рассеивающей способности [кВт\*с]», указанной в таблице.

  3 Средние потери (энергия, рассеиваемая на резисторе, деленная на интервал торможения) не превышают величины «средних потерь [кВт]», указанной в таблице.

# Тормозной резистор (макс. крутящий момент 150%, стандартный рабочий цикл 10% ED)





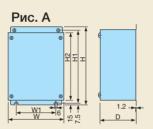




| Класс 2     | Класс 200 В |     |              |     |     |     |     |     |    |             |  |  |
|-------------|-------------|-----|--------------|-----|-----|-----|-----|-----|----|-------------|--|--|
| T           | D           |     | Размеры [мм] |     |     |     |     |     |    |             |  |  |
| Тип         | Рис.        | W   | W1           | Н   | H1  | H2  | D   | D1  | С  | вес<br>[кг] |  |  |
| DB2.2V-21B  |             | 330 | 298          | 242 | 210 | 165 | 140 | 1.6 | 8  | 4           |  |  |
| DB3.7V-21B  |             | 400 | 368          | 280 | 248 | 203 | 140 | 1.6 | 8  | 5           |  |  |
| DB5.5V-21B  |             | 400 | 368          | 280 | 248 | 203 | 140 | 1.6 | 8  | 5           |  |  |
| DB7.5V-21B  |             | 400 | 368          | 480 | 448 | 377 | 140 | 1.6 | 10 | 6           |  |  |
| DB11V-21B   |             | 400 | 368          | 480 | 448 | 377 | 140 | 1.6 | 10 | 7           |  |  |
| DB15V-21B   | Α           | 400 | 368          | 660 | 628 | 557 | 140 | 1.6 | 10 | 10          |  |  |
| DB18.5V-21B |             | 400 | 368          | 660 | 628 | 557 | 140 | 1.6 | 10 | 10          |  |  |
| DB22V-21B   |             | 400 | 368          | 660 | 628 | 557 | 240 | 1.6 | 10 | 13          |  |  |

| Іип         | Рис. | W   | W1  | Н   | H1  | H2  | D   | D1  | С  | [KL] |
|-------------|------|-----|-----|-----|-----|-----|-----|-----|----|------|
| DB2.2V-21B  |      | 330 | 298 | 242 | 210 | 165 | 140 | 1.6 | 8  | 4    |
| DB3.7V-21B  |      | 400 | 368 | 280 | 248 | 203 | 140 | 1.6 | 8  | 5    |
| DB5.5V-21B  |      | 400 | 368 | 280 | 248 | 203 | 140 | 1.6 | 8  | 5    |
| DB7.5V-21B  |      | 400 | 368 | 480 | 448 | 377 | 140 | 1.6 | 10 | 6    |
| DB11V-21B   |      | 400 | 368 | 480 | 448 | 377 | 140 | 1.6 | 10 | 7    |
| DB15V-21B   | Α    | 400 | 368 | 660 | 628 | 557 | 140 | 1.6 | 10 | 10   |
| DB18.5V-21B |      | 400 | 368 | 660 | 628 | 557 | 140 | 1.6 | 10 | 10   |
| DB22V-21B   |      | 400 | 368 | 660 | 628 | 557 | 240 | 1.6 | 10 | 13   |
| DB30V-21B   |      | 400 | 368 | 660 | 628 | 557 | 240 | 1.6 | 10 | 18   |
| DB37V-21B   |      | 405 | 368 | 750 | 718 | 647 | 240 | 1.6 | 10 | 22   |
| DB45V-21B   |      | 405 | 368 | 750 | 718 | 647 | 340 | 1.6 | 10 | 26   |
| DB55V-21C   |      | 450 | 420 | 440 | 430 | 250 | 283 | -   | 12 | 35   |
| DB75V-21C   | В    | 600 | 570 | 440 | 430 | 250 | 283 | -   | 12 | 33   |
| DB90V-21C   |      | 700 | 670 | 440 | 430 | 250 | 283 | -   | 12 | 43   |

### Класс 400 В

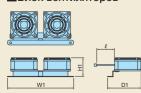

| _           |      | Размеры [мм] |     |     |     |     |     |     |    | Прибл.      |
|-------------|------|--------------|-----|-----|-----|-----|-----|-----|----|-------------|
| Тип         | Рис. | W            | W1  | Н   | H1  | H2  | D   | D1  | С  | Bec<br>[Kr] |
| DB3.7V-41B  |      | 420          | 388 | 280 | 248 | 203 | 140 | 1.6 | 8  | 5           |
| DB5.5V-41B  |      | 420          | 388 | 480 | 448 | 377 | 140 | 1.6 | 10 | 7           |
| DB7.5V-41B  |      | 420          | 388 | 480 | 448 | 377 | 140 | 1.6 | 10 | 7           |
| DB11V-41B   |      | 420          | 388 | 480 | 448 | 377 | 140 | 1.6 | 10 | 8           |
| DB15V-41B   |      | 420          | 388 | 660 | 628 | 557 | 140 | 1.6 | 10 | 11          |
| DB18.5V-41B | Α    | 420          | 388 | 660 | 628 | 557 | 140 | 1.6 | 10 | 11          |
| DB22V-41B   |      | 420          | 388 | 660 | 628 | 557 | 240 | 1.6 | 10 | 14          |
| DB30V-41B   |      | 420          | 388 | 660 | 628 | 557 | 240 | 1.6 | 10 | 19          |
| DB37V-41B   |      | 425          | 388 | 750 | 718 | 647 | 240 | 1.6 | 10 | 21          |
| DB45V-41B   |      | 425          | 388 | 750 | 718 | 647 | 340 | 1.6 | 10 | 26          |
| DB55V-41C   |      | 550          | 520 | 440 | 430 | 250 | 283 | -   | 12 | 26          |
| DB75V-41C   |      | 550          | 520 | 440 | 430 | 250 | 283 | -   | 12 | 30          |
| DB90V-41C   |      | 650          | 620 | 440 | 430 | 250 | 283 | -   | 12 | 41          |
| DB110V-41C  | _    | 750          | 720 | 440 | 430 | 250 | 283 | -   | 12 | 57          |
| DB132V-41C  | В    | 750          | 720 | 440 | 430 | 250 | 283 | -   | 12 | 43          |
| *DB160V-41C |      | 600          | 570 | 440 | 430 | 250 | 283 | -   | 12 | 37(×2)      |
| *DB200V-41C |      | 725          | 695 | 440 | 430 | 250 | 283 | -   | 12 | 50(×2)      |
| *DB220V-41C |      | 725          | 695 | 440 | 430 | 250 | 283 | _   | 12 | 51(x2)      |

• Следует использовать по два одинаковых резистора одного типа для DB160V-41C, DB200V-41C и DB220V-41C. В комплект поставки одного устройства входят два резистора. Необходимо обеспечить требуемое место для установки.

# Тормозной модуль (BU

H2 H1






| Hamasussus        |          |      |     | Размеры [мм] |     |     |     |     |             |  |
|-------------------|----------|------|-----|--------------|-----|-----|-----|-----|-------------|--|
| Напряжение        | Тип      | Рис. | W   | W1           | Н   | H1  | H2  | D   | Bec<br>[Kr] |  |
| 3-фазное          | BU55-2C  | Α    | 230 | 130          | 240 | 225 | 210 | 160 | 6           |  |
| 200 B             | BU90-2C  | Α    | 250 | 150          | 370 | 355 | 340 | 100 | 9           |  |
|                   | BU37-4C  | Α    | 150 | 100          | 280 | 265 | 250 |     | 4           |  |
|                   | BU55-4C  | Α    | 230 | 130          | 280 | 265 | 250 |     | 5.5         |  |
| 3-фазное<br>400 В | BU90-4C  | Α    | 230 | 130          | 280 | 265 | 250 | 160 | 5.5         |  |
|                   | BU132-4C | Α    | 250 | 150          | 370 | 355 | 340 |     | 9           |  |
|                   | BU220-4C | Α    | 250 | 150          | 450 | 435 | 420 |     | 13          |  |

# Блок вентиляторов для тормозного модуля (BU-F)



■Блок вентиляторов





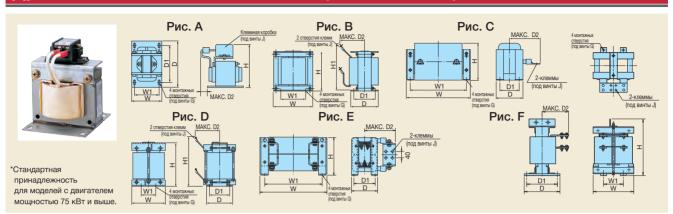
| To the second |
|---------------|
|               |
| Toward Theres |
|               |
|               |
|               |

При использовании этой опции рабочий цикл [% ED] модели с внешним тормозным модулем увеличивается с 10% ED до 30% ED.

#### [Блок вентиляторов]

| T    |     | Размеры [мм] |    |                                                            |  |  |  |  |  |
|------|-----|--------------|----|------------------------------------------------------------|--|--|--|--|--|
| Тип  | W1  | H1           | D1 | <ul> <li>Д (длина силового кабеля вентиляторов)</li> </ul> |  |  |  |  |  |
| BU-F | 149 | 44           | 76 | 320                                                        |  |  |  |  |  |

### [Тормозной модуль + Блок вентиляторов]

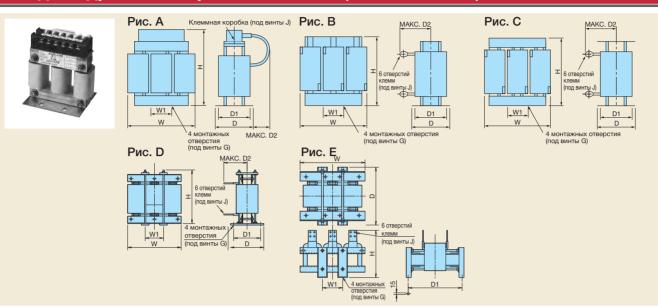

|            | 1 12          |     |     |      |      |       |     |     |     |    |
|------------|---------------|-----|-----|------|------|-------|-----|-----|-----|----|
|            | T             |     |     | - 1  | Разм | еры [ | мм] |     |     |    |
| Напряжение | Тип           | W2  | W3  | W4   | H2   | НЗ    | H4  | D2  | D3  | D4 |
| 3-фазное   | BU55-2C+BU-F  | 230 | 105 | 47.5 | 240  | 20    | 270 | 160 | 1.2 | 64 |
| 200 B      | BU90-2C+BU-F  | 250 | 135 | 57.5 | 370  | 30    | 400 | 160 | 1.2 | 04 |
|            | BU37-4C+BU-F  | 150 |     | 7.5  | 280  |       | 310 |     |     |    |
|            | BU55-4C+BU-F  | 230 |     | 47.5 | 280  |       | 310 |     |     |    |
| 3-фазное   | BU90-4C+BU-F  | 230 | 135 | 47.5 | 280  | 30    | 310 | 160 | 1.2 | 64 |
| 400 B      | BU132-4C+BU-F | 250 | ]   | 57.5 | 370  |       | 400 |     |     |    |
|            | BU220-4C+BU-F | 250 | 1   | 57.5 | 450  |       | 480 |     |     |    |

П....б.

Дроссель звена постоянного тока в основном используется с моноблочными ПЧ. На модульных устройствах дроссель постоянного тока встроен в диодный преобразователь частоты и используется в случае необходимости.

\* Подробнее см. в Руководстве пользователя для ПЧ модульного типа (24A7- □-0018).

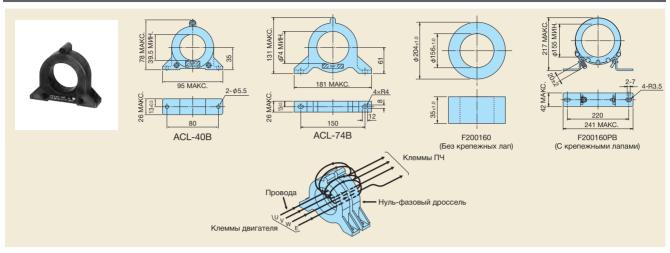
# Дроссель звена постоянного тока (DCR)




| Напряжение | Номинальная                 |               | Модель ПЧ    |               | Тип       |      |     |     |     |     | Разме | еры [мм]   |     |     |       | Прибл.      |
|------------|-----------------------------|---------------|--------------|---------------|-----------|------|-----|-----|-----|-----|-------|------------|-----|-----|-------|-------------|
| Папряжение | мощность<br>двигателя (кВт) | Режим HD      | Режим MD     | Режим LD      | дросселя  | Рис. | W   | W1  | D   | D1  | D2    | G          | Н   | H1  | J     | вес<br>[кг] |
|            | 0.2                         |               |              |               | DCR2-0.2  |      | 66  | 56  | 90  | 72  | 5     | M4(5.2×8)  | 94  | _   | M4    | 0.8         |
|            | 0.4                         |               |              |               | DCR2-0.4  |      | 66  | 56  | 90  | 72  | 15    | M4(5.2×8)  | 94  | _   | M4    | 1.0         |
|            | 0.75                        | FRN0.75VG1S-2 | _            | _             | DCR2-0.75 |      | 66  | 56  | 90  | 72  | 20    | M4(5.2×8)  | 94  | _   | M4    | 1.4         |
|            | 1.5                         | FRN1.5VG1S-2  | _            | _             | DCR2-1.5  | 1    | 66  | 56  | 90  | 72  | 20    | M4(5.2×8)  | 94  | _   | M4    | 1.6         |
|            | 2.2                         | FRN2.2VG1S-2  | _            | _             | DCR2-2.2  |      | 86  | 71  | 100 | 80  | 10    | M5(6×9)    | 110 | _   | M4    | 1.8         |
|            | 3.7                         | FRN3.7VG1S-2  | _            | _             | DCR2-3.7  |      | 86  | 71  | 100 | 80  | 20    | M5(6×9)    | 110 | _   | M4    | 2.6         |
|            | 5.5                         | FRN5.5VG1S-2  | _            | _             | DCR2-5.5  | Α    | 111 | 95  | 100 | 80  | 20    | M6(7×11)   | 130 | _   | M5    | 3.6         |
|            | 7.5                         | FRN7.5VG1S-2  | _            | _             | DCR2-7.5  | 1    | 111 | 95  | 100 | 80  | 23    | M6(7×11)   | 130 | _   | M5    | 3.8         |
|            | 11                          | FRN11VG1S-2   | _            | _             | DCR2-11   |      | 111 | 95  | 100 | 80  | 24    | M6(7×11)   | 137 | _   | M6    | 4.3         |
|            | 15                          | FRN15VG1S-2   | _            | _             | DCR2-15   | 1    | 146 | 124 | 120 | 96  | 15    | M6(7×11)   | 180 | _   | M8    | 5.9         |
| 3-фазное   | 18.5                        | FRN18.5VG1S-2 | _            | _             | DCR2-18.5 | 1    | 146 | 124 | 120 | 96  | 25    | M6(7×11)   | 180 | _   | M8    | 7.4         |
| 200 B      | 22                          | FRN22VG1S-2   | _            | _             | DCR2-22A  |      | 146 | 124 | 120 | 96  | 25    | M6(7×11)   | 180 | _   | M8    | 7.5         |
| 2002       | 30                          | FRN30VG1S-2   | _            | _             | DCR2-30B  |      | 152 | 90  | 156 | 116 | 115   | M6(Φ8)     | 130 | 190 | M10   | 12          |
|            |                             |               | _            |               | DCR2-37B  | В    | 171 | 110 | 151 | 110 | 115   | M6(Φ8)     | 150 | 200 | M10   | 14          |
|            | 37                          | FRN37VG1S-2   | _            | FRN30VG1S-2   | DCR2-37C  | С    | 210 | 185 | 101 | 81  | 125   | M6(7×13)   | 125 | _   | M10   | 7.4         |
|            |                             |               | _            |               | DCR2-45B  | В    | 171 | 110 | 166 | 125 | 120   | М6(Ф8)     | 150 | 200 | M10   | 16          |
|            | 45                          | FRN45VG1S-2□  | _            | FRN37VG1S-2   | DCR2-45C  | C    | 210 | 185 | 106 | 86  | 135   | M6(7×13)   | 125 | -   | M12   | 8.4         |
|            |                             |               | _            |               | DCR2-55B  | D    | 190 | 160 | 131 | 90  | 100   | M6(Φ8)     | 210 | 250 | M12   | 16          |
|            | 55                          | FRN55VG1S-2□  | _            | FRN45VG1S-2   | DCR2-55C  | С    | 255 | 225 | 96  | 76  | 140   | M6(7×13)   | 145 | _   | M12   | 11          |
|            | 75                          | FRN75VG1S-2   | _            | FRN55VG1S-2   | DCR2-75C  |      | 255 | 225 | 106 | 86  | 145   | M6(7×13)   | 145 | _   | M12   | 12          |
|            | 90                          | FRN90VG1S-2   | _            | FRN75VG1S-2   | DCR2-90C  | С    | 255 | 225 | 116 | 96  | 155   | M6(7×13)   | 145 | _   | M12   | 14          |
|            | 110                         | -             | _            | FRN90VG1S-2   | DCR2-110C | 1    | 300 | 265 | 116 | 90  | 185   | M8(10×18)  | 160 | _   | M12   | 17          |
|            | 3.7                         | FRN3.7VG1S-4  | _            | -             | DCR4-3.7  |      | 86  | 71  | 100 | 80  | 20    | M5(6×9)    | 110 | _   | M4    | 2.6         |
|            | 5.5                         | FRN5.5VG1S-4  | _            | _             | DCR4-5.5  |      | 86  | 71  | 100 | 80  | 20    | M5(6×9)    | 110 | _   | M4    | 2.6         |
|            | 7.5                         | FRN7.5VG1S-4  | _            | _             | DCR4-7.5  |      | 111 | 95  | 100 | 80  | 24    | M6(7×11)   | 130 | _   | M5    | 4.2         |
|            | 11                          | FRN11VG1S-4   | _            | -             | DCR4-11   | Α    | 111 | 95  | 100 | 80  | 24    | M6(7×11)   | 130 | _   | M5    | 4.3         |
|            | 15                          | FRN15VG1S-4   | _            | -             | DCR4-15   |      | 146 | 124 | 120 | 96  | 15    | M6(7×11)   | 168 | _   | M5    | 5.9         |
|            | 18.5                        | FRN18.5VG1S-4 | _            | _             | DCR4-18.5 |      | 146 | 124 | 120 | 96  | 25    | M6(7×11)   | 171 | _   | M6    | 7.2         |
|            | 22                          | FRN22VG1S-4   | -            | -             | DCR4-22A  | 1    | 146 | 124 | 120 | 96  | 25    | M6(7×11)   | 171 | _   | M6    | 7.2         |
|            | 30                          | FRN30VG1S-4   | _            | -             | DCR4-30B  | В    | 152 | 90  | 157 | 115 | 100   | M6(Φ8)     | 130 | 190 | M8    | 13          |
|            | 07                          | ED110711010 1 | _            | ED1100110101  | DCR4-37B  | В    | 171 | 110 | 150 | 110 | 100   | M6(Φ8)     | 150 | 200 | M8    | 15          |
|            | 37                          | FRN37VG1S-4□  | _            | FRN30VG1S-4□  | DCR4-37C  | С    | 210 | 185 | 101 | 81  | 105   | M6(7×13)   | 125 | -   | M8    | 7.4         |
|            | 45                          | ED1/15/1040 4 | -            | EDMOTMO40 4   | DCR4-45B  | В    | 171 | 110 | 165 | 125 | 110   | M6(Φ8)     | 150 | 210 | M8    | 18          |
|            | 45                          | FRN45VG1S-4□  | _            | FRN37VG1S-4□  | DCR4-45C  | С    | 210 | 185 | 106 | 86  | 120   | M6(7×13)   | 125 | -   | M8    | 8.4         |
|            | 55                          | EDVICE/1010 1 | _            | EDNI45//040 4 | DCR4-55B  | В    | 171 | 110 | 170 | 130 | 110   | M6(Φ8)     | 150 | 210 | M8    | 20          |
|            |                             | FRN55VG1S-4   | _            | FRN45VG1S-4   | DCR4-55C  | С    | 255 | 225 | 96  | 76  | 120   | M6(7×13)   | 145 | _   | M10   | 11          |
| 3-фазное   | 75                          | FRN75VG1S-4   | -            | FRN55VG1S-4   | DCR4-75C  |      | 255 | 225 | 106 | 86  | 125   | M6(7×13)   | 145 | _   | M10   | 13          |
| 400 B      | 90                          | FRN90VG1S-4   | _            | FRN75VG1S-4   | DCR4-90C  |      | 255 | 225 | 116 | 96  | 140   | M6(7×13)   | 145 | _   | M12   | 15          |
|            | 110                         | FRN110VG1S-4  | FRN90VG1S-4  | FRN90VG1S-4   | DCR4-110C |      | 300 | 265 | 116 | 90  | 175   | M8(10×18)  | 155 | _   | M12   | 19          |
|            | 132                         | FRN132VG1S-4  | FRN110VG1S-4 | FRN110VG1S-4  | DCR4-132C |      | 300 | 265 | 126 | 100 | 180   | M8(10×18)  | 160 | _   | M12   | 22          |
|            | 160                         | FRN160VG1S-4  | FRN132VG1S-4 | FRN132VG1S-4  | DCR4-160C | С    | 350 | 310 | 131 | 103 | 180   | M10(12×22) | 190 | -   | M12   | 26          |
|            | 200                         | FRN200VG1S-4  | FRN160VG1S-4 | FRN160VG1S-4  | DCR4-200C |      | 350 | 310 | 141 | 113 | 185   | M10(12×22) | 190 | -   | M12   | 30          |
|            | 220                         | FRN220VG1S-4  | FRN200VG1S-4 | FRN200VG1S-4  | DCR4-220C |      | 350 | 310 | 146 | 118 | 200   | M10(12×22) | 190 | _   | M12   | 33          |
|            | 250                         | -             | FRN220VG1S-4 | -             | DCR4-250C |      | 350 | 310 | 161 | 133 | 210   | M10(12×22) | 190 | -   | M12   | 35          |
|            | 280                         | FRN280VG1S-4  | _            | FRN220VG1S-4  | DCR4-280C |      | 350 | 310 | 161 | 133 | 210   | M10(12×22) | 190 | _   | M16   | 37          |
|            | 315                         | FRN315VG1S-4□ | FRN280VG1S-4 | _             | DCR4-315C |      | 400 | 345 | 146 | 118 | 200   | M10(12×22) | 225 | -   | M16   | 40          |
|            | 355                         | FRN355VG1S-4  | FRN315VG1S-4 | FRN280VG1S-4  | DCR4-355C |      | 400 | 345 | 156 | 128 | 200   | M10(12×22) | 225 | _   | 4×M12 | 49          |
|            | 400                         | FRN400VG1S-4  | FRN355VG1S-4 | FRN315VG1S-4  | DCR4-400C | Е    | 445 | 385 | 145 | 117 | 213   | M10(12×22) | 245 | -   | 4×M12 | 52          |
|            | 450                         | -             | FRN400VG1S-4 | FRN355VG1S-4  | DCR4-450C |      | 440 | 385 | 150 | 122 | 215   | M10(12×22) | 245 | _   | 4×M12 | 62          |
|            | 500                         | FRN500VG1S-4  | -            | FRN400VG1S-4  | DCR4-500C |      | 445 | 390 | 165 | 137 | 220   | M10(12×22) | 245 | _   | 4×M12 | 72          |
|            | 630                         | FRN630VG1S-4  | _            | FRN500VG1S-4  | DCR4-630C | F    | 285 | 145 | 203 | 170 | 195   | M12(14×20) | 480 | _   | 2×M12 | 75          |
|            | 710                         | -             | _            | FRN630VG1S-4  | DCR4-710C | '    | 340 | 160 | 295 | 255 | 225   | M12(Φ15)   | 480 | _   | 4×M12 | 95          |

| Тип дросселя звена постоянного тока                                | Примечания                                                        |
|--------------------------------------------------------------------|-------------------------------------------------------------------|
| Входной коэффициент мощности DCR2/4-   /   A/   В: прибл. 90 - 95% | Символ в конце кода типа изменяется<br>в зависимости от мощности. |
| Входной коэффициент мощности DCR2/4- 🔲 С: прибл. 86 - 90%          | Может быть выбран для ПЧ мощностью 37 кВт и выше.                 |

<sup>•</sup> FRN VGIS- J (для Японии)
Доссель звена постоянного тока (DCR) в толстом корпусе является стандартной принадлежностью (поставляется в дополнение к преобразователю).
Дроссель звена постоянного тока (DCR) предназначен для преобразователей мод. FRNS5VGIS-2 и FRNS5VGIS-4 (режим LD), но не предусмотрен в стандартной комплектации этих же устройств для режима HD.
• FRN VGIS- ⊆ для Великобритании). — С (для Китая)
Дроссель звена постоянного тока (DCR) является опциональной принадлежностью. (Для ПЧ любой мощности)
ТЧ с двигателем мощностью 75 кВт и выше стандартно комплектуются дросселем DCR2/4— В.
Для отдельного заказа изделия следует обратиться в компанию Fuji.

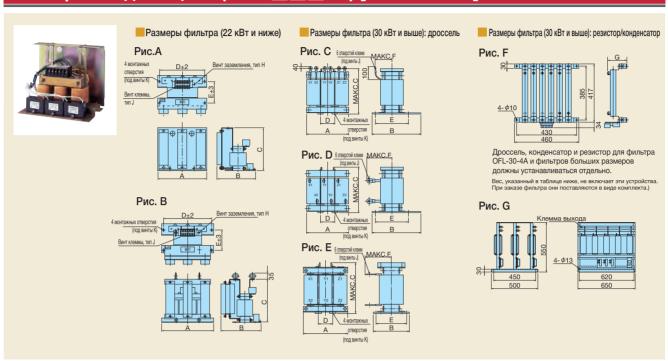

# Входной дроссель переменного тока (ACR □-□□□)



|            | Тип        |      |     |     |     | Разме | ры [мм] |            |     |       | Прибл.   |
|------------|------------|------|-----|-----|-----|-------|---------|------------|-----|-------|----------|
| Напряжение | дросселя   | Рис. | W   | W1  | D   | D1    | D2      | G          | Н   | J     | вес [кг] |
|            | ACR2-0.75A |      | 120 | 40  | 100 | 75    | 20      | M5(6×10)   | 115 | M4    | 1.9      |
|            | ACR2-1.5A  |      | 120 | 40  | 100 | 75    | 20      | M5(6×10)   | 115 | M4    | 2.0      |
|            | ACR2-2.2A  | Α    | 120 | 40  | 100 | 75    | 20      | M5(6×10)   | 115 | M4    | 2.0      |
|            | ACR2-3.7A  |      | 125 | 40  | 100 | 75    | 25      | M5(6×10)   | 125 | M4    | 2.4      |
|            | ACR2-5.5A  |      | 125 | 40  | 115 | 90    | 25      | M5(6×10)   | 125 | M4    | 3.1      |
|            | ACR2-7.5A  |      | 125 | 40  | 115 | 90    | 106     | M5(6×10)   | 95  | M5    | 3.1      |
| 3-фазное   | ACR2-11A   |      | 125 | 40  | 125 | 100   | 106     | M5(6×10)   | 95  | M6    | 3.7      |
| 200 B      | ACR2-15A   | В    | 180 | 60  | 110 | 85    | 106     | M6(7×11)   | 115 | M6    | 4.8      |
| 200 D      | ACR2-18.5A |      | 180 | 60  | 110 | 85    | 109     | M6(7×11)   | 115 | M6    | 5.1      |
|            | ACR2-22A   | 1    | 180 | 60  | 110 | 85    | 109     | M6(7×11)   | 115 | M6    | 5.1      |
|            | ACR2-37    |      | 190 | 60  | 120 | 90    | 172     | M6(7×11)   | 190 | M8    | 11       |
|            | ACR2-55    |      | 190 | 60  | 120 | 90    | 200     | M6(7×11)   | 190 | M12   | 13       |
|            | ACR2-75    | С    | 250 | 100 | 120 | 90    | 200     | M8(9×14)   | 250 | M12   | 25       |
|            | ACR2-90    |      | 285 | 190 | 158 | 120   | 190     | M10(12×20) | 210 | M12   | 26       |
|            | ACR2-110   |      | 280 | 150 | 138 | 110   | 200     | M8(10×20)  | 270 | M12   | 30       |
|            | ACR4-3.7A  |      | 125 | 40  | 100 | 75    | 106     | M5(6×10)   | 95  | M4    | 2.4      |
|            | ACR4-5.5A  |      | 125 | 40  | 115 | 90    | 106     | M5(6×10)   | 95  | M5    | 3.1      |
|            | ACR4-7.5A  |      | 125 | 40  | 115 | 90    | 106     | M5(6×10)   | 95  | M5    | 3.7      |
|            | ACR4-11A   | В    | 180 | 60  | 110 | 85    | 106     | M6(7×11)   | 115 | M6    | 4.3      |
|            | ACR4-15A   |      | 180 | 60  | 110 | 85    | 106     | M6(7×11)   | 137 | M6    | 5.4      |
|            | ACR4-18.5A |      | 180 | 60  | 110 | 85    | 106     | M6(7×11)   | 137 | M6    | 5.7      |
|            | ACR4-22A   | 1    | 180 | 60  | 110 | 85    | 106     | M6(7×11)   | 137 | M6    | 5.9      |
|            | ACR4-37    |      | 190 | 60  | 120 | 90    | 172     | M6(7×11)   | 190 | M8    | 12       |
| 3-фазное   | ACR4-55    |      | 190 | 60  | 120 | 90    | 200     | M6(7×11)   | 190 | M10   | 14       |
| 400 B      | ACR4-75    |      | 190 | 60  | 126 | 90    | 157     | M6(7×10)   | 190 | M10   | 16       |
|            | ACR4-110   |      | 250 | 100 | 136 | 105   | 202     | M8(9.5×18) | 245 | M12   | 24       |
|            | ACR4-132   | С    | 250 | 100 | 146 | 115   | 207     | M8(10×16)  | 250 | M12   | 32       |
|            | ACR4-220   |      | 320 | 120 | 150 | 110   | 240     | M10(12×20) | 300 | M12   | 40       |
|            | ACR4-280   |      | 380 | 130 | 150 | 110   | 260     | M10(12×20) | 300 | M12   | 52       |
|            | ACR4-355   |      | 380 | 130 | 150 | 110   | 260     | M10(12×20) | 300 | M12   | 52       |
|            | ACR4-450   | D    | 460 | 155 | 290 | 230   | 200     | M12(□15)   | 490 | 4×M12 | 95       |
|            | ACR4-530   | E    | 480 | 155 | 420 | 370   | _       | M12(15×25) | 380 | 4×M12 | 100      |
|            | ACR4-630   |      | 510 | 170 | 420 | 370   | _       | M12(15×25) | 390 | 4×M12 | 110      |

Примечание) Дроссель используется, только если требуется чрезвычайно стабильное электропитание, т.е. работа с подключением шины постоянного тока (соединение PN). Следует использовать дроссель звена постоянного тока (DCR) в качестве меры против гармоник.

# Нуль-фазовый дроссель для снижения излучаемых помех (ACL-40B, ACL-74B, F200160)




#### ■ Таблица размеров провода

| Тип ферритового кольца для снижения радиочастотных помех | Кол-во | Кол-во витков | Рекомендуемый размер провода [мм²] Примечание) |
|----------------------------------------------------------|--------|---------------|------------------------------------------------|
|                                                          | 1      | 4             | 2.0, 3.5, 5.5                                  |
| ACL-40B                                                  | 2      | 2             | 8, 14                                          |
|                                                          | 4      | 1             | 22, 38, 5.5×2, 8×2, 14×2, 22×2                 |
|                                                          | 1      | 4             | 8, 14                                          |
| ACL-74B                                                  | 2      | 2             | 22, 38, 60, 5.5×2, 8×2, 14×2, 22×2             |
|                                                          | 4      | 1             | 100, 150, 200, 250, 38×2, 60×2, 100×2          |
| F200160                                                  |        |               | 150×2,200×2,250×2,325×2                        |
| F200160PB                                                | 1      | 4             | 150×3,200×3,250×3,325×3                        |
| F200100FB                                                |        |               | 250×4,325×4                                    |

ПРИМЕЧАНИЕ) Использовать кабель на 600 В с нагревостойкой виниловой изоляцией (HIV) (Допустимая температура 75°C).

# Фильтр выходной цепи (OFL- \_\_ \_\_ 4A) [Класс 400 В]



|            | Номинальная           |               |              | Тип ПЧ       |               |               | Тип        |     |     |     |     | Pa  | змер | оы [м | м]  |             |                    |           | Прибл. |
|------------|-----------------------|---------------|--------------|--------------|---------------|---------------|------------|-----|-----|-----|-----|-----|------|-------|-----|-------------|--------------------|-----------|--------|
| Напряжение | мощность<br>двигателя |               | Моноблочный  | i            | Моду          | льный         |            | Рис | _   | В   | С   | D   | Е    | F     | G   | Винт        |                    | Крепёжный | вес    |
|            | (кВт)                 | Режим HD      | Режим MD     | Режим LD     | Режим MD      | Режим LD      | фильтра    |     | Α   | P   |     | ט   | _    | Г     | G   | 383EWITEHMR | клеммы<br><b>J</b> | Винт      | [KT]   |
|            | 3.7                   | FRN3.7VG1S-4  | -            | -            | -             | _             | OFL-3.7-4A |     | 220 | 225 | 220 | 200 | 115  | -     | _   | M4          | M4                 | M5        | 14     |
|            | 5.5                   | FRN5.5VG1S-4  | -            | -            | -             | _             | 051 75 44  | Α   | 000 | 290 | 000 | 000 | 100  |       |     | M5          | 145                | MC        | 00     |
|            | 7.5                   | FRN7.5VG1S-4  | -            | -            | -             | _             | OFL-7.5-4A |     | 290 | 290 | 230 | 260 | 160  | -     | _   | CIVI        | M5                 | M6        | 22     |
|            | 11                    | FRN11VG1S-4   | -            | -            | -             | -             | OFI 15 44  |     | 220 | 275 | 210 | 200 | 1.45 |       |     | M6          | MC                 | MO        | O.E.   |
|            | 15                    | FRN15VG1S-4   | -            | -            | _             | -             | OFL-15-4A  | В   | 330 | 2/0 | 310 | 300 | 145  | -     | _   | IVIO        | M6                 | M8        | 35     |
|            | 18.5                  | FRN18.5VG1S-4 | -            | -            | -             | -             | OFL-22-4A  | ] B | 220 | 300 | 220 | 200 | 170  |       |     | M6          | MC                 | M8        | 45     |
|            | 22                    | FRN22VG1S-4   |              | -            | -             | -             | UFL-22-4A  |     | 330 | 300 | 330 | 300 | 170  | -     | _   | IVIO        | M6                 | IVIO      | 40     |
|            | 30                    | FRN30VG1S-4   | -            | -            | FRN30SVG1S-4  | -             | OFL-30-4A  | C/F | 210 | 175 | 210 | 70  | 140  | 90    | 160 | _           | M5                 | M6        | 12     |
|            | 37                    | FRN37VG1S-4   | _            | FRN30VG1S-4  | FRN37SVG1S-4  | FRN30SVG1S-4  | OFL-37-4A  | U/F | 220 | 190 | 220 | 75  | 150  | 95    | 160 | _           | M5                 | M6        | 15     |
|            | 45                    | FRN45VG1S-4   | -            | FRN37VG1S-4  | FRN45SVG1S-4  | FRN37SVG1S-4  | OFL-45-4A  |     | 220 | 195 | 265 | 70  | 155  | 140   | 160 | _           | M6                 | M8        | 17     |
|            | 55                    | FRN55VG1S-4   | -            | FRN45VG1S-4  | FRN55SVG1S-4  | FRN45SVG1S-4  | OFL-55-4A  |     | 260 | 200 | 275 | 85  | 160  | 150   | 160 | _           | M6                 | M8        | 22     |
|            | 75                    | FRN75VG1S-4   | -            | FRN55VG1S-4  | FRN75SVG1S-4  | FRN55SVG1S-4  | OFL-75-4A  |     | 260 | 210 | 290 | 85  | 170  | 150   | 233 | -           | M8                 | M10       | 25     |
| 0 400000   | 90                    | FRN90VG1S-4   | _            | FRN75VG1S-4  | FRN90SVG1S-4  | FRN75SVG1S-4  | OFL-90-4A  |     | 260 | 210 | 290 | 85  | 170  | 155   | 233 | -           | M8                 | M10       | 28     |
| 3-фазное   | 110                   | FRN110VG1S-4  | FRN90VG1S-4  | FRN90VG1S-4  | FRN110SVG1S-4 | FRN90SVG1S-4  | OFL-110-4A |     | 300 | 230 | 330 | 100 | 190  | 170   | 233 | _           | M8                 | M10       | 38     |
| 400 B      | 132                   | FRN132VG1S-4  | FRN110VG1S-4 | FRN110VG1S-4 | FRN132SVG1S-4 | FRN110SVG1S-4 | OFL-132-4A | D/F | 300 | 240 | 340 | 100 | 200  | 170   | 233 | _           | M10                | M10       | 42     |
|            | 160                   | FRN160VG1S-4  | FRN132VG1S-4 | FRN132VG1S-4 | FRN160SVG1S-4 | FRN132SVG1S-4 | OFL-160-4A |     | 300 | 240 | 340 | 100 | 200  | 180   | 233 | _           | M10                | M10       | 48     |
|            | 200                   | FRN200VG1S-4  | FRN160VG1S-4 | FRN160VG1S-4 | FRN200SVG1S-4 | FRN160SVG1S-4 | OFL-200-4A |     | 320 | 270 | 350 | 105 | 220  | 190   | 333 | _           | M10                | M12       | 60     |
|            | 220                   | FRN220VG1S-4  | FRN200VG1S-4 | FRN200VG1S-4 | FRN220SVG1S-4 | FRN200SVG1S-4 | OFL-220-4A | 1   | 340 | 300 | 390 | 115 | 250  | 190   | 333 | -           | M10                | M12       | 70     |
|            | 250                   | _             | FRN220VG1S-4 | _            | FRN250SVG1S-4 | FRN220SVG1S-4 | OEI 000 44 |     | 050 | 300 | 400 | 445 | 050  | 000   | 000 |             | M10                | M12       | 70     |
|            | 280                   | FRN280VG1S-4  | -            | FRN220VG1S-4 | FRN280SVG1S-4 | FRN250SVG1S-4 | OFL-280-4A |     | 350 | 300 | 430 | 115 | 250  | 200   | 333 | _           | IVITU              | IVIIZ     | 78     |
|            | 315                   | FRN315VG1S-4  | FRN280VG1S-4 | _            | FRN315SVG1S-4 | FRN280SVG1S-4 | OFL-315-4A |     | 440 | 275 | 450 | 150 | 230  | 170   | -   | _           | M12                | M12       | 90     |
|            | 355                   | FRN355VG1S-4  | FRN315VG1S-4 | FRN280VG1S-4 | -             | FRN315SVG1S-4 | OFL-355-4A |     | 440 | 290 | 480 | 150 | 245  | 175   | _   | _           | M12                | M12       | 100    |
|            | 400                   | FRN400VG1S-4  | FRN355VG1S-4 | FRN315VG1S-4 | -             | _             | OFL-400-4A |     | 440 | 295 | 510 | 150 | 240  | 175   | _   | _           | M12                | M12       | 110    |
|            | 450                   | -             | FRN400VG1S-4 | FRN355VG1S-4 | -             | -             | OFL-450-4A |     | 440 | 325 | 470 | 150 | 270  | 195   | _   | _           | M12                | M12       | 125    |
|            | 500                   | FRN500VG1S-4  | -            | FRN400VG1S-4 | -             | _             | OFL-500-4A | E/G | 440 | 335 | 500 | 150 | 280  | 210   | -   | -           | M12                | M12       | 145    |
|            | 630                   | FRN630VG1S-4  | -            | FRN500VG1S-4 | FRN630BVG1S-4 | _             | OFL-630-4A |     | 480 | 355 | 560 | 150 | 280  | 245   | -   | _           | M12                | M12       | 170    |
|            | 710                   | -             | -            | FRN630VG1S-4 | FRN710BVG1S-4 | FRN630BVG1S-4 | -          |     |     |     |     |     |      |       |     |             |                    |           |        |
|            | 800                   | -             | -            | -            | FRN800BVG1S-4 | FRN710BVG1S-4 | -          |     | -   | -   | -   | _   | -    | -     | -   | _           | -                  | -         | -      |
|            | 1000                  | -             | -            | -            | -             | FRN800BVG1S-4 | _          |     |     |     |     |     |      |       |     |             |                    |           |        |

<sup>•</sup> Фильтр OFL-\*\*\* -4A не ограничивает несущую частоту.

# ШИМ-рекуператоры с функцией возврата электроэнергии в сеть (моноблочные и модульные)

### Особенности

### Применение руководства по снижению уровня гармоник

Регулирование методом широтно-импульсной модуляции способствует значительному уменьшению гармонических токов благодаря синусоиде тока на стороне электропитания. В соответствии с «Руководством по снижению уровня гармоник для потребителей высокого или особо высокого напряже-

В соответствии с «Руководством по снижению уровня гармоник для потребителей высокого или особо высокого напряжения», выпущенным Министерством экономики, торговли и промышленности Японии, коэффициент рекуператора (Кі) при использовании в комбинации с ПЧ может быть установлен на "0", что соответствует отсутствию гармоник.

■ Возможность уменьшения требуемой мощности источника питания Управление коэффициентом мощности позволяет согласовать фазный ток и фазное напряжение электроснабжения. Таким образом, оборудование может работать с коэффициентом мощности, близким к единице.

Это дает возможность снизить мощность силового трансформатора и уменьшить габариты других устройств по сравнению с применением ПЧ без рекуператора.

#### Более высокая тормозная способность

Энергия, рекуперируемая при частом ускорении/замедлении и при операциях подъема, полностью возвращается в электросеть. Таким образом, рекуперативный режим работы позволяет экономить энергию. Поскольку в режиме рекуперации ток имеет синусоидальную форму, в системе электропитания не возникает никаких нарушений.

Непрерывная рекуперация, расчетная 100%

Рекуперация в течение 1 мин., расчетная 150%, режим МD (пост. момент)

120%, режим LD (перем. момент)

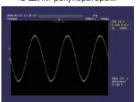
\*Модульный тип: 110%

#### Расширенные функции защиты и техобслуживания

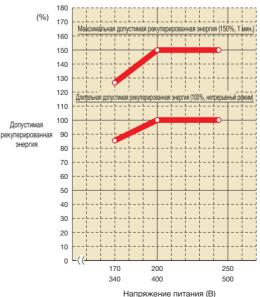
Причины отказов легко анализируются с помощью функции отслеживания (журнал сообщений о неисправностях) (опция).

- Последние 10 аварийных сигналов могут быть отображены на светодиодном дисплее пульта управления. Это позволяет проанализировать причины отказов и принять контрмеры.
- ② При кратковременном сбое питания рекуператор блокирует выходные ключи, чтобы обеспечить бесперебойную работу после восстановления электроснабжения.
- З До отключения рекуператор способен подать предупреждающий сигнал (перегрузка, перегрев радиатора, окончание срока службы).

### ■ Расширение сетевой поддержки


• Рекуператор можно соединить с программируемым логическим контроллером MICREX-SX и платой связи CC-Link (при помощи соответствующих опций). Стандартная комплектация рекуператоров (моноблочного типа) предусматривает наличие интерфейса RS-485.




#### Сравнение формы входного тока

<Без ШИМ-рекуператора> <С ШИМ-рекуператором>





# Допустимые характеристики моноблочных рекуператоров RHC



Pyko

# Стандартные технические характеристики: режим MD (СТ) для средних перегрузок, режим LD (VT) для легких перегрузок (моноблочные и модульные)

### Моноблочный, 3-фазное напряжение 200 В

|                                  | Па        | раметр                                |                                                                      |                                                                                                        |             |             | Стандар    | тные хара  | ктеристик  | и          |          |            |          |  |  |
|----------------------------------|-----------|---------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|-------------|-------------|------------|------------|------------|------------|----------|------------|----------|--|--|
| Тип RI                           | HC 🗆      | □□-2C                                 | 7.5                                                                  | 11                                                                                                     | 15          | 18.5        | 22         | 30         | 37         | 45         | 55       | 75         | 90       |  |  |
|                                  | Мощно     | сть ПЧ [кВт]                          | 7.5                                                                  | 11                                                                                                     | 15          | 18.5        | 22         | 30         | 37         | 45         | 55       | 75         | 90       |  |  |
|                                  |           | Номинальная длительная мощность [кВт] | 8.8                                                                  | 13                                                                                                     | 18          | 22          | 26         | 36         | 44         | 53         | 65       | 88         | 103      |  |  |
| Характеристики<br>при постоянном | Выход     | Номинальная перегрузочная способность | 150% но                                                              | 150% номинального тока в теч. 1 мин.                                                                   |             |             |            |            |            |            |          |            |          |  |  |
| моменте                          |           | Напряжение                            | 320 – 35                                                             | 5 В пост. т                                                                                            | ока (зависі | ит от входн | юго напря  | жения пита | ания) (*3) |            |          |            |          |  |  |
| (CT)                             | Требуемая | мощность источника питания [кВА]      | 9.5                                                                  | 9.5   14   19   24   29   38   47   57   70   93   111                                                 |             |             |            |            |            |            |          |            |          |  |  |
|                                  | Несу      | цая частота (*5)                      | 15 кГц (с                                                            | тандарт)                                                                                               |             |             |            |            |            |            |          | 10 кГц (с  | тандарт) |  |  |
|                                  | Мощно     | сть ПЧ [кВт]                          | 11                                                                   | 15                                                                                                     | 18.5        | 22          | 30         | 37         | 45         | 55         | 75       | 90         | 110      |  |  |
|                                  |           | Номинальная длительная мощность [кВт] | 13                                                                   | 18                                                                                                     | 22          | 26          | 36         | 44         | 53         | 65         | 88       | 103        | 126      |  |  |
| Характеристики<br>при переменном | Выход     | Номинальная перегрузочная способность | 120% но                                                              | минальног                                                                                              | о тока в те | еч. 1 мин.  |            |            |            |            |          |            |          |  |  |
| МОМЕНТЕ                          |           | Напряжение                            | 320 – 35                                                             | 5 В пост. т                                                                                            | ока (зависі | ит от входн | юго напря  | жения пита | ания) (*3) |            |          |            |          |  |  |
| (VT)                             | Требуемая | мощность источника питания [кВА]      | 14                                                                   | 14         19         24         29         38         47         57         70         93         111 |             |             |            |            |            |            |          | 111        | 136      |  |  |
|                                  | Несу      | цая частота (*5)                      | 10 кГц (с                                                            | тандарт)                                                                                               |             |             |            |            |            |            |          | 6 кГц (ста | андарт)  |  |  |
| Напряжение                       | Число ф   | аз, напряжение, частота               | 3 фазы, 200 – 220 В/50 Гц, 220 – 230 В/50 Гц (*1), 200 – 230 В/60 Гц |                                                                                                        |             |             |            |            |            |            |          |            |          |  |  |
| питания                          | Допустимы | ые отклонения напряжения/частоты      | Напряже                                                              | ение: от +1                                                                                            | 0 до -15 %  | , частота:  | ± 5%, несь | имметрия н | апряжени   | й: не боле | 2 % (*4) |            |          |  |  |

### ■ Моноблочный, 3-фазное напряжение 400 В

|                                  | Пар       | раметр                                |       |        |        |        |        |        |         |        | Ста     | андар | тные   | хара   | ктері   | истик | и      |      |       |     |     |     |          |          |
|----------------------------------|-----------|---------------------------------------|-------|--------|--------|--------|--------|--------|---------|--------|---------|-------|--------|--------|---------|-------|--------|------|-------|-----|-----|-----|----------|----------|
| Тип RI                           | HC 🗆      | ]4C                                   | 7.5   | 11     | 15     | 18.5   | 22     | 30     | 37      | 45     | 55      | 75    | 90     | 110    | 132     | 160   | 200    | 220  | 280   | 315 | 355 | 400 | 500      | 630      |
|                                  | Мощно     | сть ПЧ [кВт]                          | 7.5   | 11     | 15     | 18.5   | 22     | 30     | 37      | 45     | 55      | 75    | 90     | 110    | 132     | 160   | 200    | 220  | 280   | 315 | 355 | 400 | 500      | 630      |
| .,                               |           | Номинальная длительная мощность [кВт] | 8.8   | 13     | 18     | 22     | 26     | 36     | 44      | 53     | 65      | 88    | 103    | 126    | 150     | 182   | 227    | 247  | 314   | 353 | 400 | 448 | 560      | 705      |
| Характеристики<br>при постоянном | Выход     | Номинальная перегрузочная способность | 150%  | % ном  | иинал  | ьного  | тока   | в теч  | і. 1 мі | ⁄н.    |         |       |        |        |         |       |        |      |       |     |     |     |          |          |
| моменте                          |           | Напряжение                            | 640   | - 710  | В пос  | т. тоғ | ка (за | висит  | от в    | кодно  | го на   | пряж  | сения  | питан  | ния) (* | 3)    |        |      |       |     |     |     |          |          |
| (CT)                             | Требуемая | мощность источника питания [кВА]      | 9.5   | 14     | 19     | 24     | 29     | 38     | 47      | 57     | 70      | 93    | 111    | 136    | 161     | 196   | 244    | 267  | 341   | 383 | 433 | 488 | 610      | 762      |
|                                  | Hecyu     | цая частота (*5)                      | 15 ĸl | Гц (ст | андар  | от)    |        |        |         |        |         | 10 ĸ  | Гц (ст | анда   | эт)     |       |        |      |       |     |     |     | 6 кГц (с | тандарт) |
|                                  | Мощно     | сть ПЧ [кВт]                          | 11    | 15     | 18.5   | 22     | 30     | 37     | 45      | 55     | 75      | 90    | 110    | 132    | 160     | 200   | 220    | 280  | 315   | 355 | 400 | 500 | ı        | -        |
| .,                               |           | Номинальная длительная мощность [кВт] | 13    | 18     | 22     | 26     | 36     | 44     | 53      | 65     | 88      | 103   | 126    | 150    | 182     | 227   | 247    | 314  | 353   | 400 | 448 | 560 | ı        | -        |
| Характеристики<br>при переменном | Выход     | Номинальная перегрузочная способность | 1209  | % ном  | иинал  | ьного  | тока   | в теч  | і. 1 мі | ⁄н.    |         |       |        |        |         |       |        |      |       |     |     |     |          |          |
| моменте                          |           | Напряжение                            | 640   | - 710  | В пос  | т. тоғ | ка (за | висит  | от в    | кодно  | го на   | пряж  | ения   | питан  | ния) (* | 3)    |        |      |       |     |     |     |          |          |
| (VT)                             | Требуемая | мощность источника питания [кВА]      | 14    | 19     | 24     | 29     | 38     | 47     | 57      | 70     | 93      | 111   | 136    | 161    | 196     | 244   | 267    | 341  | 383   | 433 | 488 | 610 | ı        | -        |
|                                  | Несуц     | цая частота (*5)                      | 10 ĸl | Гц (ст | андар  | т)     |        |        |         |        |         | 6 кГ  | ц (ста | ндар   | т)      |       |        |      |       |     |     |     |          |          |
| Напряжение                       | Число фа  | аз, напряжение, частота               | 3 фа  | зы, 3  | 80 – 4 | 140 B  | ′50 Γ⊔ | ι, 380 | - 460   | B/60   | ) Гц (* | 1)    |        |        |         |       |        |      |       |     |     |     |          |          |
| питания                          | Допустимы | е отклонения напряжения/частоты       | Напр  | эже    | ние: о | т +10  | до -1  | 0 %,   | часто   | ота: ± | 5%,     | неси  | иметр  | оия на | апряж   | кений | : не б | олее | 2 % ( | *4) |     |     |          |          |

### ■ Модульный, 3-фазное напряжение 400 В

|                                                                                                                                           | Па                                                                                    | раметр                                |             |                |                | Станда       | ртные харак  | теристики |      |      |      |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|---------------------------------------|-------------|----------------|----------------|--------------|--------------|-----------|------|------|------|--|--|
| Тип RI                                                                                                                                    | HC 🗆                                                                                  | ⊃-4D □                                | 132S        | 160S           | 200S           | 220S         | 280S         | 315S      | 630B | 710B | 800B |  |  |
|                                                                                                                                           | Мощно                                                                                 | сть ПЧ [кВт]                          | 132         | 160            | 200            | 220          | 280          | 315       | 630  | 710  | 800  |  |  |
|                                                                                                                                           |                                                                                       | Номинальная длительная мощность [кВт] | 150         | 182            | 227            | 247          | 314          | 353       | 705  | 795  | 896  |  |  |
| Характеристики                                                                                                                            | еристики Выход Номналька простросных откообность 150% номинального тока в теч. 1 мин. |                                       |             |                |                |              |              |           |      |      |      |  |  |
| моменте                                                                                                                                   | MOHHROITO                                                                             |                                       |             |                |                |              |              |           |      |      |      |  |  |
| (CT)                                                                                                                                      | Требуемая                                                                             | мощность источника питания [кВА]      | 161         | 196            | 244            | 267          | 341          | 383       | 762  | 858  | 967  |  |  |
|                                                                                                                                           | Несуь                                                                                 | цая частота (*5)                      | 5 кГц       |                |                |              |              |           |      |      |      |  |  |
|                                                                                                                                           | Мощно                                                                                 | сть ПЧ [кВт]                          | 160         | 200            | 220            | ı            | 315          | 355       | 710  | 800  | 1000 |  |  |
|                                                                                                                                           |                                                                                       | Номинальная длительная мощность [кВт] | 182         | 227            | 247            | -            | 353          | 400       | 795  | 896  | 1120 |  |  |
| Характеристики                                                                                                                            | Выход                                                                                 | Номинальная перегрузочная способность | 110% номин  | ального тока   | а в теч. 1 мин | l.           |              |           |      |      |      |  |  |
| при переменном<br>моменте                                                                                                                 |                                                                                       | Напряжение                            | 640 - 710 B | пост. тока (за | ависит от вхо  | дного напря  | кения питані | ия) (*3)  |      |      |      |  |  |
| (ГТ)         Требуемая мощность источника питания [кВА]         196         244         267         -         383         433         858 |                                                                                       |                                       |             |                |                |              |              |           | 967  | 1210 |      |  |  |
|                                                                                                                                           | Несуь                                                                                 | цая частота (*5)                      | 5 кГц       |                |                |              |              |           |      |      |      |  |  |
| Напряжение                                                                                                                                | Число ф                                                                               | аз, напряжение, частота               | 3 фазы, 380 | – 440 B/50 Г   | ц, 380 – 460 Е | 3/60 Гц (*2) |              |           |      |      |      |  |  |
| питания                                                                                                                                   | 1 / 1 / /                                                                             |                                       |             |                |                |              |              |           |      |      |      |  |  |

<sup>(\*2)</sup> При напряжении питания 380 – 398 В/50 Гц или 380 – 430 В/60 Гц переключить соединитель внутри рекуператора. Необходимо снизить мощность, если напряжение питания меньше 400 В.

<sup>(\*1)</sup> По запросу можно заказать модель на 220 – 230 В / 50 Гц. (\*2) При напряжении питания 380 – 398 В/50 Гц или 380 – 430 В/60 Гц переключить соединитель внутри рекуператора. Необходимо снизить мощность, если напряжение (2) При напряжении питания 380 – 398 В/50 Г ц или 380 – 430 В/60 Г ц переключить соединитель внутри рекуператора. Неооходимо снизить мощность питания меньше 400 В.

(\*3) Выходное напряжение составляет 320/640, 343/686, 355/710 В пост. тока при напряжении питания, соответственно, 200/400, 220/440 и 230/460 В.

(\*4) Дисбаланс [%] = (Макс. напряжение [В] - Мин. напряжение [В])/Среднее 3-фазное напряжение [В] х 67

(\*5) Если установлена плата ОРС-VG7-SIR, автоматически задается несущая частота 5 кГц (соединение без трансформаторной развязки).

<sup>(\*3)</sup> Выходное напряжение составляет 640, 686 и 710 В пост. тока при напряжении питания, соответственно, 400, 440 и 460 В.

(\*4) Дисбаланс [%] = (Макс. напряжение [В] - Мин. напряжение [В])/Среднее 3-фазное напряжение [В] х 67

(\*5) Если установлена плата OPC-VG7-SIR, автоматически задается несущая частота 2,5 кГц (соединение без трансформаторной развязки).



### ■ Модульный, 3-фазное напряжение 690 В (ожидается поступление)

|                                  | Пар       | раметр                                |                                    |                      | Стандартные         | карактеристики       |        |      |  |  |  |
|----------------------------------|-----------|---------------------------------------|------------------------------------|----------------------|---------------------|----------------------|--------|------|--|--|--|
| Тип RI                           | HC 🗆      | )-69D □                               | 132S                               | 160S                 | 200S                | 250S                 | 280S   | 315S |  |  |  |
|                                  | Мощно     | сть ПЧ [кВт]                          | 132                                | 160                  | 200                 | 250                  | 280    | 315  |  |  |  |
|                                  |           | Номинальная длительная мощность [кВт] | 150                                | 182                  | 227                 | 280                  | 314    | 353  |  |  |  |
| Характеристики                   | Выход     | Номинальная перегрузочная способность | 150% номинально                    | го тока в теч. 1 мин | ١.                  |                      |        |      |  |  |  |
| при постоянном<br>моменте        |           | Напряжение                            | 895 - 1073 В пост.                 | тока (зависит от в   | кодного напряжени   | я питания) (*3)      |        |      |  |  |  |
| (CT)                             | Требуемая | мощность источника питания [кВА]      | 161                                | 196                  | 244                 | 302                  | 341    | 383  |  |  |  |
|                                  | HecyL     | цая частота (*5)                      | 5 кГц                              |                      |                     |                      |        |      |  |  |  |
|                                  | Мощно     | сть ПЧ [кВт]                          | 160                                | 355                  |                     |                      |        |      |  |  |  |
|                                  |           | Номинальная длительная мощность [кВт] | 182 227 247 314 353 400            |                      |                     |                      |        |      |  |  |  |
| Характеристики<br>при переменном | Выход     | Номинальная перегрузочная способность | 110% номинально                    | го тока в теч. 1 мин | ١.                  |                      |        |      |  |  |  |
| МОМЕНТЕ                          |           | Напряжение                            | 895 - 1073 В пост.                 | тока (зависит от в   | кодного напряжени   | я питания) (*3)      |        |      |  |  |  |
| (VT)                             | Требуемая | мощность источника питания [кВА]      | M 196 244 267 341 383 433          |                      |                     |                      |        |      |  |  |  |
|                                  | HecyL     | цая частота (*5)                      | 5 кГц                              |                      |                     |                      |        |      |  |  |  |
| Напряжение                       | Число ф   | аз, напряжение, частота               | 3 фазы, 575 – 690 В, 50/60 Гц (*2) |                      |                     |                      |        |      |  |  |  |
| питания                          | Допустимь | е отклонения напряжения/частоты       | Напряжение: от +10                 | до -10 %, частота: ± | 5%, несимметрия наг | пряжений: не более 2 | % (*4) |      |  |  |  |

Примечание) Характеристики дополнительного входного напряжения питания вентилятора и дополнительного входного напряжения питания цепи управления: однофазное, 575 - 600 В и 660 - 690 В, 50/60 Гц.
(\*2) При напряжении питания 575 - 600 В, 50/60 Гц переключить соединитель внутри рекуператора. Необходимо снизить мощность, если напряжение питания меньше 690 В.

- (\*3) Выходное напряжение составляет 895 и 1073 В пост. тока при напряжении питания, соответственно, 575 и 690 В.

  (\*4) Дисбаланс [%] = (Макс. напряжение [В] Мин. напряжение [В])/Среднее 3-фазное напряжение [В] х 67

  (\*5) Если установлена плата OPC-VG7-SIR, автоматически задается несущая частота 2,5 кГц (соединение без трансформаторной развязки).

### Общие характеристики (моноблочные и модульные)

|            | Парамотр                                             | Характе                                                                                                                                                                                                                                                                                                                                               | ристики                                                                                                                                                                                                              |
|------------|------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|            | Параметр                                             | Моноблочный тип                                                                                                                                                                                                                                                                                                                                       | Модульный тип                                                                                                                                                                                                        |
|            | Способ управления                                    | Постоянный AVR-контроль (автоматическое регулирование напряжения)                                                                                                                                                                                                                                                                                     | ) с использованием вспомогательного контура входного дросселя (ACR).                                                                                                                                                 |
|            | Работа и управление                                  | Выпрямление начинается при подаче напряжения после подключения. Г<br>или команда запуска по линии связи). На этом подготовка к работе заве                                                                                                                                                                                                            |                                                                                                                                                                                                                      |
|            | Сигнал состояния работы                              | Работа, управление, рекуперация, готовность к работе, выход реле авар                                                                                                                                                                                                                                                                                 | рийной сигнализации (для любой ошибки) и т.д.                                                                                                                                                                        |
| Управление | Переключение режима MD(CT)/LD(VT)                    | Выбор режима: MD (СТ): Номинальная перегрузочная способность 150% (1 мин.) или LD (VT): Номинальная перегрузочная способность 120% (1 мин.)                                                                                                                                                                                                           | Выбор режима: MD (СТ): Номинальная перегрузочная способность 150% (1 мин.) или LD (VT): Номинальная перегрузочная способность 110% (1 мин.)                                                                          |
| ·          | Несущая частота                                      | Фиксированное значение высокой несущей частоты                                                                                                                                                                                                                                                                                                        | 5 кГц (*2)                                                                                                                                                                                                           |
|            | Входной коэффициент мощности                         | Выше 0,99 (при 100% нагрузке)                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                      |
|            | Входные гармоники тока                               | В соответствии с руководством по снижению уровня гармоник, выпущенным Мини рекуператора (Кі) может быть установлен на "0".                                                                                                                                                                                                                            | стерством экономики, торговли и промышленности Японии, коэффициент                                                                                                                                                   |
|            | Перезапуск после кратковременного отключения питания | Блокирует ключи, если при кратковременном отключении питания достигается уровень низкого                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                      |
|            | Контроль ограничения мощности                        | Следит, чтобы мощность не превысила заданный пред                                                                                                                                                                                                                                                                                                     | дельный уровень.                                                                                                                                                                                                     |
|            | Аварийная индикация<br>(защитные функции)            | Выход из строя предохранителя переменного тока, перенапряжение пер переменного тока, ошибка входа переменного тока, обрыв фазы на входя предохранителя постоянного тока, перенапряжение постоянного тока, ни радиатора, внешний аварийный сигнал, перегрев рекуператора, перегруз сетевой платы, ошибка при работе, ошибка АЦП, ошибка платы оптическ | е, ошибка синхронизации с частотой питания электросети, выход из строя<br>изкое напряжение постоянного тока, ошибка зарядной цепи, перегрев<br>вка, ошибка памяти, ошибка связи с пультом, ошибка процессора, ошибка |
| Индикация  | Maranus ananuš                                       | Регистрирует и отображает 10 последних аварийных с                                                                                                                                                                                                                                                                                                    | сигналов.                                                                                                                                                                                                            |
| на пульте  | История аварий                                       | Сохраняется и отображается подробная информация о причин                                                                                                                                                                                                                                                                                              | е ошибки, вызвавшей подачу последнего аварийного сигнала.                                                                                                                                                            |
|            | Монитор                                              | Отображает входную мощность, эффективное значение входного тока, эффективное значение в                                                                                                                                                                                                                                                               | аходного напряжения, ток промежуточного звена постоянного тока и частоту питания электросеть                                                                                                                         |
|            | Коэффициент нагрузки                                 | Величина нагрузки измеряется с помощью пульта упр                                                                                                                                                                                                                                                                                                     | авления.                                                                                                                                                                                                             |
|            | Язык дисплея                                         | Текст можно отобразить на 3-х языках: японском, англ                                                                                                                                                                                                                                                                                                  | лийском и китайском.                                                                                                                                                                                                 |
|            | Светодиодный индикатор зарядки                       | Горит во время зарядки конденсатора силовой цепи.                                                                                                                                                                                                                                                                                                     | Горит во время зарядки конденсатора силовой цепи.<br>Горит, даже если подается питание только для цепи управления.                                                                                                   |

- (\*1) Отсутствует на моделях модульного типа. (\*2) Если установлена плата OPC-VG7-SIR, автоматически задается несущая частота 2,5 кГц (соединение без трансформаторной развязки).

# [Функции клемм] [Опции и функции связи], [Задание функций], [Защитные функции], [Исполнение и условия окружающей среды]

# Функции клемм

| Категория      | Сигнал                                  | Название клеммы                                    | Фун                                                                                               | кции                                                                                                                                                         |
|----------------|-----------------------------------------|----------------------------------------------------|---------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
| категория      | Сигнал                                  | пазвание клеммы                                    | Моноблочный тип                                                                                   | Модульный тип                                                                                                                                                |
|                | L1/R, L2/S, L3/T                        | Вход силового питания                              | Подключение трехфазного входного напряжения через профил                                          | ьный дроссель.                                                                                                                                               |
| Силовая        | P(+), N(-)                              | Выходы рекуператора                                | Подключение к входам питания ПЧ Р (+), N (-).                                                     |                                                                                                                                                              |
| цепь           | E(G)                                    | Заземление                                         | Клемма заземления шасси ПЧ (корпуса).                                                             |                                                                                                                                                              |
|                | R0, T0                                  | Дополнительный вход питания цепи управления        | Подключение к той же цепи питания, к которой подключены клем                                      | мма резервного питания цепи управления и цепь силового питания.                                                                                              |
| Определение    | R1, S1, T1                              | Синхронный вход питания для определения напряжения | Клеммы определения напряжения, используемые для внутреннего управления ре                         | куператором. Соединены со стороной питания профильного дросселя и фильтра.                                                                                   |
| напряжения     | R2, T2                                  | Вход контрольного монитора                         | Клеммы, которые соединяются с цепью для обнаружения разъединен                                    | ния, вызванного выходом из строя предохранителя переменного тока.                                                                                            |
|                | RUN                                     | Команда RUN (Запуск)                               | Рекуператор запускается, когда эта команда активирована межд                                      | у клеммами RUN и CM, и останавливается, когда она отключена.                                                                                                 |
|                | RST                                     | Команда сброса аварии                              | В случае аварийного останова следует устранить причину аварии и активировать этот вход, замкнув ц | ель между клеммами RST и CM. Защитная функция отключается и аварийное состояние сбрасывается.                                                                |
|                | X1                                      | Универсальный транзисторный вход                   | 0: Внешняя ошибка [THR], 1: Отмена предела тока [LMT-CCL], 2:                                     | Отклик 73 [73ANS], 3: Переключение предела тока [1-LIM],                                                                                                     |
| Входные        |                                         |                                                    | 4: Опциональный дискретный вход [OPY-DI]                                                          |                                                                                                                                                              |
| сигналы        | CM                                      | Общий дискретных входов                            | Общая клемма для дискретных входных сигналов.                                                     |                                                                                                                                                              |
| CVII I ICO IDI |                                         | Вход обнаружения перегорания                       |                                                                                                   | Если предохранитель постоянного тока подключен к выходу рекуператора,                                                                                        |
|                | DCF1,DCF2                               | предохранителя постоянного тока                    | _                                                                                                 | микровыключатель для обнаружения перегорания предохранителя соединяется<br>с этой клеммой. Данная клемма соответствует выходу "b". Тип 24 В пост. тока 12 мА |
|                | PLC                                     | Питание ПЛК                                        | Подключение внешнего питания ПЛК. (Номинальное напряжени                                          | е: 24 В (22 27 В) пост. тока)                                                                                                                                |
|                | 30A, 30B, 30C                           | Выход реле аварийной сигнализации                  | Выдает сигнал при отключении рекуператора срабатыванием за                                        | ашитной функции. (Сигнал контакта 1С. цепь между клеммами                                                                                                    |
|                | , , , , , , , , , , , , , , , , , , , , | (для любой ошибки)                                 | 30А и 30С активируется при подаче аварийного сигнала) (Нагру                                      |                                                                                                                                                              |
|                | Y1, Y2, Y3, Y11 to Y18                  | Универсальный транзисторный                        | 0: Работа ПЧ [RUN] 1: Выходной сигнал готовности к работе [RD                                     | IY] 2: Ограничение тока питания [IL] 3: Аварийный сигнал конца                                                                                               |
|                |                                         | выход                                              | срока службы [LIFE] 4: Перегрузка радиатора [PRE-OH] 5: Сигна                                     | л перегрузки [PRE-OL] 6: Управление [DRV] 7: Рекуперация [REG]                                                                                               |
| _              | CME                                     | Общий дискретных выходов                           | 8: Сигнал предельного тока [CUR] 9: Перезапуск [U-RES] 10: Син:                                   | кронизация частоты питания электросети [SY-HZ]                                                                                                               |
| Выходные       | Y5A, Y5C                                | Релейный выход                                     | 11: Индикация аварии [AL1] 12: Индикация аварии 2 [AL2] 13: Индик                                 | ация аварии 4 [AL4] 14: Опциональный дискретный выход [ОРТ-DO]                                                                                               |
| сигналы        |                                         |                                                    | * Опциональная плата OPC-VG7-DIO обеспечивает расширение                                          |                                                                                                                                                              |
|                |                                         | Универсальный                                      | 0: Входная мощность [PWR] 1: Входной ток (скз.) [I-AC] 2: Входное на                              |                                                                                                                                                              |
|                | A01, A04, A05                           | аналоговый выход                                   | 4: Частота питания электросети [FREQ] 5: Вывод тестового напр                                     | яжения +10 В [Р10] Вывод тестового напряжения – 10 В [N10]                                                                                                   |
|                |                                         |                                                    | * Опциональная плата OPC-VG7-AIO обеспечивает расширение ф                                        | рункций до 2 точек. (Функция аналогового ввода не используется.)                                                                                             |
|                | М                                       | Общий аналоговых выходов                           | Общая клемма для аналоговых выходных сигналов.                                                    |                                                                                                                                                              |
|                | 73A, 73C                                | Релейный выход зарядной цепи                       | Управляющий выход входного реле внешнего зарядного резист                                         | opa (73)                                                                                                                                                     |

### Опции и функции связи

| Посилия   |                                | Фуні                                                                         | кции                                                                             |
|-----------|--------------------------------|------------------------------------------------------------------------------|----------------------------------------------------------------------------------|
| Позиция   |                                | Моноблочный тип                                                              | Модульный тип                                                                    |
|           | Общие функции связи            | Позволяют отображать рабочую информацию и состояние работы, а также контроль | провать функциональные коды (опрос) и управлять сигналами RUN, RST и X1 (выбор). |
|           | Оощие функции связи            | * Запись функциональных кодов не возможна.                                   |                                                                                  |
| Опции     | RS-485                         | Связь с ПК и ПЛК (поддержка протоколов Fuji и modbus RTU).                   |                                                                                  |
| и функции | T-Link (опциональная плата)    | Опциональная плата OPC-VG7-TL обеспечивает связь по шине T-Link              | с с модулем T-Link в контроллере MICREX-F или MICREX-SX.                         |
|           | SX bus (опциональная плата)    | Опциональная плата OPC-VG7-SX обеспечивает соединение с контр                | оллером MICREX-SX по шине SX.                                                    |
| СВЯЗИ     | CC-Link (опциональная плата)   | Опциональная плата OPC-VG7-CCL обеспечивает соединение с глав                | ным устройством CC-Link.                                                         |
|           | Плата оптической связи (опция) | ORUMONARINAR DRATA OPC-VG7-SI / OPC-VG7-SIR DOSPORRAT DACEDARIA              | ть наглузку путем параллельного соединения 2 и более рекулераторов               |

### Задание функций

|                    | Hase                    | зание                                |
|--------------------|-------------------------|--------------------------------------|
| Функциональный код | Моноблочный тип         | Модульный тип                        |
| F00                | Защита данных           | тиодульный тип                       |
| F01                | Выбор ВЧ-филь           | rna                                  |
| F02                | Перезапуск после провал |                                      |
| F03                | Переключение н          |                                      |
| F04                |                         | ображаемой информации)               |
|                    | ЖК-дисплей (Выбор отоб  |                                      |
| F05<br>F06         | ЖК-дисплей (Вы          |                                      |
| F07                | ЖК-дисплей (Регулир     |                                      |
|                    | Несущая частота         |                                      |
| F08                | Выбор функции           |                                      |
| E01                | Выбор функции           |                                      |
| E02 to 13          | Y11 18                  |                                      |
| E14                |                         | омкнутый/нормально замкнутый контакт |
| E15                |                         | о перегрузке RHC                     |
| E16                |                         | выключением вентилятора              |
| E17                |                         | ичения тока (гистерезис)             |
| E18 to 20          | Выбор функции           |                                      |
| E21 to 23          |                         | та усиления А01, А04, А05            |
| E24 to 26          |                         | ения А01, А04, А05                   |
| E27                | Настройка филь          | тра А01 5                            |
| S01                | Способ запуска          |                                      |
| S02,03             | Ограничения тока пита   | ния (работа/ управление)             |
| H01                | Адрес устройств         | за                                   |
| H02                | Обработка ошиб          | бки соединения                       |
| H03                | Задержка (тайме         | эр)                                  |
| H04                | Скорость переда         | ачи                                  |
| H05                | Длина данных            |                                      |
| H06                | Проверка четно          | СТИ                                  |
| H07                | Стоповые биты           |                                      |
| H08                | Задержка срабатывания   | ошибки времени отклика               |
| H09                | Интервал отклин         |                                      |
| H10                | Выбор протокол          | a                                    |
| H11                | Формат передач          | иTL                                  |
| H12                | Параллельная с          |                                      |
| H13                |                         | в в параллельной системе             |
| H14                | Удаление истори         | и аварий                             |
| H15,16             |                         | питания (работа 1/2)                 |
| H17,18             |                         | тания (управление 1/2)               |
| H19,20             |                         | пе тока (уровень/задержка)           |
| M09                | Частота питания         |                                      |
| M10                | Входная мощнос          |                                      |
| M11                |                         | ение входного тока                   |
| M12                |                         | е входного напряжения                |
| M13                | Команда запуска         |                                      |
| M14                | Состояние рабо          |                                      |
|                    |                         |                                      |

# Защитные функции

| Оащитные                                       | Ψy        | пкции                                                                                           |                                                                              |                                                           |
|------------------------------------------------|-----------|-------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|-----------------------------------------------------------|
| Параметр                                       | Индикация | Описание защитной                                                                               |                                                                              | Примечания                                                |
| Параметр                                       | индикация | Моноблочный тип                                                                                 | Модульный тип                                                                | Примечания                                                |
| Выход из строя предокранителя переменного тока | ACF       | Рекуператор прекращает работу при выходе из строя предохран                                     |                                                                              |                                                           |
| Перенапряжение переменного тока                | AOV       | Рекуператор прекращает работу при обнаружении перенапряже                                       |                                                                              |                                                           |
| Низкое напряжение переменного тока             | ALV       | Рекуператор прекращает работу при обнаружении низкого напря                                     | ояжения переменного тока.                                                    |                                                           |
| Превышение переменного тока                    | AOC       | Рекуператор прекращает работу, если максимальное значение вхо                                   | одного тока превышает уровень тока перегрузки.                               |                                                           |
| Ошибка входа переменного тока                  | ACE       | Рекуператор прекращает работу при обнаружении чрезмерного расхождени                            | ия между параметрами входного переменного тока и АСР.                        |                                                           |
| Обрыв фазы на входе                            | LPV       | Рекуператор прекращает работу, если происходит обрыв фазы н                                     | на входе питания.                                                            |                                                           |
| Ошибка синхронизации с частотой                | FrE       | Частота питания проверяется после ввода сигнала 73. При обнаружении ошибки по частоте рекупер   | ератор перестает работать. Ошибка во время работы рекуператора (например     |                                                           |
| питания электросети                            |           | кратисеременное отключение питания) не вызывает подачи аварийного сигнала. Рекуператор прекраща | јает работу при выходе из строя предохранителя постоянного тока (сторона Р). |                                                           |
| Выход из строя предохранителя постоянного тока | dCF       | Рекуператор прекращает работу при обнаружении перенапряже                                       | ения постоянного тока.                                                       | Выше 18,5 кВт                                             |
| Перенапряжение                                 | dOV       | При длительном отключении питания и прекращении эле                                             | пектроснабжения цепи управления                                              | Серия 200 В: выше 400 В ± 3 В                             |
| постоянного тока                               |           | рекуператор автоматически перезапускается.                                                      |                                                                              | Серия 400 В: выше 800 В ± 5 В                             |
|                                                |           |                                                                                                 |                                                                              | Серия 690 В: выше 1230 В ± 10 В                           |
| Низкое напряжение                              | dLV       | Рекуператор прекращает работу при обнаружении низкого напря                                     | ояжения постоянного тока.                                                    | Серия 200 В: Отключение при 185 В и перезапуск при 208 В  |
| постоянного тока                               |           | При длительном отключении питания и прекращении электросна                                      | абжения цепи управления рекуператор                                          | Серия 400 В: Отключение при 371 В и перезапуск при 417 В  |
|                                                |           | автоматически перезапускается.                                                                  |                                                                              | Серия 690 В: Отключение при 470 В и перезапуск при 580 В  |
| Ошибка зарядной цепи                           | PbF       | Рекуператор прекращает работу при обнаружении ошиб                                              | бки зарядной цепи с помощью                                                  | Условие: Выбрана настройка X1: «Отклик 73».               |
|                                                |           | ответного сигнала 73, назначенного дискретному входу                                            | X1.                                                                          |                                                           |
| Перегрев радиатора                             | OH1       | Рекуператор прекращает работу при обнаружении пере                                              | егрева охлаждающего радиатора.                                               |                                                           |
| Внешний аварийный сигнал                       | OH2       | Рекуператор прекращает работу при вводе внешнего си                                             | игнала (THR).                                                                | Условие: Выбрана настройка X1: «Внешний аварийный сигнал» |
| Перегрев преобразователя                       | OH3       | Рекуператор прекращает работу при обнаружении пере                                              | егрева преобразователя частоты.                                              |                                                           |
| Перегрузка рекуператора                        | OLU       | Рекуператор прекращает работу, если выходной ток превышает значение                             | е перегрузки для обратной времятоковой характеристики.                       | Стартовая точка: 105%, 150% 1 мин.                        |
| Ошибка памяти                                  | Er1       | Рекуператор прекращает работу, если в памяти возникает ошиби                                    | бка, например, «ошибка при записи»                                           |                                                           |
|                                                |           | (значения контрольной суммы в ЭСППЗУ и ОЗУ не совпадают).                                       |                                                                              |                                                           |
| Ошибка связи с пультом                         | Er2       | Активируется при обнаружении ошибки во время инициа                                             | пализации связи.                                                             |                                                           |
|                                                |           | Рекуператор продолжает работать.                                                                |                                                                              |                                                           |
| Ошибка процессора                              | Er3       | Активируется при обнаружении ошибки центрального пр                                             | роцессора.                                                                   |                                                           |
| Ошибка сетевой платы                           | Er4       | Рекуператор прекращает работу при обнаружении неуст                                             | странимой ошибки                                                             | Применимо к платам связи T-Link, SX и CC-Link             |
|                                                |           | в главном сетевом устройстве (включая разъединение с                                            | с источником питания).                                                       |                                                           |
| Ошибка при работе                              | Er6       | Рекуператор останавливается при обнаружении ошибки в поряд                                      |                                                                              |                                                           |
| Ошибка АЦП                                     | Er8       | Рекуператор прекращает работу при обнаружении ошибки в цеп                                      |                                                                              |                                                           |
| Ошибка платы оптической связи                  | Erb       | Рекуператор прекращает работу при отсоединении оптоволожонного кабеля или обнаружен             | ении неустранимой ошибки в оптическом устройстве (опциональном).             |                                                           |
| Ошибка интеллектуального                       | IPE       | Активируется, если функция самоотключения IPM                                                   | -                                                                            | Ниже 15 кВт                                               |
| силового модуля (IPM)                          |           | срабатывает из-за чрезмерного тока или перегрева.                                               | -                                                                            |                                                           |

# Исполнение и условия окружающей среды

| Параметр     |                              | Исполнение, условия окружающей                                                  | среды и стандартные требования                                                  | Примечания |
|--------------|------------------------------|---------------------------------------------------------------------------------|---------------------------------------------------------------------------------|------------|
| параметр     |                              | Моноблочный тип                                                                 | Модульный тип                                                                   | примечания |
|              | Исполнение                   | Установка в панели и охлаждение внешним устр                                    | ойством                                                                         |            |
|              | Степень защиты               | IP00                                                                            |                                                                                 |            |
| Требования   | Система охлаждения           | Принудительное воздушное охлаждение                                             |                                                                                 |            |
| к исполнению | Способ монтажа               | Вертикальный монтаж                                                             |                                                                                 |            |
|              | Цвет                         | Munsell 5Y3/0.5 полуполированное покрытие                                       |                                                                                 |            |
|              | Ремонтопригодность           | Конструкция, обеспечивающая легкую замену д                                     | еталей                                                                          |            |
|              | Место установки              | • В помещении (в окружающей среде должны отсутствовать агрессивные и горюч      | е газы, пыль и масляный туман) (степень загрязнения 2 по стандарту ІЕС 60664-1) |            |
|              |                              | • Размещение вне зоны попадания прямых соль                                     | ечных лучей.                                                                    |            |
|              | Температура окружающей среды | -10 50°C                                                                        | -10 +40°C                                                                       |            |
|              | Влажность                    | от 5 до 95% О.В. (без конденсации)                                              |                                                                                 |            |
| Условия      | Высота                       | Не более 3000 м                                                                 |                                                                                 |            |
|              | над уровнем                  | Выходная мощность может понизиться на высо                                      | ге от 1001 до 3000 м.                                                           |            |
| окружающей   | моря                         | При использовании на высоте от 2001 до 3000 м                                   | класс изоляции цепи управления изменяется                                       |            |
| среды        |                              | с «основной» на «усиленную».                                                    |                                                                                 |            |
|              | Вибрация                     | От 2 до 9 Гц: амплитуда = 3 мм, от 9 до 20 Гц: 9,8 м/с², от 20 до 55 Гц: 2 м/с² | Амплитуда = 0,3 мм, от 2 до 9 Гц:                                               |            |
|              |                              | (от 9 до 55 Гц: 2 м/с² при мощности выше 90 кВт                                 | 1 м/c2: от 9 до 200 Гц <sup>2</sup>                                             |            |
|              | Температура хранения         | -20 55°C                                                                        | -25 70°С (-10 +30°С при длительном хранении)                                    |            |
|              | Влажность при хранении       | от 5 до 95% О.В. (без конденсации)                                              |                                                                                 |            |



### Моноблочный тип (режим СТ)

| lапряжение | Номинальная           | Тип          | Контакто   |        | Контакт |        |           |        | Блок зарядной               | і цеі  | ,                            |        | Форсирую |        | Резистор                                     |        | Дроссел   |        | Конденса |        | Контакт   | rop |
|------------|-----------------------|--------------|------------|--------|---------|--------|-----------|--------|-----------------------------|--------|------------------------------|--------|----------|--------|----------------------------------------------|--------|-----------|--------|----------|--------|-----------|-----|
| питания    | мощность<br>двигателя | ШИМ-         | зарядной і | цепи   | питани  |        |           |        | Зарядный резис              | тор    | Предохранител<br>перем. тока | Ь      | дроссел  | Ь      | для фильтра                                  |        | для филь  | тра    | для филь | тра    | фильтра   |     |
|            | (кВт)                 | рекуператора | (73)       | Кал-во | (52)    | Kon-eo | (CU)      | Коп-во | (R0)                        | Кал-во | (Fac)                        | Kon-80 | (Lr)     | Кол-во | (Rf)                                         | Kan-80 | (Lf)      | Кол-во | (Cf)     | Кол-во | (6F)      | K   |
|            | 7.5                   | RHC7.5-2C    | SC-5-1     | 1      |         |        | CU7.5-2C  | 1      | (80W 7.5Ω)                  | (3)    | (CR2LS-50/UL)                | (2)    | LR2-7.5C | 1      | GRZG80 0.42Ω                                 | 3      | LFC2-7.5C | 1      | CF2-7.5C | 1      |           | T   |
|            | 11                    | RHC11-2C     | SC-N1      | 1      | ]       |        | CU11-2C   | 1      | (HF5C5504)                  |        | (CR2LS-75/UL)                | (2)    | LR2-15C  | 1      | GRZG150 0.2Ω                                 | 3      | LFC2-15C  | 1      | CF2-15C  | 1      |           | 1   |
|            | 15                    | RHC15-2C     | SC-N2      | 1      |         |        | CU15-2C   | 1      |                             |        | (CR2LS-100/UL)               | (2)    |          |        |                                              |        |           |        |          |        |           | 1   |
|            | 18.5                  | RHC18.5-2C   | SC-N3      | 1      |         |        | CU18.5-2C | 1      | (GRZG120 2Ω)                | (3)    |                              |        | LR2-22C  | 1      | GRZG200 0.13Ω                                | 3      | LFC2-22C  | 1      | CF2-22C  | 1      |           |     |
|            | 22                    | RHC22-2C     |            | 1      |         |        | CU22-2C   | 1      |                             |        | (CR2L-150/UL)                | (2)    |          |        |                                              |        |           |        |          |        |           |     |
| ехфазное   | 30                    | RHC30-2C     | SC-N4      | 1      |         |        | CU30-2C   | 1      |                             |        | (CR2L-200/UL)                | (2)    | LR2-37C  | 1      | GRZG400 0.1Ω                                 | 3      | LFC2-37C  | 1      | CF2-37C  | 1      |           |     |
| 200 B      | 37                    | RHC37-2C     | SC-N5      | 1      | 1       |        | CU45-2C   | 1      |                             |        | (CR2L-260/UL)                | (2)    |          |        |                                              |        |           |        |          |        |           |     |
|            | 45                    | RHC45-2C     | SC-N7      | 1      |         |        |           |        |                             |        |                              |        | LR2-55C  | 1      |                                              |        | LFC2-55C  | 1      | CF2-55C  | 1      |           |     |
|            | 55                    | RHC55-2C     | SC-N8      | 1      |         |        | CU55-2C   | 1      |                             |        | (CR2L-400/UL)                | (2)    |          |        |                                              |        |           |        |          |        |           |     |
|            | 75                    | RHC75-2C     | SC-N11     | 1      | ]       |        | CU75-2C   | 1      |                             |        |                              |        | LR2-75C  | 1      |                                              |        | LFC2-75C  | 1      | CF2-75C  | 1      |           |     |
|            | 90                    | RHC90-2C     |            |        |         |        | CU90-2C   | 1      | (GRZG400 1Ω)                | (3)    | (A50P600-4)                  | (2)    | LR2-110C | 1      | GRZG400 0.12Ω<br>[2 соединенных параллельно] | 6      | LFC2-110C | 1      | CF2-110C | 1      |           |     |
|            | 7.5                   | RHC7.5-4C    | SC-05      | 1      |         |        | CU7.5-4C  | 1      | (TK50B 30ΩJ)                | (3)    | (CR6L-30/UL)                 | (2)    | LR4-7.5C | 1      | GRZG80 1.74Ω                                 | 3      | LFC4-7.5C | 1      | CF4-7.5C | 1      |           | •   |
|            | 11                    | RHC11-4C     | SC-4-0     | 1      | 1       |        | CU15-4C   | 1      | (HF5B0416)                  |        | (CR6L-50/UL)                 | (2)    | LR4-15C  | 1      | GRZG150 0.79Ω                                | 3      | LFC4-15C  | 1      | CF4-15C  | 1      |           |     |
|            | 15                    | RHC15-4C     | SC-5-1     | 1      | 1       |        |           |        |                             |        |                              |        |          |        |                                              |        |           |        |          |        |           |     |
|            | 18.5                  | RHC18.5-4C   | SC-N1      | 1      | 1       |        | CU18.5-4C | 1      | (80W 7.5ΩJ)                 | (3)    |                              |        | LR4-22C  | 1      | GRZG200 0.53Ω                                | 3      | LFC4-22C  | 1      | CF4-22C  | 1      |           |     |
|            | 22                    | RHC22-4C     | 1          |        |         |        | CU22-4C   | 1      | (HF5C5504)                  |        | (CR6L-75/UL)                 | (2)    |          |        |                                              |        |           |        |          |        |           |     |
|            | 30                    | RHC30-4C     | SC-N2      | 1      | 1       |        | CU30-4C   | 1      |                             |        | (CR6L-100/UL)                | (2)    | LR4-37C  | 1      | GRZG400 0.38Ω                                | 3      | LFC4-37C  | 1      | CF4-37C  | 1      |           |     |
|            | 37                    | RHC37-4C     | SC-N2S     | 1      | 1       |        | CU45-4C   | 1      |                             |        | (CR6L-150/UL)                | (2)    |          |        |                                              |        |           |        |          |        |           |     |
|            | 45                    | RHC45-4C     | SC-N3      | 1      | 1       |        |           |        |                             |        |                              |        | LR4-55C  | 1      | GRZG400 0.26Ω                                | 3      | LFC4-55C  | 1      | CF4-55C  | 1      |           |     |
|            | 55                    | RHC55-4C     | SC-N4      | 1      | 1       |        | CU55-4C   | 1      |                             |        | (CR6L-200/UL)                | (2)    |          |        |                                              |        |           |        |          |        |           |     |
|            | 75                    | RHC75-4C     | SC-N5      | 1      | 1       |        | CU75-4C   | 1      |                             |        |                              |        | LR4-75C  | 1      | GRZG400 0.38Ω                                | 3      | LFC4-75C  | 1      | CF4-75C  | 1      |           |     |
|            | 90                    | RHC90-4C     | SC-N7      | 1      | 1       |        | CU90-4C   | 1      |                             |        | (CR6L-300/UL)                | (2)    | LR4-110C | 1      | GRZG400 0.53Ω                                | 6      | LFC4-110C | 1      | CF4-110C | 1      |           |     |
| -phase     | 110                   | RHC110-4C    | SC-N8      | 1      | 1       |        | CU110-4C  | 1      | (GRZG120 2Ω)                | (3)    |                              |        |          |        | [2 соединенных параллельно]                  |        |           |        |          |        |           |     |
| 400V       | 132                   | RHC132-4C    | 1          |        |         |        | CU132-4C  | 1      |                             |        | (A50P400-4)                  | (2)    | LR4-160C | 1      | RF4-160C                                     | 1      | LFC4-160C | 1      | CF4-160C | 1      |           |     |
|            | 160                   | RHC160-4C    | SC-N11     | 1      | ]       |        | CU160-4C  | 1      |                             |        | (A50P600-4)                  | (2)    |          |        |                                              |        |           |        |          |        |           |     |
|            | 200                   | RHC200-4C    | SC-N12     | 1      |         |        | CU200-4C  | 1      | (GRZG400 1Ω)                | (3)    |                              |        | LR4-220C | 1      | RF4-220C                                     | 1      | LFC4-220C | 1      | CF4-220C | 1      |           |     |
|            | 220                   | RHC220-4C    |            |        |         |        | CU220-4C  | 1      |                             |        | (A70QS800-4)                 | (2)    |          |        |                                              |        |           |        |          |        |           |     |
|            | 280                   | RHC280-4C    | SC-N3      | 1      | SC-N14  | 1      |           |        | GRZG400 1Ω                  | 6      | A70QS800-4                   | 2      | LR4-280C | 1      | RF4-280C                                     | 1      | LFC4-280C | 1      | CF4-280C | 1      | SC-N4     |     |
|            | 315                   | RHC315-4C    |            |        |         |        |           |        | [2 соединенных параллельно] |        | A70P1600-4TA                 | 2      | LR4-315C | 1      | RF4-315C                                     | 1      | LFC4-315C | 1      | CF4-315C | 1      |           |     |
|            | 355                   | RHC355-4C    |            |        |         |        |           |        |                             |        |                              |        | LR4-355C | 1      | RF4-355C                                     | 1      | LFC4-355C | 1      | CF4-355C | 1      |           |     |
|            | 400                   | RHC400-4C    |            |        | SC-N16  | 1      |           |        |                             |        |                              |        | LR4-400C | 1      | RF4-400C                                     | 1      | LFC4-400C | 1      | CF4-400C | 1      |           |     |
|            | 500                   | RHC500-4C    |            |        | SC-N11  | 3      |           |        |                             |        |                              |        | LR4-500C | 1      | RF4-500C                                     | 1      | LFC4-500C | 1      | CF4-500C | 1(*2)  | SC-N4(*3) | ,   |
|            | 630                   | RHC630-4C    |            |        | SC-N12  | 3      |           |        |                             |        | A70P2000-4                   | 2      | LR4-630C | 1      | RF4-630C                                     | 1      | LFC4-630C | 1      | CF4-630C | 1(*2)  | SC-N7(*3) | ,   |

### Модульный тип (режим MD)

| Напряжение<br>питания | Номинальная<br>мощность<br>двигателя | ощность ШИМ- зарядной цепи источника питания |       |        |        | Форсирую<br>дроссел |              | Резистор<br>для фильтра |                   | Дроссел<br>для филь |               | Конденса:<br>для филь: |           | Контакто<br>схемы<br>фильтрац | ri e             |        |            |        |              |        |           |        |
|-----------------------|--------------------------------------|----------------------------------------------|-------|--------|--------|---------------------|--------------|-------------------------|-------------------|---------------------|---------------|------------------------|-----------|-------------------------------|------------------|--------|------------|--------|--------------|--------|-----------|--------|
|                       | (кВт)                                | рекуператора                                 | (73)  | Кап-во | (52)   | Кол-во              | (CU)         | Кол-во                  | (R0)              | Kon-80              | (Fac)         | Кол-во                 | (Lr)      | Кол-во                        | (Rf)             | Кол-во | (Lf)       | Кап-во | (Cf)         | Кол-во | (6F)      | Кол-во |
|                       | 132                                  | RHC132S-4D□                                  |       |        |        |                     |              |                         |                   |                     |               |                        |           |                               |                  |        |            |        |              |        |           |        |
|                       | 160                                  | RHC160S-4D                                   |       |        |        |                     |              | _                       |                   |                     |               |                        | _         |                               |                  |        |            |        |              |        |           |        |
|                       | 200                                  | RHC200S-4D                                   |       |        |        |                     | V            | Ісг                     | ользов            | ат                  | ь модулі      | Ь (                    | рильт     | pa                            | а (серия R       | HF     | -).        |        |              |        |           |        |
| 3-phase               | 220                                  | RHC220S-4D                                   |       |        | *      | Поз                 |              |                         |                   |                     |               |                        | •         | •                             | з разделе перифе |        | •          | ойст   | гв на с 68   | ł      |           |        |
| 400V                  | 280                                  | RHC280S-4D                                   |       |        |        | 00.                 | (02) 11 (1 0 | 10, 1                   | oco y c rozi oani | CODIL               | ать отдельно. | 110,                   | цроопос с | /IVI. I                       | э разделе перифе | Pere   | iibix yorp | ONO    | 15 114 0. 00 |        |           |        |
| 4004                  | 315                                  | RHC315S-4D                                   |       |        |        |                     |              |                         |                   |                     |               |                        |           |                               |                  |        |            |        |              |        |           |        |
|                       | 630                                  | RHC630B-4D                                   | SC-N3 | 1      | SC-N12 | 3                   |              |                         | GRZG400 1Ω        | 6                   | SA598473      | 2                      | LR4-630C  | 1                             | RF4-630C         | 1      | LFC4-630C  | 1      | CF4-630C     | 1(*2)  | SC-N7(°3) | 1      |
|                       | 710                                  | RHC710B-4D                                   | SC-N4 | 1      |        |                     |              |                         | [2 parallel]      |                     | HF5G2655      | 2                      | LR4-710C  | 1                             | RF4-710C         | 1      | LFC4-710C  | 1      | CF4-710C     | 1(*2)  | SC-N8     | 1      |
|                       | 800                                  | RHC810B-4D                                   |       |        | SC-N14 | 3                   |              |                         |                   |                     |               |                        | LR4-800C  | 1                             | RF4-800C         | 1      | LFC4-800C  | 1      | CF4-800C     | 1(*2)  |           |        |

(Примечание 1) Серия 690 В: Использовать модуль фильтра (специальный компонент на 690 В) для периферийного устройства ШИМ-рекуператора.
(Примечание 2) RHC132S-4D□ RHC315S-4D□: Проконсультироваться с Fuji, если используется периферийное устройство (73, CU, R0, Fac, Lr, Rf, Lf, Cf), отличное от модуля фильтра.
(\* 1) Зарядный резистор (R0) и предохранитель переменного тока (F) встроены в блок зарядной цепи (CU). Если блок (CU) не заказывается, следует отдельно заказать зарядный резистор (R0) и предохранитель (F).
(\* 2) Конденсатор фильтра состоит из двух конденсаторов. Заказ 1 шт. предусматривает поставку комплекта из двух конденсаторов.
(\* 3) При изменении заводской настройки несущей частоты необходимо заменить контактор схемы фильтрации (6F). Подробнее см. в Руководстве по эксплуатации ШИМ-рекуператора.

# Таблица конфигурации оборудования

# Моноблочный тип (режим VT)

| Напряжение | Номинальная мощность | Тип                  | Контакто зарядной ц |        | Контакт | ка     |           |        | Блок зарядной               | і це   | ли n)          |        | Форсирую |        | Резистор<br>для фильтра     |        | Дроссел<br>для филь |        | Конденса |        | Контакт  | d .    |
|------------|----------------------|----------------------|---------------------|--------|---------|--------|-----------|--------|-----------------------------|--------|----------------|--------|----------|--------|-----------------------------|--------|---------------------|--------|----------|--------|----------|--------|
| питания    | двигателя            | ШИМ-<br>рекуператора |                     | _      | питани  | _      |           | _      |                             | _      |                | _      | дроссел  | _      |                             |        |                     | ÷      |          | ·      | фильтра  | ·      |
|            | (кВт)                |                      | (73)                | K01-80 | (52)    | Кол-во | (CU)      | Кол-во | ` '                         | Кол-во | (Fac)          | Кол-во | . ,      | Кол-во | ( )                         | Кол-во | (Lf)                | Кол-во | (- /     | Кол-во | (6F)     | Кол-во |
|            | 11                   | RHC7.5-2C            | SC-N1               | 1      |         |        | CU7.5-2C  | 1      | (80W 7.5Ω)                  | (3)    | (CR2LS-50/UL)  | 1 ' '  | LR2-15C  | 1      | GRZG150 0.2Ω                | 3      | LFC2-15C            | 1      | CF2-15C  | 1      |          |        |
|            |                      |                      | SC-N2               | 1      |         |        | CU11-2C   | 1      | (HF5C5504)                  |        | (CR2LS-75/UL)  | (2)    |          |        |                             |        |                     |        |          |        |          |        |
|            | 18.5                 |                      | SC-N3               | 1      |         |        | CU15-2C   | 1      |                             |        | (CR2LS-100/UL) | (2)    | LR2-22C  | 1      | GRZG200 0.13Ω               | 3      | LFC2-22C            | 1      | CF2-22C  | 1      |          |        |
|            | 22                   | RHC18.5-2C           |                     |        |         |        | CU18.5-2C | 1      | (GRZG120 2Ω)                | (3)    |                |        |          |        |                             |        |                     |        |          |        |          |        |
| Трехфазное | 30                   | RHC22-2C             | SC-N4               | 1      |         |        | CU22-2C   | 1      |                             |        | (CR2L-150/UL)  | (2)    | LR2-37C  | 1      | GRZG400 0.1Ω                | 3      | LFC2-37C            | 1      | CF2-37C  | 1      |          |        |
| 200 B      | 37                   | RHC30-2C             | SC-N5               | 1      |         |        | CU30-2C   | 1      |                             |        | (CR2L-200/UL)  | (2)    |          |        |                             |        |                     |        |          |        |          |        |
|            | 45                   | RHC37-2C             | SC-N7               | 1      |         |        | CU45-2C   | 1      |                             |        | (CR2L-260/UL)  | (2)    | LR2-55C  | 1      |                             |        | LFC2-55C            | 1      | CF2-55C  | 1      |          |        |
|            | 55                   | RHC45-2C             | SC-N8               | 1      |         |        |           |        |                             |        |                |        |          |        |                             |        |                     |        |          |        |          |        |
|            | 75                   | RHC55-2C             | SC-N11              | 1      |         |        | CU55-2C   | 1      |                             |        | (CR2L-400/UL)  | (2)    | LR2-75C  | 1      |                             |        | LFC2-75C            | 1      | CF2-75C  | 1      |          |        |
|            | 90                   | RHC75-2C             |                     |        |         |        | CU75-2C   | 1      |                             |        |                |        | LR2-110C | 1      | GRZG400 0.12Ω               | 6      | LFC2-110C           | 1      | CF2-110C | 1      |          |        |
|            | 110                  |                      | SC-N12              | 1      |         |        | CU90-2C   | 1      | (GRZG400 1Ω)                | (3)    | (A50P600-4)    | (2)    |          |        | [2 соединенных параллельно] |        |                     |        |          |        |          |        |
|            | 11                   | RHC7.5-4C            | SC-4-0              | 1      |         |        | CU7.5-4C  | 1      | (TK50B 30ΩJ)                | (3)    | (CR6L-30/UL)   | (2)    | LR4-15C  | 1      | GRZG150 0.79Ω               | 3      | LFC4-15C            | 1      | CF4-15C  | 1      |          |        |
|            | 15                   | RHC11-4C             | SC-5-1              | 1      |         |        | CU15-4C   | 1      | (HF5B0416)                  |        | (CR6L-50/UL)   | (2)    |          |        |                             |        |                     |        |          |        |          |        |
|            | 18.5                 | RHC15-4C             | SC-N1               | 1      |         |        |           |        |                             |        |                |        | LR4-22C  | 1      | GRZG200 0.53Ω               | 3      | LFC4-22C            | 1      | CF4-22C  | 1      |          |        |
|            | 22                   | RHC18.5-4C           |                     |        |         |        | CU18.5-4C | 1      | (80W 7.5ΩJ)                 | (3)    |                |        |          |        |                             |        |                     |        |          |        |          |        |
|            | 30                   | RHC22-4C             | SC-N2               | 1      |         |        | CU22-4C   | 1      | (HF5C5504)                  |        | (CR6L-75/UL)   | (2)    | LR4-37C  | 1      | GRZG400 0.38Ω               | 3      | LFC4-37C            | 1      | CF4-37C  | 1      |          |        |
|            | 37                   | RHC30-4C             | SC-N2S              | 1      |         |        | CU30-4C   | 1      |                             |        | (CR6L-100/UL)  | (2)    |          |        |                             |        |                     |        |          |        |          |        |
|            | 45                   | RHC37-4C             | SC-N3               | 1      |         |        | CU45-4C   | 1      |                             |        | (CR6L-150/UL)  | (2)    | LR4-55C  | 1      | GRZG400 0.26Ω               | 3      | LFC4-55C            | 1      | CF4-55C  | 1      |          |        |
|            | 55                   | RHC45-4C             | SC-N4               | 1      |         |        |           |        |                             |        |                |        |          |        |                             |        |                     |        |          |        |          |        |
|            | 75                   | RHC55-4C             | SC-N5               | 1      |         |        | CU55-4C   | 1      |                             |        | (CR6L-200/UL)  | (2)    | LR4-75C  | 1      | GRZG400 0.38Ω               | 3      | LFC4-75C            | 1      | CF4-75C  | 1      |          |        |
|            | 90                   | RHC75-4C             | SC-N7               | 1      |         |        | CU75-4C   | 1      |                             |        |                |        | LR4-110C | 1      | GRZG400 0.53Ω               | 6      | LFC4-110C           | 1      | CF4-110C | 1      |          |        |
| Трехфазное | 110                  | RHC90-4C             | SC-N8               | 1      |         |        | CU90-4C   | 1      |                             |        | (CR6L-300/UL)  | (2)    |          |        | [2 соединенных параллельно] |        |                     |        |          |        |          |        |
| 400 B      | 132                  | RHC110-4C            |                     |        |         |        | CU110-4C  | 1      | (GRZG120 2Ω)                | (3)    |                |        | LR4-160C | 1      | RF4-160C                    | 1      | LFC4-160C           | 1      | CF4-160C | 1      |          |        |
|            | 160                  | RHC132-4C            | SC-N11              | 1      |         |        | CU132-4C  | 1      |                             |        | (A50P400-4)    | (2)    |          |        |                             |        |                     |        |          |        |          |        |
|            | 200                  | RHC160-4C            | SC-N12              | 1      |         |        | CU160-4C  | 1      |                             |        | (A50P600-4)    | (2)    | LR4-220C | 1      | RF4-220C                    | 1      | LFC4-220C           | 1      | CF4-220C | 1      |          |        |
|            | 220                  | RHC200-4C            |                     |        |         |        | CU200-4C  | 1      | (GRZG400 1Ω)                | (3)    |                |        |          |        |                             |        |                     |        |          |        |          |        |
|            | 280                  | RHC220-4C            | SC-N14              | 1      |         |        | CU220-4C  | 1      |                             |        | (A70QS800-4)   | (2)    | LR4-280C | 1      | RF4-280C                    | 1      | LFC4-280C           | 1      | CF4-280C | 1      |          |        |
|            | 315                  | RHC280-4C            | SC-N3               | 1      | SC-N14  | 1      |           |        | GRZG400 1Ω                  | 6      | A70QS800-4     | 2      | LR4-315C | 1      | RF4-315C                    | 1      | LFC4-315C           | 1      | CF4-315C | 1      | SC-N4    | 1      |
|            | 355                  | RHC315-4C            |                     |        |         |        |           |        | [2 соединенных параллельно] |        | A70P1600-4TA   | 2      | LR4-355C | 1      | RF4-355C                    | 1      | LFC4-355C           | 1      | CF4-355C | 1      |          |        |
|            | 400                  | RHC355-4C            |                     |        | SC-N16  | 1      |           |        |                             |        |                |        | LR4-400C | 1      | RF4-400C                    | 1      | LFC4-400C           | 1      | CF4-400C | 1      |          |        |
|            | 500                  | RHC400-4C            |                     |        | SC-N11  | 3      |           |        |                             |        |                |        | LR4-500C | 1      | RF4-500C                    | 1      | LFC4-500C           | 1      | CF4-500C | 1(*2)  | SC-N4/SF | 1      |

### Модульный тип (режим LD)

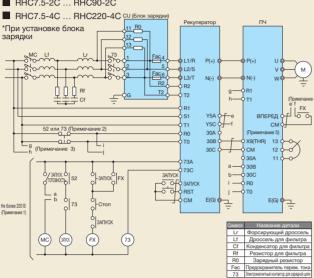
|            |                       |            |          |      |         |      |        |      |                  |           |                |      |            |      |                    | _    |            |      |            |       |            |            |
|------------|-----------------------|------------|----------|------|---------|------|--------|------|------------------|-----------|----------------|------|------------|------|--------------------|------|------------|------|------------|-------|------------|------------|
| Напряжение | Номинальная           | Тип        | Контакт  | ор   | Контакт |      |        | E    | Блок зарядної    | і цеі     | пи п)          |      | Форсируюц  | ций  | Резистор           |      | Дроссе     | ЛЬ   | Конденсат  | гор   | Контакто   |            |
| питания    | мощность<br>двигателя | шим-       | зарядной | цепи | питани  |      |        |      |                  |           |                |      | дроссел    | •    | для фильтра        |      | для филь   | тра  | для филы   | гра   | фильтрац   |            |
|            | (кВт)                 | , (,       |          | (52) | Кол-во  | (CU) | Кол-во | (R0) | Кол-во           | (Fac)     | Кол-во         | (Lr) | Кол-во     | (Rf) | Коп-во             | (Lf) | Кол-во     | (Cf) | Кол-во     | (6F)  | Кол-во     |            |
|            | 160                   | RHC132S-4D |          |      |         |      |        |      |                  |           |                |      |            |      |                    |      |            |      |            |       |            |            |
|            | 200                   | RHC160S-4D |          |      |         |      |        | 1/1  | CHOHES           | <b>\D</b> | STE MOUN       | /пі  | - фил      | ьт   | ра (серия          | R    | HE)        |      |            |       |            |            |
|            | 220                   | RHC200S-4D |          |      |         |      |        |      |                  |           |                |      | •          |      |                    |      | •          |      |            |       |            |            |
| Трехфазное | 315                   | RHC280S-4D |          |      |         |      |        | * Пс | оз. (52) и (Fac) | тре       | ебуется заказы | вать | ь отдельно | ). П | одробнее см. в раз | зде. | пе периф   | ериі | іных устро | ОЙСТЕ | в на с. 68 | ) <u>.</u> |
| 400 B      |                       | RHC315S-4D |          |      |         |      |        |      |                  |           |                |      |            |      |                    |      |            |      |            |       |            |            |
|            | 710                   | RHC630B-4D | SC-N4    | 1    | SC-N12  | 3    |        |      | GRZG400 1Ω       | 6         | HF5G2655       | 2    | LR4-710C   | 1    | RF4-710C           | 1    | LFC4-710C  | 1    | CF4-710C   | 1(°2) | SC-N8      | 1          |
|            | 800                   | RHC710B-4D | 1        |      | SC-N14  | 3    |        |      | 2 parallel]      |           |                |      | LR4-800C   | 1    | RF4-800C           | 1    | LFC4-800C  | 1    | CF4-800C   | 1(°2) |            | ı          |
|            | 1000                  | RHC810B-4D |          |      | SC-N16  | 3    |        |      |                  |           | (*4)           |      | LR4-1000C  | 1    | RF4-1000C          | 1    | LFC4-1000C | 1    | CF4-1000C  | 1(*2) | SC-N11/SF  | 1          |

(Примечание 1) Серия 690 В: Использовать модуль фильтра (специальный компонент на 690 В) для периферийного устройства ШИМ-рекуператора.

(Примечание 2) RHC132S-4D 🗆 RHC315S-4D 🗀: Проконсультироваться с Fuji, если используется периферийное устройство (73, CU, R0, Fac, Lr, Rf, Lf, Cf), отличное от модуля фильтра.

Зарядный резистор (R0) и предохранитель переменного тока (F) встроены в блок зарядной цепи (CU). Если блок (CU) не заказывается, следует отдельно заказать зарядный резистор (R0) и предохранитель (F).

(\* 2) Конденсатор фильтра состоит из двух конденсаторов. Заказ 1 шт. предусматривает поставку комплекта из двух конденсаторов.


<sup>(\* 3)</sup> При изменении заводской настройки несущей частоты необходимо заменить контактор схемы фильтрации (6F). Подробнее см. в Руководстве по эксплуатации ШИМ-рекуператора.

<sup>(\* 4)</sup> Проконсультироваться с Fuji.

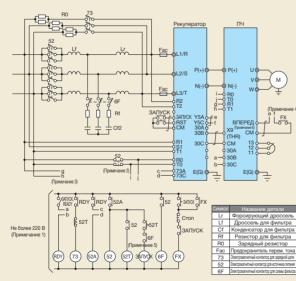
# Основная схема соединений

#### <Моноблочный тип>

■ RHC7.5-2C ... RHC90-2C



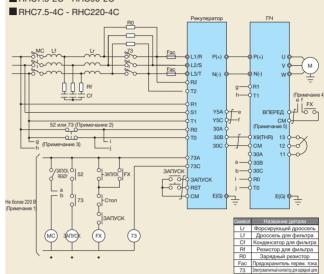
заземлением.


(Примечание 3) У моделей FRN37VG15-2 и FRN75VG15-4 д., а также устройств с более (Примечание 3) У моделей FRN37VG15-2 и FRN75VG15-4 д., а также устройств с более входов питания вентилятора (R1, T1) к основному источнику питания через контакт «b» Тили мС не предусмотрено.

(Примечание 4) Использовать последовательность, в которой сигнал на выполнение комания загуска веодится в ПЧ после того, как ШИМ-режуператор перейдет в режим готовности. (Примечание 5) Одной из клемм (X1 - X9) ПЧ должен быть назначен внешний аварийный сигнал (ПР).

кание э) однои из клемм (x1 - x9) ггт должен оыгь назначен внешнии аварииныи сигнал (ТНВ). кание 6) При подключении клемм L1 / R, L2 / S, L3 / T, R2, T2, R1, S1 и T1 обязательно проверить последовательность фаз.

#### <Моноблочный тип>


#### ■ RHC280-4C - RHC400-4C



(Примечание 1) Подключить понижающий трансформатор для ограничения напряжения последовательностной цепи уровнем менее 220 В. (Примечание 2) Входы дополнительного источника питания для ДИМ-рекуператора (R0, Т0) делжны быть подключены к основному источнику питания через контакт «b» электромагнитного контактора зарядной цепи (62). При использовании незаземленного (примечание 3) Поскольку вентилятор переменного тока питается от клемм R1 и Т1, подключение к источнику питания через контакт «b» 37 или МС не предусмотреньо. (Примечание 4) Использовать последовательность, в которой сигнал на выполнение кманды запуска вводится в ПЧ после того, как ШИМ-рекуператор перейдет в режим готовности. (Примечание 6) Одной из клемм (X1 - X9) ПЧ должен быть назначен внешний аварийный сигнал (ПНR).

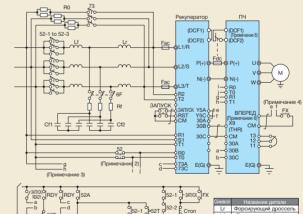
#### <Моноблочный тип>

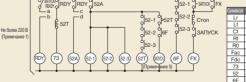
■ RHC7.5-2C - RHC90-2C



(Примечание 1) При напряжении силового питания 400 В следует подключить понижающий трансформатор для ограничения напряжения последовательностной цепи уровнем менее 220 В.

(Примечание 2) Входы дополнительного источника питания для ШИМ-рекуператора (R0, T0) должны быть подключены к основному источнику питания через контакт «b» электромагнитного контактора зарядной цепи (73 или МС). При использовании незаземлениел (примечание 3) У моделей FRN37VG1S-2 □ и FRN75VG1S-4 □, а также устройств с более высокой мощностью и модульных ПЧ (пюбой мощности), подключение дополнительных входов питания вентилятора (R1, Т1) к основному источнику питания через контакт «b» для ми МС не предусмотренот стот, как ШИМ-рекуператор перейдет в режим готовности. (Примечание 4) Использовать последовательность, в которой сигнал на выполнение команды запуска вводится в ПЧ после того, как ШИМ-рекуператор перейдет в режим готовности. (Примечание 5) Одной из клемм (от X1 - X9) ПЧ должен быть назначен внешний аварийный сигнал (ТНП).


канив 5) Одной из клемм (от X1 - X9) ПЧ должен быть назначен внешний аварийный сигнал (ТНВ). кание 6) При подключении клемм L1 / R, L2 / S, L3 / T, R2, T2, R1, S1 и T1 обязательно проверить последовательность фаз.

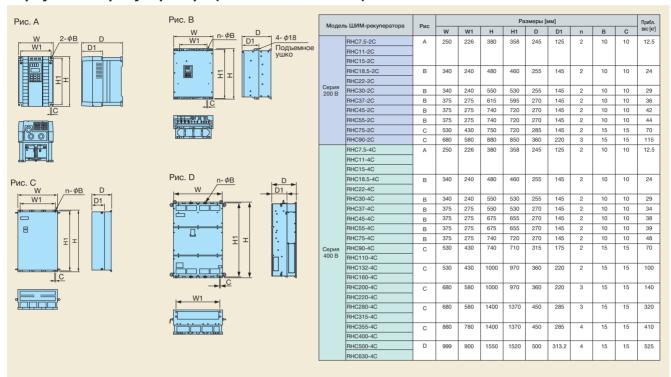

#### <Моноблочный тип>

■RHC500-4C - RHC630-4C

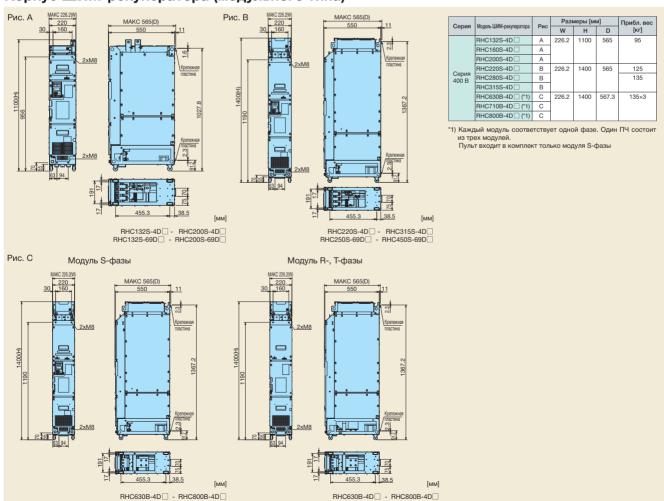
<Модульный тип>

■ RHC630S-4D - RHC800B-4D -



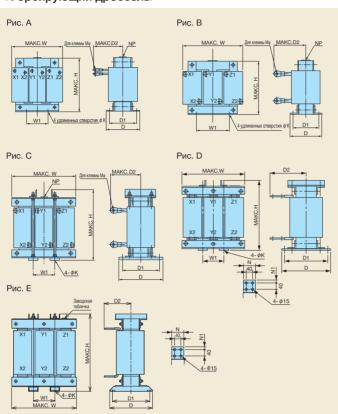



| OI  |        |                                                  |
|-----|--------|--------------------------------------------------|
| J.  | Символ | Название детали                                  |
|     | Lr     | Форсирующий дроссель                             |
|     | Lf     | Дроссель для фильтра                             |
| /CK | Cf     | Конденсатор для фильтра                          |
|     | Rf     | Резистор для фильтра                             |
|     | R0     | Зарядный резистор                                |
|     | Fac    | Предохранитель перем. тока                       |
|     | Fdc    | Предохранитель постоянного тока                  |
|     | 73     | Электромагнитный контактор для зарядной цели     |
|     | 52     | Эпектромагнитный контактор для источника питания |
|     | 6F     | Электромагнитный контактор для скемы фильтра     |
|     |        |                                                  |


(Примечание 1) Подключить понижающий трансформатор для ограничения напряжения последовательностной цепи уровнем менее 220 В.
(Примечание 2) Входы дополнительного источника питания для ШИМ-рекуператора (RQ, T) должны быть подключены к основному источнику питания через контакт «b» электромагнитного контактора зарядной цепи (S2). При использовании невазаемленного источника питания дляже меть установлен трансформатор с зазежлением.
(Примечание 3) Поскольку вентилятор переменного тока питается от клемм R1 и T1, подключение к источнику питания через контакт «b» 73 или МС не предусмотрено.
(Примечание 4) Использовать последовательность, в которой сигнал на выполнение команды загукса вводится в ПЧ после того, как ШИМ-рекуператор перейдет в режим готовности.
(Примечание 5) На 52Т должна быть установлена задержка 1 сек.
(Примечание 7) Дири подключении клемм L1 / R, L2 / S, L3 / T, R2, T2, R1, S1 и T1 обязательно примечание 7) При подключении клемм L1 / R, L2 / S, L3 / T, R2, T2, R1, S1 и T1 обязательно примечание 8) Отсутствует у моноблочных ТЧ.

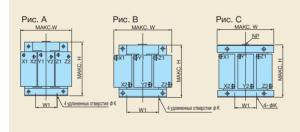
# Габаритные размеры

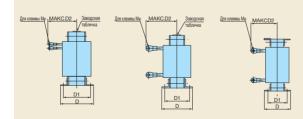
### Корпус ШИМ-рекуператора (моноблочного типа)

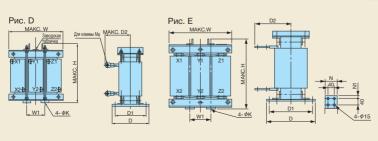



### Корпус ШИМ-рекуператора (модульного типа)




# Габаритные размеры

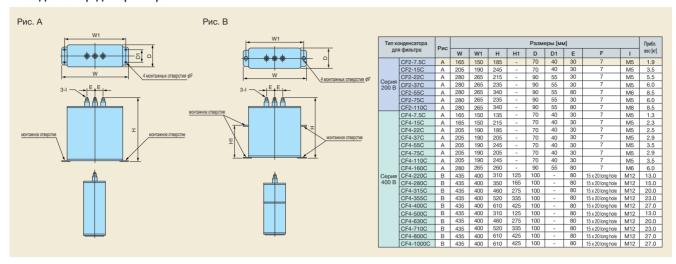

### <Форсирующий дроссель>



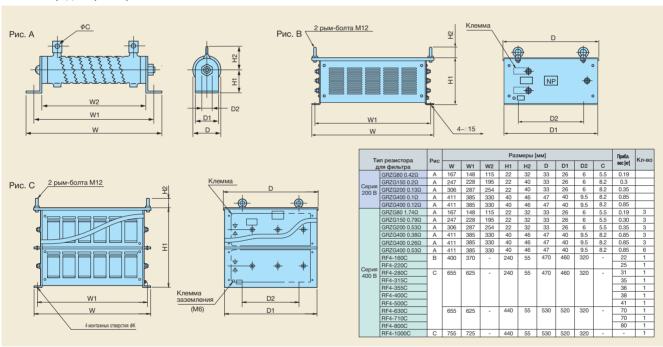

| Тип   | дросселя  | Рис |     |     |     |     | Размер |     |    |     |     |      | Прибл.<br>вес [кг] |
|-------|-----------|-----|-----|-----|-----|-----|--------|-----|----|-----|-----|------|--------------------|
|       |           |     | W   | W1  | Н   | D   | D1     | D2  | K  | М   | N   | N1   |                    |
|       | LR2-7.5C  | Α   | 180 | 75  | 205 | 105 | 85     | 95  | 7  | M5  | -   | -    | 12                 |
|       | LR2-15C   | В   | 195 | 75  | 215 | 131 | 110    | 130 | 7  | M8  | -   | -    | 18                 |
| Серия | LR2-22C   | С   | 240 | 80  | 340 | 215 | 180    | 145 | 10 | M8  | -   | -    | 33                 |
| 200В  | LR2-37C   | С   | 285 | 95  | 420 | 240 | 205    | 150 | 12 | M10 | -   | -    | 50                 |
|       | LR2-55C   | С   | 285 | 95  | 420 | 250 | 215    | 160 | 12 | M12 | -   | -    | 58                 |
|       | LR2-75C   | С   | 330 | 110 | 440 | 255 | 220    | 165 | 12 | M12 | -   | -    | 70                 |
|       | LR2-110C  | С   | 345 | 115 | 500 | 280 | 245    | 185 | 12 | M12 | -   | -    | 100                |
|       | LR4-7.5C  | В   | 180 | 75  | 205 | 105 | 85     | 90  | 7  | M4  | -   | -    | 12                 |
|       | LR4-15C   | Α   | 195 | 75  | 215 | 131 | 110    | 120 | 7  | M5  | -   | -    | 18                 |
|       | LR4-22C   | С   | 240 | 80  | 340 | 215 | 180    | 120 | 10 | M6  | -   | -    | 33                 |
|       | LR4-37C   | С   | 285 | 95  | 405 | 240 | 205    | 130 | 12 | M8  | -   | -    | 50                 |
|       | LR4-55C   | С   | 285 | 95  | 415 | 250 | 215    | 145 | 12 | M10 | -   | -    | 58                 |
|       | LR4-75C   | С   | 330 | 110 | 440 | 255 | 220    | 150 | 12 | M10 | -   | -    | 70                 |
|       | LR4-110C  | С   | 345 | 115 | 490 | 280 | 245    | 170 | 12 | M12 | -   | -    | 100                |
|       | LR4-160C  | С   | 380 | 125 | 550 | 300 | 260    | 185 | 15 | M12 | -   | -    | 140                |
| Серия | LR4-220C  | С   | 450 | 150 | 620 | 330 | 290    | 230 | 15 | M12 | -   | -    | 200                |
| 400B  | LR4-280C  | С   | 480 | 160 | 740 | 330 | 290    | 240 | 15 | M16 | -   | -    | 250                |
|       | LR4-315C  | С   | 480 | 160 | 760 | 340 | 300    | 250 | 15 | M16 | -   | -    | 270                |
|       | LR4-355C  | С   | 480 | 160 | 830 | 355 | 315    | 255 | 15 | M16 | -   | -    | 310                |
|       | LR4-400C  | С   | 480 | 160 | 890 | 380 | 330    | 260 | 19 | M16 | -   | -    | 340                |
|       | LR4-500C  | С   | 525 | 175 | 960 | 410 | 360    | 290 | 19 | M16 | -   | -    | 420                |
|       | LR4-630C  | D   | 600 | 200 | 640 | 440 | 390    | 285 | 19 | -   | 75  | 17.5 | 450                |
|       | LR4-710C  | Е   | 645 | 215 | 730 | 440 | 390    | 295 | 19 | -   | 100 | 30   | 510                |
|       | LR4-800C  | Е   | 690 | 230 | 850 | 450 | 400    | 290 | 19 | -   | 100 | 30   | 600                |
|       | LR4-1000C | Е   | 770 | 255 | 940 | 550 | 480    | 340 | 23 | -   | 100 | 30   | 950                |

### <Дроссель для фильтра>

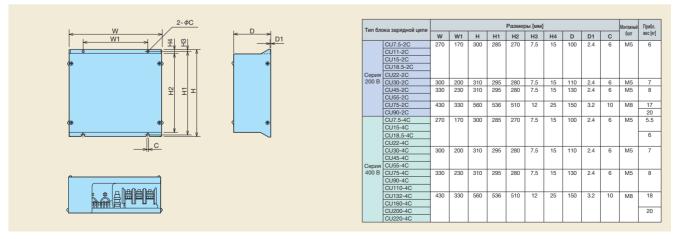






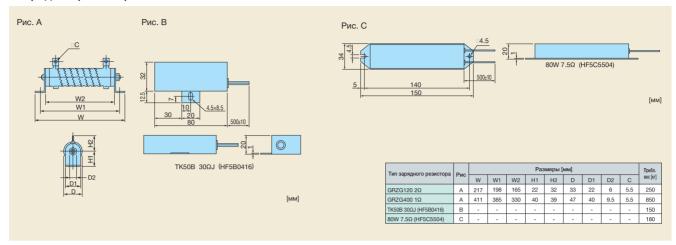


| Тип дросселя   |            | Рис |     |     |     |     | Размер | оы [мм] |    |     |     |      | Прибл.   |
|----------------|------------|-----|-----|-----|-----|-----|--------|---------|----|-----|-----|------|----------|
| ТИП            | дросселя   | РИС | W   | W1  | Н   | D   | D1     | D2      | K  | М   | N   | N1   | вес [кг] |
|                | LFC2-7.5C  | В   | 125 | 40  | 100 | 85  | 67     | 85      | 6  | M5  | -   | -    | 2.2      |
|                | LFC2-15C   | В   | 125 | 40  | 100 | 93  | 75     | 90      | 6  | M8  | -   | -    | 2.5      |
|                | LFC2-22C   | В   | 125 | 40  | 100 | 93  | 75     | 105     | 6  | M8  | -   | -    | 3.0      |
| Серия<br>200 В | LFC2-37C   | В   | 150 | 60  | 115 | 103 | 85     | 125     | 6  | M10 | -   | -    | 5.0      |
|                | LFC2-55C   | В   | 175 | 60  | 145 | 110 | 90     | 140     | 6  | M12 | -   | -    | 8.0      |
|                | LFC2-75C   | В   | 195 | 80  | 200 | 120 | 100    | 150     | 7  | M12 | -   | -    | 13       |
|                | LFC2-110C  | С   | 255 | 85  | 230 | 118 | 95     | 165     | 7  | M12 | -   | -    | 20       |
|                | LFC4-7.5C  | Α   | 125 | 40  | 100 | 85  | 67     | 75      | 6  | M4  | -   | -    | 2.2      |
|                | LFC4-15C   | Α   | 125 | 40  | 100 | 93  | 75     | 90      | 6  | M5  | -   | -    | 2.5      |
|                | LFC4-22C   | Α   | 125 | 40  | 100 | 93  | 75     | 95      | 6  | M6  | -   | -    | 3.0      |
|                | LFC4-37C   | В   | 150 | 60  | 115 | 108 | 90     | 110     | 6  | M8  | -   | -    | 5.0      |
|                | LFC4-55C   | В   | 175 | 60  | 145 | 110 | 90     | 120     | 6  | M10 | -   | -    | 8.0      |
|                | LFC4-75C   | В   | 195 | 80  | 200 | 113 | 93     | 130     | 7  | M10 | -   | -    | 12       |
|                | LFC4-110C  | С   | 255 | 85  | 220 | 113 | 90     | 145     | 7  | M12 | -   | -    | 19       |
|                | LFC4-160C  | С   | 255 | 85  | 245 | 137 | 110    | 150     | 10 | M12 | -   | -    | 22       |
| Серия          | LFC4-220C  | D   | 300 | 100 | 320 | 210 | 180    | 170     | 10 | M12 | -   | -    | 35       |
| 400 B          | LFC4-280C  | D   | 330 | 110 | 320 | 230 | 195    | 195     | 12 | M16 | -   | -    | 43       |
|                | LFC4-315C  | D   | 315 | 105 | 365 | 230 | 195    | 200     | 12 | M16 | -   | -    | 48       |
|                | LFC4-355C  | D   | 315 | 105 | 395 | 235 | 200    | 210     | 12 | M16 | -   | -    | 53       |
|                | LFC4-400C  | D   | 345 | 115 | 420 | 235 | 200    | 235     | 12 | M16 | -   | -    | 60       |
|                | LFC4-500C  | D   | 345 | 115 | 480 | 240 | 205    | 240     | 12 | M16 | -   | -    | 72       |
|                | LFC4-630C  | Е   | 435 | 145 | 550 | 295 | 255    | 200     | 15 | -   | 75  | 17.5 | 175      |
|                | LFC4-710C  | Е   | 480 | 160 | 570 | 295 | 255    | 215     | 15 | -   | 100 | 30   | 190      |
|                | LFC4-800C  | Е   | 480 | 160 | 600 | 320 | 270    | 220     | 15 | -   | 100 | 30   | 220      |
|                | LFC4-1000C | Е   | 480 | 160 | 700 | 320 | 270    | 240     | 15 | -   | 100 | 30   | 240      |

# Габаритные размеры

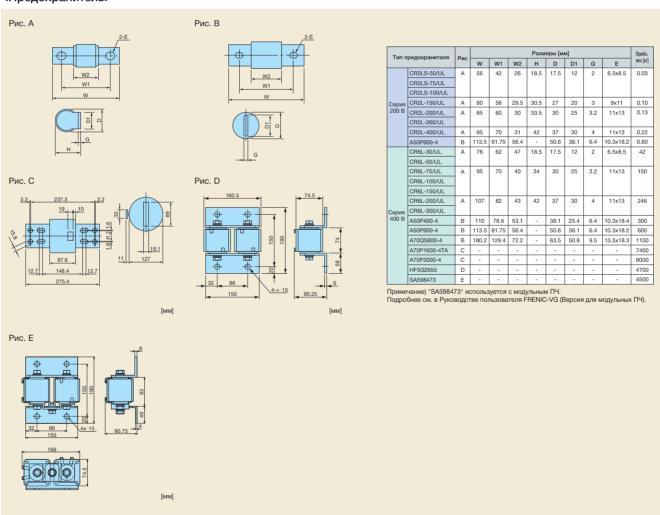

### <Конденсатор для фильтра>



### <Резистор для фильтра>




### <Блок зарядной цепи>




# Габаритные размеры

### <Зарядный резистор>



### <Предохранитель>



# Модуль фильтра: серия RHF-D (модульного типа)

- Это модуль фильтра, специально предназначенный для ШИМ-рекуператора с высоким коэффициентом мощности и функцией возврата электроэнергии в сеть (серия RHC-D).
- Устройство используется в комбинации с рекуператором серии RHC-D и периферийными устройствами (схемами фильтрации, форсирования и зарядки), составляющими с рекуператором единое целое.
- Благодаря компактной конструкции сокращается проводка, необходимая для периферийных устройств, и экономится монтажное пространство.
- Применяемый тип модуля имеет ту же форму, что и модуль преобразователя частоты (модульного типа) и ШИМ-рекуператора (RHC-D). Это позволяет обеспечить большую компактность панели управления.



# Стандартные технические характеристики

## 3-фазное напряжение 400 В

| 4          | Tu-                                            |               | RHF160S-4D□               | RHF220S-4D□                     | RHF280S-4D□                 | RHF355S-4D□                    |
|------------|------------------------------------------------|---------------|---------------------------|---------------------------------|-----------------------------|--------------------------------|
|            | Тип                                            |               | RHF 1605-4D□              | RHF2205-4D□                     | RHF2805-4D□                 | KHF3555-4D□                    |
|            |                                                | Режим МО      | 132                       | 200                             | 280                         | 315                            |
| Модел      | ть рекуператора                                | гежим МО      | 160                       | 220                             | _                           | _                              |
| RHC        | □□S-4D□                                        | Режим LD      | 132                       | 160                             | _                           | 280                            |
|            |                                                | Режим LD      | _                         | 200                             | _                           | 315                            |
| Номин      | нальный ток [А]                                |               | 282                       | 384                             | 489                         | 619                            |
| Напряжение | Основное электропитани Фазы, напряжение, часто |               | 3 фазы, 380 – 440 В/50    | ) Гц, 380 – 460 В/60 Гц         |                             |                                |
| питания    | Электропитание вентилятора                     | 400 B         | 1 фаза, 380 – 440 В/50    | Гц, 380 – 460 В/60 Гц (*1)      |                             |                                |
|            | Фазы, напряжение, частота                      | 200 B         | 1 фаза, 200 – 220 В/50    | Гц, 200 – 230 В/60 Гц (*2)      |                             |                                |
|            | Допустимые отклонения напря                    | жения/частоты | Напряжение: от +10 до -15 | %, частота: от +5 до -5 %, коэф | рфициент несимметрии фазных | к напряжений: не более 2% (*3) |
| Допус      | тимая несущая частота                          |               |                           | 2,5 кГц и                       | іли 5 кГц                   |                                |
| Прибл      | і. вес [кг]                                    |               | 155                       | 195                             | 230                         | 250                            |
| Испол      | нение                                          |               |                           | ІР00 от                         | крытое                      |                                |
| Урове      | нь шума                                        |               |                           | 75 дБ (расстояние с             | т источника 1 м) (*4)       |                                |

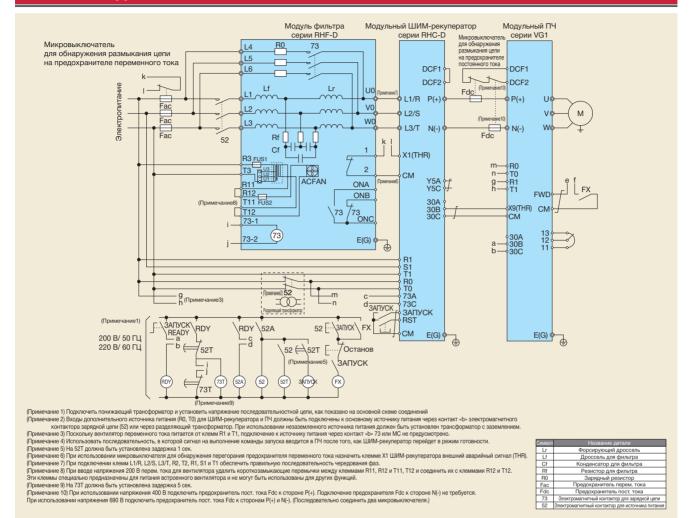
### 3-фазное напряжение 690 В (ожидается поступление)

| <u> </u>     |                                                      |                | об в (ожидается поступление)                                                                                     |                              |              |              |  |  |  |
|--------------|------------------------------------------------------|----------------|------------------------------------------------------------------------------------------------------------------|------------------------------|--------------|--------------|--|--|--|
|              | Тип                                                  |                | RHF160S-69D□                                                                                                     | RHF220S-69D□                 | RHF280S-69D□ | RHF355S-69D□ |  |  |  |
|              |                                                      | Down MD        | 132                                                                                                              | 200                          | 250          | 315          |  |  |  |
| Модел        | ть рекуператора                                      | Режим MD       | 160                                                                                                              | 160 – 280                    |              | -            |  |  |  |
| RHC          | □□S-4D□                                              | Режим LD       | 132                                                                                                              | 160                          | _            | 280          |  |  |  |
|              |                                                      |                | -                                                                                                                | 200                          | 250          | 315          |  |  |  |
| Номин        | иинальный ток [А]                                    |                | 163                                                                                                              | 223                          | 283          | 359          |  |  |  |
| Напряжение   | Основное электропитание<br>Фазы, напряжение, частота |                | 3 фазы, 575 – 690 В, 50/60 Гц                                                                                    |                              |              |              |  |  |  |
| питания      | Электропитание вентилятора                           | 690 B          | 1 фаза, 660 – 690 В, 50/60 Гц; 575 – 600 В, 50/60 Гц (*1)                                                        |                              |              |              |  |  |  |
|              | Фазы, напряжение, частота                            | 200 B          | 1 фаза, 200 – 220 В/50                                                                                           | ) Гц, 200 – 230 В/60 Гц (*2) |              |              |  |  |  |
|              | Допустимые отклонения напря                          | ажения/частоты | Напряжение: от +10 до -15 %, частота: от +5 до -5 %, коэффициент несимметрии фазных напряжений: не более 2% (*3) |                              |              |              |  |  |  |
| Допу         | стимая несущая частота                               |                |                                                                                                                  | 2,5 кГц                      | или 5 кГц    |              |  |  |  |
| Приб         | л. вес [кг]                                          |                | 155                                                                                                              | 230                          | 230          | 250          |  |  |  |
| Испо         | лнение                                               |                | ІР00 открытое                                                                                                    |                              |              |              |  |  |  |
| Уровень шума |                                                      |                | 75 дБ (расстояние от источника 1 м) (*4)                                                                         |                              |              |              |  |  |  |

<sup>\*1)</sup> Серия 400 В: Если используется питание 380 - 398 В, 50 Гц или 380 - 430 В, 60 Гц, требуется переключить внутренние клеммы модуля фильтра (U1, U2). Серия 690 В: Если используется питание 575 - 600 В, 50/60 Гц, требуется переключить внутренние клеммы модуля фильтра (U1, U2).

<sup>\*2)</sup> Для электроснабжения может также использоваться источник питания 200 В. Подробнее см. в Руководстве по эксплуатации модуля фильтра (RHF-D).

<sup>(\*3)</sup> Коэффициент несимметрии фазных напряжений (%) = Makc. напряжение [B] - мин. напряжение [B]


<sup>\*4)</sup> Это уровень шума для ситуации, когда ШИМ-рекуператор и ПЧ равной мощности соединены с модулем фильтра и работа осуществляется в номинальном режиме.

<sup>\*5)</sup> На модуль фильтра не распространяется сертификация по стандартам UL508C и C22.2 № 14.

# Функции клемм

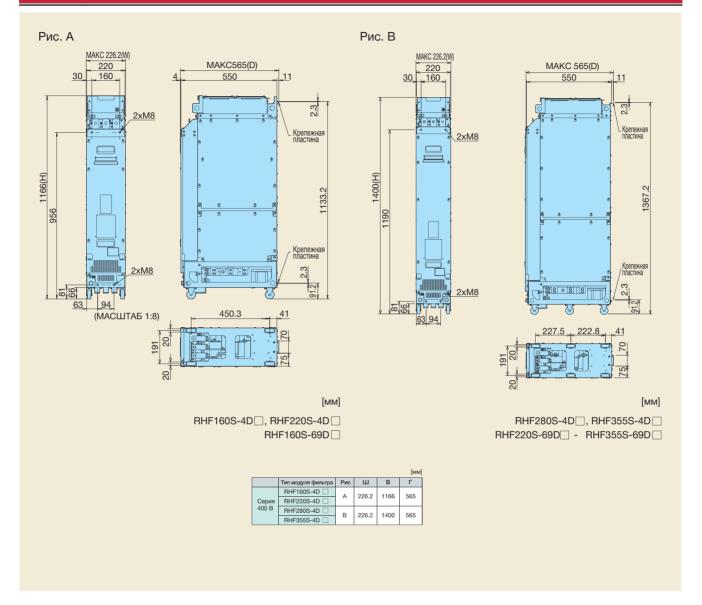
|          | Сигнал   | Название                       | Функции                                                                                                           |  |  |  |  |
|----------|----------|--------------------------------|-------------------------------------------------------------------------------------------------------------------|--|--|--|--|
|          | L1,L2,L3 | Вход силового питания          | Подключение трехфазного входного напряжения.                                                                      |  |  |  |  |
|          | U0,V0,W0 | Выходы фильтра                 | Подключение к входам питания ШИМ-рекуператора L1/R, L2/S и L3/T.                                                  |  |  |  |  |
|          | L4,L5,L6 | Вход зарядной цепи             | Подключение трехфазного входного напряжения.                                                                      |  |  |  |  |
|          | E(G)     | Заземление                     | Клемма заземления шасси модуля фильтра (корпуса).                                                                 |  |  |  |  |
| Силовая  | R3,T3    | Вход питания вентилятора       | Используется как вход питания охлаждающего вентилятора переменного тока, установленного внутри модуля фильтра.    |  |  |  |  |
| цепь     | R11.R12  | Вход питания вентилятора       | Используется при входном напряжении 200 В перем. тока для питания охлаждающего вентилятора внутри модуля фильтра. |  |  |  |  |
|          | T11,T12  | (при входном напряжении 200 В) | При вводе напряжения 200 В перем. тока удалить короткозамыкающие перемычки                                        |  |  |  |  |
|          | 111,112  | (при входном напряжении 200 в) | между клеммами R11, R12 и T11, T12 и соединить их с клеммами R12 и T12.                                           |  |  |  |  |
|          | U1,U2    | Клемма для переключения        | Подключение клемм изменяется в зависимости от входа питания вентилятора.                                          |  |  |  |  |
|          | 01,02    | напряжения питания             | Подробнее см. в Руководстве по эксплуатации модуля фильтра (RHF-D).                                               |  |  |  |  |
|          |          |                                | Входной управляющий сигнал для контактора зарядной цепи.                                                          |  |  |  |  |
|          |          |                                | <Номинальная мощность катушки>                                                                                    |  |  |  |  |
|          |          |                                | <Серия 400 В>                                                                                                     |  |  |  |  |
| Входные  | 73-1     | Вход управления для            | При включении питания 200 В/50 Гц: 120 ВА, 220 В/60 Гц: 135 ВА                                                    |  |  |  |  |
| сигналы  | 73-2     | контактора зарядной цепи       | При поддержании питания 200 В/50 Гц: 12,7 ВА, 220 В/60 Гц: 12,4 ВА                                                |  |  |  |  |
|          |          |                                | <Серия 690 В>                                                                                                     |  |  |  |  |
|          |          |                                | При включении питания 200 В/50 Гц: 235 ВА, 220 В/60 Гц: 460 ВА                                                    |  |  |  |  |
|          |          |                                | При поддержании питания 200 В/50 Гц: 20,0 ВА, 220 В/60 Гц: 19,5 ВА                                                |  |  |  |  |
|          | ONA      | Сигнал проверки работы         | Вспомогательный контакт контактора для зарядной цепи.                                                             |  |  |  |  |
| Выходные | ONB      | зарядной цепи                  | Используется для проверки работы зарядной цепи.                                                                   |  |  |  |  |
|          | ONC      | зарядпои цени                  | Номинал контакта: 24 В пост. тока, 3 А $^{\star}$ Мин. рабочее напряжение/ток: 5 В пост. тока, 3 мА               |  |  |  |  |
| сигналы  | 1        | Выходной сигнал аварии         | Сигнал выдается при перегреве внутренних частей модуля фильтра.                                                   |  |  |  |  |
|          | 2        | рыходной синал аварии          | Номинал контакта: 24 В пост. тока, макс. 3 мА                                                                     |  |  |  |  |

# Схема соединений



# Периферийные устройства

# 3-фазное напряжение 400 В Режим MD


| ШИМ-рекуператор | Модуль фильтра (RHF-D) |        | MCCB, ELCB Electromagnetic contactor (52) |        |        | Предохранитель пер | ременного тока (Fac) | Микровыключатель |        |
|-----------------|------------------------|--------|-------------------------------------------|--------|--------|--------------------|----------------------|------------------|--------|
| (RHC-D)         | Тип                    | Кол-во | Номинальный ток [А]                       | Тип    | Кол-во | Тип                | Кол-во               | Тип              | Кол-во |
| RHC132S-4D□     | RHF160S-4D□            | 1      | 300                                       | SC-N8  | 1      | 170M5446           | 3                    | - 170H3027       | 3      |
| RHC160S-4D□     | RHF160S-4D□            | 1      | 350                                       | SC-N11 | 1      | 170M6546           | 3                    |                  |        |
| RHC200S-4D□     | RHF220S-4D□            | 1      | 500                                       | SC-N12 | 1      | 70M6547            | 3                    |                  |        |
| RHC220S-4D□     | RHF220S-4D□            | 1      | 500                                       | SC-N12 | 1      | 70M6547            | 3                    |                  |        |
| RHC280S-4D□     | RHF280S-4D□            | 1      | 600                                       | SC-N14 | 1      | 170M6499           | 3                    |                  |        |
| RHC315S-4D□     | RHF355S-4D□            | 1      | 700                                       | SC-N14 | 1      | 170M6500           | 3                    |                  |        |

#### Режим LD

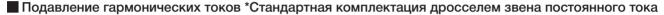
| ШИМ-рекуператор | Модуль фильтра (RHF-D) |        | MCCB, ELCB          | МССВ, ELCB Электромагнитный контактор (52) |        | Предохранитель переменного тока (Fac) |        | Микровыключатель |        |
|-----------------|------------------------|--------|---------------------|--------------------------------------------|--------|---------------------------------------|--------|------------------|--------|
| (RHC-D)         | Тип                    | Кол-во | Номинальный ток [А] | Тип                                        | Кол-во | Тип                                   | Кол-во | Тип              | Кол-во |
| RHC132S-4D□     | RHF160S-4D□            | 1      | 350                 | SC-N11                                     | 1      | 170M5446                              | 3      | ·                | 3      |
| RHC160S-4D□     | RHF220S-4D□            | 1      | 500                 | SC-N12                                     | 1      | 170M6546                              | 3      |                  |        |
| RHC200S-4D□     | RHF220S-4D□            | 1      | 500                 | SC-N12                                     | 1      | 70M6547                               | 3      | 170H3027         |        |
| RHC280S-4D□     | RHF355S-4D□            | 1      | 700                 | SC-N14                                     | 1      | 170M6499                              | 3      |                  |        |
| RHC315S-4D□     | RHF355S-4D□            | 1      | 800                 | SC-N14                                     | 1      | 170M6500                              | 3      |                  |        |

<sup>\*</sup> Указаны предохранители и микровыключатели производства фирмы Cooper Bussmann. Данные изделия также можно заказать у компании Fuji.

# Размеры



# Диодный выпрямитель (RHD-D) (модульный)


#### Тип преобразователя

Диодный выпрямитель преобразует переменный ток в постоянный и подает постоянный ток в преобразователь частоты.

#### Большая мощность

Путем параллельного соединения преобразователей можно построить систему большой мощности. (Трехпараллельная (три параллельных моста), 12-пульсная выпрямительная система, состоящая из 6 диодных выпрямителей)

- Режим средней нагрузки MD: 1450 кВт (класс 400 B), 2000 кВт (класс 690 B)
- Режим низкой нагрузки (LD): 1640 кВт (класс 400 В)



Это устройство оснащено дросселем звена постоянного тока для подавления гармоник тока. Дальнейшее уменьшение гармонических токов стало возможным благодаря созданию 12-пульсной выпрямительной системы за счет параллельного соединения нескольких выпрямителей в сочетании с силовым трансформатором.

### ■ Исполнительное устройство

В качестве опций (с внешним подключением) предлагаются тормозной модуль и тормозной резистор.

Компактность системы обеспечивается благодаря возможности выбора мощности в зависимости от количества рекуперативной энергии (энергии торможения).

# Стандартные технические характеристики: Режим MD для средних нагрузок

## Трехфазное напряжение 400 В

|                                         | Модель                                            |                | RHD200S-4D□                                                                                   | RHD315S-4D□ |  |  |  |
|-----------------------------------------|---------------------------------------------------|----------------|-----------------------------------------------------------------------------------------------|-------------|--|--|--|
|                                         | Номинальная длительная мощнос                     | сть [кВт] (*2) | 227                                                                                           | 353         |  |  |  |
| Выход                                   | Номинальная мощность<br>ПЧ/двигателя (*2)         |                | 200                                                                                           | 315         |  |  |  |
|                                         | Номинальная перегрузочная сп                      | особность      | 150% номинального длительного тока в теч. 1 ми                                                | н.          |  |  |  |
|                                         | Напряжение                                        |                | 513 - 679 В пост. тока (зависит от входного напряжения питания и нагрузки)                    |             |  |  |  |
| Макс. пр                                | исоединяемая мощность [кЕ                         | Вт] (*1)(*2)   | 600                                                                                           | 945         |  |  |  |
| Мин. при                                | соединяемая мощность [кВт                         | г] (*2)        | 110                                                                                           | 180         |  |  |  |
| Требуема                                | ая мощность источника пита                        | ния [кВА]      | 248 388                                                                                       |             |  |  |  |
| Нопражение                              | Основное электропитание Фазы, напряжение, частота |                | 3 фазы, 380 – 440 В/50 Гц, 380 – 480 В/60 Гц                                                  |             |  |  |  |
| Напряжение питания                      | Дополнительный вход питания вентилятора           | 400 B          | 1 фаза, 380 – 440 В/50 Гц, 380 – 480 В/60 Гц (*3)                                             |             |  |  |  |
| ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | Фазы, напряжение, частота                         | 200 B          | 1 фаза, 200 – 220 В/50 Гц, 200 – 230 В/60 Гц (*4)                                             |             |  |  |  |
|                                         | Допустимые отклонения напряжен                    | ния/частоты    | Напряжение: от +10 до -15 %, частота: от +5 до -5 %, несимметрия напряжений: не более 2% (*5) |             |  |  |  |
| Прибл. в                                | ес [кг]                                           |                | 125                                                                                           | 160         |  |  |  |
| Исполне                                 | ние                                               |                | IP00 открытое                                                                                 |             |  |  |  |

## Трехфазире напражение 690 В

| трехфазное напряжение озо в |                                                 |               |                                                                                               |              |  |  |  |  |  |
|-----------------------------|-------------------------------------------------|---------------|-----------------------------------------------------------------------------------------------|--------------|--|--|--|--|--|
|                             | Модель                                          |               | RHD220S-69D□                                                                                  | RHD450S-69D□ |  |  |  |  |  |
|                             | Номинальная длительная мощнос                   | ть [кВт] (*2) | 252                                                                                           | 504          |  |  |  |  |  |
| Выход                       | Номинальная мощность<br>ПЧ/двигателя (*2)       |               | 220                                                                                           | 450          |  |  |  |  |  |
|                             | Номинальная перегрузочная способность           |               | 150% номинального длительного тока в теч. 1 ми                                                | · .          |  |  |  |  |  |
|                             | Напряжение                                      |               | 776 – 1091 В пост. тока (зависит от входного напряжения питания и нагрузки)                   |              |  |  |  |  |  |
| Макс. пр                    | исоединяемая мощность [кВ                       | BT] (*1)(*2)  | 660                                                                                           | 1350         |  |  |  |  |  |
| Мин. при                    | исоединяемая мощность [кЕ                       | Вт] (*2)      | 132                                                                                           | 250          |  |  |  |  |  |
| Требуема                    | ая мощность источника питан                     | ния [кВА]     | 270 549                                                                                       |              |  |  |  |  |  |
| Напряжение                  | Основное электропитание Фазы, напряжение, часто |               | 3 фазы, 575 – 690 В, 50/60 Гц                                                                 |              |  |  |  |  |  |
| питания                     | Дополнительный вход питания вентилятора         | 690 B         | 1 фаза, 660 – 690 В, 50/60 Гц; 575 – 600 В, 50/60 Г                                           | ų (*3)       |  |  |  |  |  |
| -                           | Фазы, напряжение, частота                       | 200 B         | 1 фаза, 200 – 220 В/50 Гц, 200 – 230 В/60 Гц (*4)                                             |              |  |  |  |  |  |
|                             | Допустимые отклонения напряжения/частоты        |               | Напряжение: от +10 до -15 %, частота: от +5 до -5 %, несимметрия напряжений: не более 2% (*5) |              |  |  |  |  |  |
| Прибл. в                    | ес [кг]                                         |               | 125                                                                                           | 160          |  |  |  |  |  |
| Исполне                     | ние                                             |               | IP00 открытое                                                                                 |              |  |  |  |  |  |

<sup>\*1)</sup> Это общая мощность подключаемых ПЧ, установленная с учетом исходных ограничений зарядной цепи. При этом мощность, которой может единовременно управлять выпрямитель, называется длительной мощностью.

\*2) Серия 400 В: Это значение для напряжения питания 400 В. Если напряжение питания меньше 400 В, необходимо снизить мощность. Снижение мощности также требуется при подключении нескольких ПЧ.

Серия 690 В: Это значение для напряжения питания 690 В. Если напряжение питания меньше 690 В, необходимо снизить мощность. Снижение мощности также требуется при подключении нескольких ПЧ.

3) Серия 400 В: Если используется питание 380 - 398 В, 50 Гц или 380 - 430 В, 60 Гц, требуется переключить внутренние клеммы диодного выпрямителя (U1, U2).

Серия 690 В: Если используется питание 575 - 600 В, 50/60 Гц, требуется переключить внутренние клеммы диодного выпрямителя (U1, U2).

\*4) Для электроснабжения может также использоваться источник питания 200 В. Подробнее см. в Руководстве по эксплуатации диодного выпрямителя (RHD-D).

 $<sup>^{+5)}</sup>$  Коэффициент несимметрии фазных напряжений (%) =  $\frac{\text{макс. напряжение [B]}}{\text{среднее 3-фазное напряжение}} \times 67$ 



Трехфазное напряжение 400 В

|                    | Модель                                            |               | RHD200S-4D□                                                                                   | RHD315S-4D ☐ |  |  |  |
|--------------------|---------------------------------------------------|---------------|-----------------------------------------------------------------------------------------------|--------------|--|--|--|
|                    | Номинальная длительная мощнос                     | ть [кВт] (*2) | 247                                                                                           | 400          |  |  |  |
| Выход              | Номинальная мощность<br>ПЧ/двигателя (*2)         |               | 220                                                                                           | 355          |  |  |  |
|                    | Номинальная перегрузочная сп                      | особность     | 110% номинального длительного тока в теч. 1 ми                                                | ٠.           |  |  |  |
|                    | Напряжение                                        |               | 513 - 679 В пост. тока (зависит от входного напряжения питания и нагрузки)                    |              |  |  |  |
| Макс. пр           | исоединяемая мощность [кВ                         | ST] (*1)(*2)  | 600                                                                                           | 1065         |  |  |  |
| Мин. при           | соединяемая мощность [кВт                         | ] (*2)        | 110                                                                                           | 180          |  |  |  |
| Требуема           | ая мощность источника пита                        | ния [кВА]     | 271                                                                                           | 435          |  |  |  |
| Нопражение         | Основное электропитание Фазы, напряжение, частота |               | 3 фазы, 380 – 440 В/50 Гц, 380 – 480 В/60 Гц                                                  |              |  |  |  |
| Напряжение питания | Дополнительный вход питания вентилятора           | 400 B         | 1 фаза, 380 – 440 В/50 Гц, 380 – 480 В/60 Гц (*3)                                             |              |  |  |  |
| ,,,,,,,            | Фазы, напряжение, частота                         | 200 B         | 1 фаза, 200 – 220 В/50 Гц, 200 – 230 В/60 Гц (*4)                                             |              |  |  |  |
|                    | Допустимые отклонения напряжен                    | ния/частоты   | Напряжение: от +10 до -15 %, частота: от +5 до -5 %, несимметрия напряжений: не более 2% (*5) |              |  |  |  |
| Прибл. в           | ес [кг]                                           |               | 125                                                                                           | 160          |  |  |  |
| Исполне            | ние                                               |               | ІР00 открытое                                                                                 |              |  |  |  |

Трехфазное напряжение 690 В

|                    | Модель                                            |               | RHD220S-69D□                                                                                  |  |  |  |
|--------------------|---------------------------------------------------|---------------|-----------------------------------------------------------------------------------------------|--|--|--|
|                    | Номинальная длительная мощнос                     | ть [кВт] (*2) | 280                                                                                           |  |  |  |
| Выход              | Номинальная мощность<br>ПЧ/двигателя (*2)         | 1 1 7         | 250                                                                                           |  |  |  |
|                    | Номинальная перегрузочная сп                      | особность     | 110% номинального длительного тока в теч. 1 мин.                                              |  |  |  |
|                    | Напряжение                                        |               | 776 – 976 В пост. тока (зависит от входного напряжения питания и нагрузки)                    |  |  |  |
| Макс. пр           | исоединяемая мощность [кЕ                         | Вт] (*1)(*2)  | 750                                                                                           |  |  |  |
| Мин. при           | исоединяемая мощность [кВт                        | ] (*2)        | 132                                                                                           |  |  |  |
| Требуема           | ая мощность источника пита                        | ния [кВА]     | 308                                                                                           |  |  |  |
|                    | Основное электропитание Фазы, напряжение, частота |               | 3 фазы, 575 – 690 В, 50/60 Гц                                                                 |  |  |  |
| Напряжение питания | Дополнительный вход питания вентилятора           | 400 B         | 1 фаза, 660 – 690 В, 50/60 Гц; 575 – 600 В, 50/60 Гц (*3)                                     |  |  |  |
| 111100111111       | Фазы, напряжение, частота                         | 200 B         | 1 фаза, 200 – 220 В/50 Гц, 200 – 230 В/60 Гц (*4)                                             |  |  |  |
|                    | Допустимые отклонения напряжения/частоты          |               | Напряжение: от +10 до -15 %, частота: от +5 до -5 %, несимметрия напряжений: не более 2% (*5) |  |  |  |
| Прибл. в           | вес [кг]                                          |               | 125                                                                                           |  |  |  |
| Исполне            | ние                                               |               | ІР00 открытое                                                                                 |  |  |  |

<sup>\*1)</sup> Это общая мощность подключаемых ПЧ, установленная с учетом исходных ограничений зарядной цепи. При этом мощность, которой может единовременно управлять выпрямитель, называется длительной мощностью.

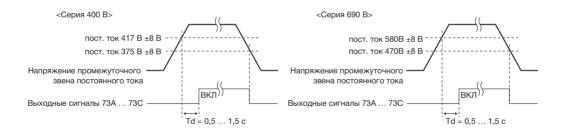
2) Серия 400 В: Это значение для напряжения питания 400 В. Если напряжение питания меньше 400 В, необходимо снизить мощность. Снижение мощности также требуется при подключении нескольких ПЧ.

3) Серия 690 В: Это значение для напряжения питания 890 В. Если напряжение питания меньше 690 В, необходимо снизить мощность. Снижение мощности также требуется при подключении нескольких ПЧ.

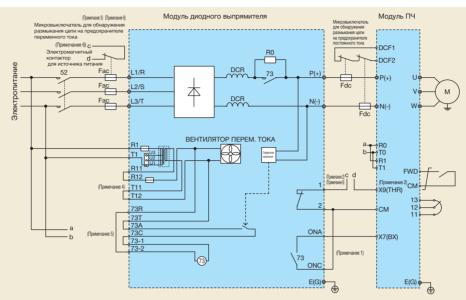
3) Серия 400 В: Если используется питание 380 - 398 В, 50 Пц или 380 - 430 В, 60 Пц, требуется переключить внутренние клеммы диодного выпрямителя (U1, U2).

Серия 690 В: Если используется питание 575 - 600 В, 50/60 Пц, требуется переключить внутренние клеммы диодного выпрямителя (U1, U2).

4) Для электроснабжения может также использоваться источник питания 200 В. Подробнее см. в Руководстве по эксплуатации диодного выпрямителя (RHD-D).

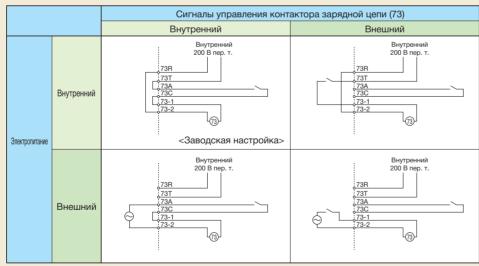

 $<sup>^{*5]}</sup>$  Коэффициент несимметрии фазных напряжений (%) =  $\frac{\text{макс. напряжение [B]}}{\text{среднее 3-фазное напряжение}} \times 67$ 

# Функции клемм

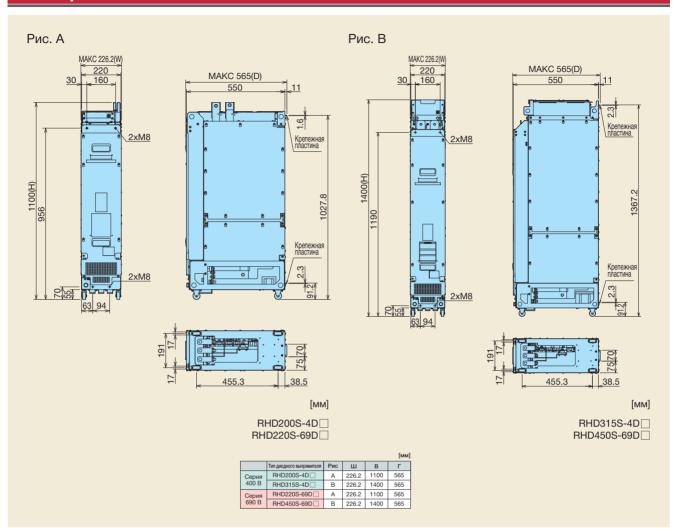

| (        | Сигнал           | Название                       | Функции                                                                                                                 |  |  |  |  |  |
|----------|------------------|--------------------------------|-------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
|          | L1/R, L2/S, L3/T | Вход силового питания          | Подключение трехфазного входного напряжения.                                                                            |  |  |  |  |  |
|          | P(+), N(-)       | Выходы преобразователя         | Подключение к входам питания ПЧ Р (+), N (-).                                                                           |  |  |  |  |  |
|          | E(G)             | Клемма заземления              | Клемма заземления шасси диодного выпрямителя (корпуса).                                                                 |  |  |  |  |  |
|          | R1, T1           | Вход питания вентилятора       | Используется как вход питания охлаждающего вентилятора переменного тока, установленного внутри диодного выпрямителя     |  |  |  |  |  |
|          | R11, R12         | Вход питания вентилятора       | Используется при входном напряжении 200 В перем. тока для питания охлаждающего вентилятора внутри диодного выпрямителя. |  |  |  |  |  |
| Силовая  | T11, T12         | (при входном напряжении 200 В) | При вводе напряжения 200 В перем. тока удалить короткозамыкающие перемычки                                              |  |  |  |  |  |
| цепь     | 111, 112         |                                | между клеммами R11, R12 и T11, T12 и соединить их с клеммами R12 и T12.                                                 |  |  |  |  |  |
|          | 73R              | Питание зарядной цепи          | Питание катушки контактора зарядной цепи.                                                                               |  |  |  |  |  |
|          | 73T              |                                | Не используется для питания внешней цепи.                                                                               |  |  |  |  |  |
|          | U1, U2           | Клемма для переключения        | Подключение клемм изменяется в зависимости от входа питания вентилятора.                                                |  |  |  |  |  |
|          | 01,02            | напряжения питания             | Подробнее см. в Руководстве по эксплуатации диодного выпрямителя (RHD-D).                                               |  |  |  |  |  |
|          |                  | Вход управления                | Входной управляющий сигнал для контактора зарядной цепи.                                                                |  |  |  |  |  |
|          | 73-1<br>73-2     | для контактора зарядной цепи   | Возможен также ввод внешнего управляющего сигнала.                                                                      |  |  |  |  |  |
|          |                  |                                | • Номинальная мощность катушки                                                                                          |  |  |  |  |  |
|          |                  |                                | <Серия 400 В>                                                                                                           |  |  |  |  |  |
| Входные  |                  |                                | При включении питания 200 В/50 Гц: 380 ВА, 220 В/60 Гц: 460 ВА                                                          |  |  |  |  |  |
| сигналы  | 73-2             |                                | При поддержании питания 200 В/50 Гц: 26,6 ВА, 220 В/60 Гц: 26,8 ВА                                                      |  |  |  |  |  |
|          |                  |                                | <Серия 690 В>                                                                                                           |  |  |  |  |  |
|          |                  |                                | При включении питания 200 В/50 Гц: 235 ВА, 220 В/60 Гц: 250 ВА                                                          |  |  |  |  |  |
|          |                  |                                | При поддержании питания 200 В/50 Гц: 20,0 ВА, 220 В/60 Гц: 19,5 ВА                                                      |  |  |  |  |  |
|          | 73A              | Выходной управляющий сигнал    | Управляющий сигнал зарядной цепи                                                                                        |  |  |  |  |  |
|          | 73C              | для зарядной цепи              | Также может использоваться для внешних последовательностных цепей.                                                      |  |  |  |  |  |
|          | 730              |                                | Номинал контакта: 250 В перем. тока 0,5 А $\cos \phi$ =0,3, 30 В пост. тока 0,5 А                                       |  |  |  |  |  |
| Выходные | ONA              | Сигнал проверки работы         | Вспомогательный контакт контактора для зарядной цепи.                                                                   |  |  |  |  |  |
| сигналы  | ONC              | зарядной цепи                  | Используется для проверки работы зарядной цепи.                                                                         |  |  |  |  |  |
| оин палы | ONO              |                                | Номинал контакта: 24 В пост. тока, 3 А $^{\star}$ Мин. рабочее напряжение/ток: 5 В пост. тока, 3 мА                     |  |  |  |  |  |
|          | 1                | Выходной сигнал общей аварии   | Сигнал выдается при перегреве внутренних частей диодного выпрямителя.                                                   |  |  |  |  |  |
|          | 2                |                                | Номинал контакта: 24 В пост. тока, 3 мА                                                                                 |  |  |  |  |  |

<sup>(\*1)</sup> См. способ подключения на основной схеме соединений.

Подключить контакторы после завершения первоначальной зарядки. Не размыкать контакторы во время работы ПЧ. Несоблюдение этого требования может привести к повреждению цепи начальной зарядки. (\* 2) Ниже показаны временная диаграмма выходного сигнала и диаграмма напряжения промежуточного звена постоянного тока (выходное напряжение диодного выпрямителя) во время выхода сигнала.




# Схема соединений




Примечание 1) Использовать последовательность, в которой сигнал на выполнение команды залуска вводится в ПЧ после завершения начальной зарядки диодного выпрямителя.
Назначить любой из клемм X1-X9 преобразователя частоты команду останова на выбеге (ВХ) и настроить вход на контакте "b" с помощью функционального кода Е14 для входного сигнала этого контакта.
Примечание 2) Выход сигнала перегрева диодного выпрямителя. Назначить любой из клемм X1-X9 преобразователя частоты внешний аварийный сигнал (ТНЯ), а затем выполнить подключение.
Настроить вход на контакте "b" с помощью функционального кода Е14 для входного сигнала этого контакта.
Примечание 3) При использовании микровыключателя для обнаружения перегорания прерохранителя переменного тока назначить любой из клемм X1-X9 преобразователя частоты внешний аварийный сигнал (ТНЯ), а затем выполнить подключение.
Настроить вход на контакте "b" с помощью функционального кода Е14 для входного сигнала этого контакта.
Примечание 4) При использовании микровыключателя для обнаружения перегорания прерохранителя переменного тока назначить любой из клемм X1-X9 преобразователя частоты внешний аварийный сигнал (ТНЯ), а затем последовательно соединить все микровыключателя для обнаружения перегорания пременного тока назначить любой из клемм X1-X9 преобразователя частоты внешний аварийный сигнал (ТНЯ), а затем последовательно соединить все микровыключателя пастоты внешний аварийный сигнал (ТНЯ), а затем последовательно соединить ве микровыключателя и настоя в пременного сигнал этого контакта.
Примечание 9 При вседен еларжения об верхительного ком до в контакта, в пременного соединелия в пременного ком растоя с пременного ком до в пременного ком до в пременного ком до в пременного ком до в пременного тока.
Кроме того, на каждом модуле необходимо последовательно соединить выходы реле аварийной сигнализации (1, 2), выходы проверки работы зарядной цепи (ОNA, ONB, ONC) и выходы микровыключателя для обнаружения перегорания предохранителя пременного тока.
Примечание 97 При использовании напр

предкорами или переменного тока.
Примечание 7) При использовании напряжения 400 В подключить предохранитель пост. тока Fdc к стороне P(+). Подключение предохранитель Fdc к стороне N(-) не требуется.
При использовании напряжения 690 В подключить предохранитель пост. тока Fdc к сторонам P(+) и N(-). (Последовательно соединить два микровыключателя.)



# **Размеры**



# Периферийные устройства

### 3-фазное напряжение 400 В

| ı | Тип RHD-D    | Режим    | MCCB, ELCB          | Электромагнитн | ый контактор (52) Предохранитель переменного тока (Fac) |           |        | Микровыключатель |        |  |
|---|--------------|----------|---------------------|----------------|---------------------------------------------------------|-----------|--------|------------------|--------|--|
|   | ט-טווא ווווו | нагрузки | Номинальный ток [А] | Тип            | Кол-во                                                  | Тип       | Кол-во | Тип              | Кол-во |  |
|   | RHD200S-4D□  | MD       | 500                 | SC-N12         | 1                                                       | 170M6547  | 3      | - 170H3027       | 3      |  |
|   | R⊓D2005-4D□  | LD       | 500                 | 5C-N12         |                                                         |           |        |                  |        |  |
|   | RHD315S-4D□  | MD       | 700                 | CC N114        |                                                         | 470140500 | 0      |                  |        |  |
|   | N⊓D3133-4D□  | LD       | 800                 | SC-N14         |                                                         | 170M6500  | 3      |                  |        |  |

### 3-фазное напряжение 690 В

| Тип RHD-D    | Режим    | MCCB, ELCB Electromagnetic |        | c contactor (52) | Предохранитель пер | Предохранитель переменного тока (Fac) |          | Микровыключатель |  |
|--------------|----------|----------------------------|--------|------------------|--------------------|---------------------------------------|----------|------------------|--|
| ט-טחא ווווו  | нагрузки | Номинальный ток [А]        | Тип    | Кол-во           | Тип                | Кол-во                                | Тип      | Кол-во           |  |
| RHD220S-69D□ | S-69D MD | 300                        | SC-N11 | 1                | 170M6497           | 3                                     |          |                  |  |
| KUD2202-09D  |          | 350                        |        |                  |                    |                                       | 170H3027 | 3                |  |
| RHD450S-69D□ | MD       | 600                        | SC-N14 | 1                | 170M6501           | 3                                     |          |                  |  |

<sup>\*</sup> Указаны предохранители и микровыключатели производства фирмы Cooper Bussmann. Данные изделия также можно заказать у компании Fuji.



# В редакции «Руководство по снижению уровня гармоник для потребителей высокого или особо высокого напряжения»

Преобразователи частоты серии FRENIC относятся к числу изделий, на которые распространяется действие «Руководства по снижению уровня гармоник для потребителей высокого или особо высокого напряжения». При заключении нового контракта с электроэнергетической компанией или внесении изменений в действующий контракт потребитель должен представить компании отчет, составленный по типовой форме.

#### (1) Область применения

- В основном, руководство распространяется на потребителей, которые отвечают двум следующим условиям:
- Потребители, получающие высокое или особо высокое напряжение.
- «Эквивалентная нагрузочная способность» преобразователя превышает стандартное значение для принимаемого напряжения (50 кВА при принимаем напряжении 6,6 кВ).

#### (2) Метод регулирования

Регулируется уровень (расчетное значение) гармонического тока, текущего от точки приема потребителя в систему. Нормативное значение пропорционально потребляемой мощности по условиям контракта. Нормативные значения, указанные в руководстве, приведены в Таблице 1.

Таблица 1 Верхний предел перетока гармонического тока в сеть в расчете на 1 кВт мошности, потребляемой по условиям контракта [мА/кВт]

| Принимаемое<br>напряжение | 5   | 7   | 11   | 13   | 17   | 19   | 23   | Более 25 |
|---------------------------|-----|-----|------|------|------|------|------|----------|
| 6.6 кВ                    | 3.5 | 2.5 | 1.6  | 1.3  | 1.0  | 0.90 | 0.76 | 0.70     |
| 22 kB                     | 1.8 | 1.3 | 0.82 | 0.69 | 0.53 | 0.47 | 0.39 | 0.36     |

#### 1. Расчет эквивалентной нагрузочной способности (Рі)

Хотя эквивалентная нагрузочная способность (Рі) рассчитывается с помощью уравнения (номинальная нагрузочная способность) х (коэффициент преобразования), в каталоге обычных преобразователей частоты не приводятся значения номинальной нагрузочной способности. Ниже описан порядок расчета номинальной нагрузочной способности:

#### (1) «Номинальная нагрузочная способность», соответствующая значению "Рі"

• Рассчитать первую гармонику входного тока I1, используя номинальную мощность (в кВт) и КПД двигателя, а также КПД преобразователя частоты. Затем рассчитать номинальную нагрузочную способность, как показано ниже:

Номинальная нагрузочная способность =  $\sqrt{3}$  х (напряжение питания) х I1 х 1,0228/1000 [кВА] Где 1,0228 - значение для 6-пульсного преобразователя, полученное с помощью уравнения: (эффективное значение тока) / (ток первой гармоники).

• Если используется обычный двигатель или двигатель с управлением от ПЧ, можно использовать соответствующее значение, указанное в Таблице 2. Значение выбирается на основе номинальной мощности используемого двигателя (в кВт), независимо от типа ПЧ.

| Таблица 2 Номинальная нагрузочная способность универсальных преобразователей частоты в зависимости от номинальной мощности двигателя |                       |      |      |      |      |      |      |      |      |      |      |      |
|--------------------------------------------------------------------------------------------------------------------------------------|-----------------------|------|------|------|------|------|------|------|------|------|------|------|
| Номинальная<br>двигател                                                                                                              | я мощность<br>я [кВт] | 0.4  | 0.75 | 1.5  | 2.2  | 3.7  | 5.5  | 7.5  | 11   | 15   | 18.5 | 22   |
| Pi                                                                                                                                   | 200 B                 | 0.57 | 0.97 | 1.95 | 2.81 | 4.61 | 6.77 | 9.07 | 13.1 | 17.6 | 21.8 | 25.9 |
| [ĸBA]                                                                                                                                | 400 B                 | 0.57 | 0.97 | 1.95 | 2.81 | 4.61 | 6.77 | 9.07 | 13.1 | 17.6 | 21.8 | 25.9 |
| Номичальная мощность 30 37 45 55 75 90 110 132 160 200 22                                                                            |                       |      |      |      |      |      | 220  |      |      |      |      |      |
| Pi                                                                                                                                   | 200 B                 | 34.7 | 42.8 | 52.1 | 63.7 | 87.2 | 104  | 127  |      |      |      |      |
| [ĸBA]                                                                                                                                | 400 B                 | 34.7 | 42.8 | 52.1 | 63.7 | 87.2 | 104  | 127  | 153  | 183  | 229  | 252  |
| Номинальная<br>двигател                                                                                                              |                       | 250  | 280  | 315  | 355  | 400  | 450  | 500  | 530  | 560  | 630  |      |
| Pi                                                                                                                                   | 200 B                 |      |      |      |      |      |      |      |      |      |      |      |
| [ĸBA]                                                                                                                                | 400 B                 | 286  | 319  | 359  | 405  | 456  | 512  | 570  | 604  | 638  | 718  |      |

### (2) Значения коэффициента преобразования "Кі"

 В зависимости от того, используется ли опциональный входной дроссель переменного тока АСR или
дроссель звена постоянного тока DCR, следует применить соответствующий коэффициент преобразования, казанный в приложении к руководству. Значения коэффициента преобразователя указаны в таблице 3.

Таблица 3 Коэффициенты преобразования "Кі" обычного преобразователя частоты в зависимости от типа дросселя

| Категория цепи | Тип                        | і цепи                   | Коэффициент преобразования Кі | Применяемость                                             |  |
|----------------|----------------------------|--------------------------|-------------------------------|-----------------------------------------------------------|--|
| 3              | 3-фазный                   | Без дросселя             |                               | Универсальные ПЧ     Лифты                                |  |
|                | выпрямитель                | С дросселем (ACR)        |                               | • Рефрижераторы, системы                                  |  |
|                | (сглаживающий конденсатор) | C дросселем (DCR)        | K33=1.8                       | кондиционирования <ul> <li>Другое оборудование</li> </ul> |  |
|                | конденсатор)               | С дросселями (ACR и DCR) | K34=1.4                       | общего назначения                                         |  |
|                |                            |                          |                               |                                                           |  |

Таблица 4. Значения «первой гармоники вхолного тока» универсальных ПЧ в зависимости от номинальной мошности пвигателя

| Номинальная мощь<br>двигателя [кВт         | ЮСТЬ         | 0.4   | 0.75  | 1.5   | 2.2   | 3.7   | 5.5   | 7.5   | 11    | 15    | 18.5  | 22    |
|--------------------------------------------|--------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| Первая 20                                  | 0 B          | 1.61  | 2.74  | 5.50  | 7.93  | 13.0  | 19.1  | 25.6  | 36.9  | 49.8  | 61.4  | 73.1  |
| входного тока [А] 40                       | 0 B          | 0.81  | 1.37  | 2.75  | 3.96  | 6.50  | 9.55  | 12.8  | 18.5  | 24.9  | 30.7  | 36.6  |
| Расчетное значени<br>для напряжения 6,6 кб | ne<br>В [мА] | 49    | 83    | 167   | 240   | 394   | 579   | 776   | 1121  | 1509  | 1860  | 2220  |
| Номинальная мощ-<br>двигателя [кВт         |              | 30    | 37    | 45    | 55    | 75    | 90    | 110   | 132   | 160   | 200   | 220   |
| Первая 20 гармоника                        | 0 B          | 98.0  | 121   | 147   | 180   | 245   | 293   | 357   |       |       |       |       |
| входного тока [А] 40                       | 0 B          | 49.0  | 60.4  | 73.5  | 89.9  | 123   | 147   | 179   | 216   | 258   | 323   | 355   |
| Расчетное значени<br>для напряжения 6,6 кв | ne<br>В [мА] | 2970  | 3660  | 4450  | 5450  | 7450  | 8910  | 10850 | 13090 | 15640 | 19580 | 21500 |
| Номинальная мощь<br>двигателя [кВт         | НОСТЬ        | 250   | 280   | 315   | 355   | 400   | 450   | 500   | 530   | 560   | 630   |       |
|                                            | 0 B          |       |       |       |       |       |       |       |       |       |       |       |
| гармоника<br>входного тока [A] 40          | 0 B          | 403   | 450   | 506   | 571   | 643   | 723   | 804   | 852   | 900   | 1013  |       |
| Расчетное значени<br>для напряжения 6,6 кв | іе<br>В [мА] | 24400 | 27300 | 30700 | 34600 | 39000 | 43800 | 48700 | 51600 | 54500 | 61400 |       |

### (2) Расчет гармонического тока

Таблица 5 Генерируемый гармонический ток [%], 3-фазный выпрямитель (сглаживающий конденсатор)

| Порядок гармоники        | 5-й | 7-й  | 11-й | 13-й | 17-й | 19-й | 23-й | 25-й |
|--------------------------|-----|------|------|------|------|------|------|------|
| Без дросселя             | 65  | 41   | 8.5  | 7.7  | 4.3  | 3.1  | 2.6  | 1.8  |
| С дросселем (ACR)        | 38  | 14.5 | 7.4  | 3.4  | 3.2  | 1.9  | 1.7  | 1.3  |
| C дросселем (DCR)        | 30  | 13   | 8.4  | 5.0  | 4.7  | 3.2  | 3.0  | 2.2  |
| С дросселями (ACR и DCR) | 28  | 9.1  | 7.2  | 4.1  | 3.2  | 2.4  | 1.6  | 1.4  |

- DCR: Длительность накопления энергии равна от 0,08 до 0,15 мс (100% отдача в нагрузку)
- Сглаживающий конденсатор: Длительность накопления энергии равна от 15 до 30 мс (100% отдача в нагрузку)
- Нагрузка: 100%

Рассчитать гармонический ток для каждого порядка (номера гармоники) по следующей формуле:

#### (3) Максимальное значение коэффициента готовности

- Для такой нагрузки, как лифт, предусматривающей периодический режим работы, кли нагрузки в виде двигателя с нестандартными (завышенными) номинальными характеристиками, необходимо снизить ток, умножив полученное по формуле значение на «максимальный коэффициент готовности» для данной нагрузки.
   «Максимальный коэффициент готовности к его полной допустимой нагрузки генератора гармоник при работе с максимальным коэффициентом готовности к его полной допустимой нагрузке. При этом длительность допустимой нагрузки генератора при работе составляет в среднем 30 минут.
   Коти правильным коэффициентом готовности в составляет в среднем 30 минут.
- Как правило, максимальный коэффициент готовности рассчитывается в соответствии с этим определением однако при построении оборудования рекомендуется использовать стандартные значения, указанные в таблице 6.

Таблица 6 Коэффициенты готовности и класс мощности ПЧ для построения оборудования (стандартные значения)

| Тип оборудования          | Класс мощности ПЧ | Коэффициент готовности одного ПЧ |  |  |  |
|---------------------------|-------------------|----------------------------------|--|--|--|
| Система                   | Не более 200 кВт  | 0.55                             |  |  |  |
| кондиционирования         | Более 200 кВт     | 0.60                             |  |  |  |
| Насос сточной системы     |                   | 0.30                             |  |  |  |
| Лифт                      |                   | 0.25                             |  |  |  |
| Рефрижератор, холодильник | Не более 50 кВт   | 0.60                             |  |  |  |
| ИБП (6-пульсный)          | 200 kBA           | 0.60                             |  |  |  |

Поправочный коэффициент в зависимости от уровня потребляемой мощности по условиям контракта]

• Поскольку общий коэффициент готовности уменьшается с увеличением масштаба системы допускается применение поправочного коэффициента в для расчета гармоник со сниже Значения коэффициента в приведены в таблице 7.

Таблица 7 Величина поправочного коэффициента в зависимости от масштаба системы

| Потребляемая мощность<br>по условиям контракта [кВт] | Поправочный коэффициент ( |
|------------------------------------------------------|---------------------------|
| 300                                                  | 1.00                      |
| 500                                                  | 0.90                      |
| 1000                                                 | 0.85                      |
| 2000                                                 | 0.80                      |

\*Если потребляемая мощность по условиям контракта находится между двумя заданными значениями, указанными в Таблице 7, расчет нужного значения производится методом интерполяционного

(4) Порядок гармоник для расчета гармонических токов Рассчитывать только токи гармоник 5-го и 7-го порядка

#### 2. Расчет гармонического тока

#### (1) Значение «первой гармоники входного тока»

- Вне зависимости от типа ПЧ или использования дросселя следует применить соответствующее значение, указанное в Таблице 4, с учетом номинальной мощности двигателя.
- Если входное напряжение отличается, рассчитать первую гармонику входного тока обратно пропорционально напряжению.



#### При работе с общепромышленными (обычными) двигателями

#### Питание обычного двигателя на 400 В

При подключении ПЧ к обычному 400-вольтовому двигателю с очень длинными проводами возможно повреждение изоляции двигателя. При необходимо сти рекомендуется использовать фильтр выходной цепи (OFL), предварительно проконсультировавшись с производителем двигателя. Для двигателей Fuji благодаря усиленной изоляции фильтр выходной цепи не требуется.

#### Показатели крутящего момента и рост температуры

Если обычный двигатель работает от ПЧ, то его температура выше, чем при питании от сети общего пользования. В диапазоне малых скоростей, где эффект охлаждения невелик, следует снизить момент на валу двигателя. Если необходимо поддерживать постоянный момент при низких скоростях, следует применять двигатель Fuji, снабженный независимой вентиляцией

#### • Вибрация

Если двигатель с приводом от ПЧ входит в состав агрегата, возможно возникновение резонанса на частотах свободных колебаний самого агрегата. Работа 2-полюсного двигателя на частоте 60 Гц и выше может привести к аномальным вибрациям.

- Рекомендуется применение резиновых соединительных муфт или резиновых демпферов
- \* Для ухода из резонансной зоны следует использо вать функцию ступенчатого изменения частоты

При работе двигателя от ПЧ уровень его шумов выше, чем при питании от сети общего пользования. Повышение несущей частоты ПЧ позволяет снизить уровень шумов. Высокоскоростная работа на частоте 60 Гц и выше также ведет к увеличению уровня шума

#### При работе со специальными двигателями

### • Взрывозащищенные двигатели

При работе преобразователя частоты на взрывозащищенный двигатель следует предварительно согласовать применение такой конфигурации.

#### • Тормозные двигатели

двигателях с параллельным включением тормозов питание цепи торможения осуществляется от первичной цепи (сеть общего пользования). Если цепь торможения по ошибке соединена с выходной силовой цепью ПЧ (вторичная цепь), могут возникнуть проблемы.

Нельзя применять ПЧ для питания двигателей с последовательным включением тормозов.

#### Редукторные двигатели

Если в качестве механизма силовой передачи применяется смазываемая коробка передач или переключатель/редуктор скорости, то продолжительная работа двигателя на малых скоростях может привести к недостаточной смазке. Спедует избегать таких режимов работы.

#### Однофазные двигатели

Однофазные двигатели не подходят для управления скоростью с помощью ПЧ. Следует применять трехфазные двигатели

#### Окружающие условия

• **Место установки**Использовать ПЧ в местах с температурой окружающего воздуха от -10 до 50°C.

Поверхности ПЧ и тормозного резистора при определенных условиях сильно нагреваются поэтому ПЧ следует устанавливать на невоспламеняемый материал (металл). Внешние условия в месте установки должны соответствовать указанным в разделе «Окружающая среда» спецификации ПЧ.

#### Комбинация с периферийным оборудованием

#### • Установка автоматического выключателя в литом корпусе

Установить рекомендуемый автоматический выключатель в литом корпусе (МССВ) или выключатель с функцией защиты при утечке на землю (ELCB) в цепи подачи питания ПЧ, чтобы защитить электропроводку. Мощность цепи размыкания не должна превышать рекомендуемую величину.

#### • Установка электромагнитного контактора в выходную (вторичную) цепь

Если для подключения к обычной сети или для других целей во вторичной цепи ПЧ установлен электромагнитный контактор (МС), необходимо следить, чтобы перед включением или выключениспедить, чтобы перед выпочением или выключением ем контактора преобразователь частоты и двигатель был полностью остановлены. Не подсоединять контактор вместе с устройством защиты от бросков тока к вторичной цепи ПЧ

### • Установка электромагнитного контактора во входную (первичную) цепь Не переключать электромагнитный

установленный в первичной цепи, более одного раза в час, так как это может вызвать отказ ПЧ. При необходимости частых пусков и остановок следует пользоваться сигналами FWD/REV.

#### Защита двигателя

В ПЧ имеется функция электронной тепловой в ттч имеется функции электронной тепловой защиты, которая может защитить обычный двигатель от перегрузки. Необходимо указать уровень срабатывания и тип двигателя (обычный или для работы с ПЧ). Для высокоскоростных и водоохлаждаемых двигателей следует задать малое значение тепловой постоянной времени с целью защиты двигателя.

Если реле тепловой защиты подключено двигателю длинным проводом, то возможна наводка высокочастотных токов через паразитную емкость. Это может вызвать размыкание теплового реле при токах ниже установленного уровня. В этих случаях следует понизить несущую частоту или применить фильтр выходной цепи (OFL).

# • Исключение из схемы конденсатора коррекции коэффициента мощности

Не ставить конденсаторы коррекции коэффициента мощности в первичную цепь ПЧ. Для повышения коэффициента мощности использовать дроссель звена постоянного тока. Не использовать корректи рующие мощность конденсаторы в выходной (вторичной) цепи ПЧ. Это может привести к срабатыванию защиты по токовой перегрузке и отключению двигателя.

# • Исключение из схемы подавителя

Не подсоединять устройства защиты от бросков тока к выходной (вторичной) цепи ПЧ.

#### • Снижение помех

Для соответствия директивам по ЭМС рекомендуется применение фильтра и экранированных проводов.

#### • Меры против выбросов тока

Отключение по перенапряжению ненагруженного (или работающего на низкую нагрузку) ПЧ может быть вызвано выбросами тока вследствие выключения фазосдвигающего включения / конденсатора в системе питания.

Рекомендуется подключить к ПЧ дроссель звена постоянного тока.

#### • Тест мегаомметром (измерение сопротивления изоляции)

Проверку сопротивления изоляции ПЧ следует выполнять мегаомметром на 500 В, следуя инструкциям, содержащимся в Руководстве по эксплуатации.

#### Подключение

#### • Длина проводки цепи управления

При дистанционном управлении следует использовать скрученный экранированный провод и обеспечить, чтобы длина проводки между ПЧ и пультом управления не превышала 20 м.

• Длина проводки между ПЧ и двигателем При большой длине проводки между ПЧ и двигателем возможны перегрев или отключение преобразователя вследствие перегрузки по току (из-за высокочастотных токов, проникающих через паразитную емкость) в фазных проводах. Необходимо следить, чтобы длина проводки не превышала 50 м. Если длина все же превышена, следует понизить несущую частоту или поставить фильтр выходной цепи (OFL).

екторного управления с датчиком скорости или

векторного управления с датчиком скорости или без него, настройка выполняется в режиме офлайн.

#### • Сечение проводников

Выбирать провода по величине тока или из рекомендованного перечня по сечению.

#### • Тип проводки

Не применять многожильные кабели, которые обычно используются для соединения нескольких ПЧ и двигателей

Следить за надежностью подключения заземления к заземляющим клеммам

### Выбор мощности ПЧ

#### • Работа с обычными (общепромышленными) двигателями

Выбирать преобразователь частоты по номинальпараметрам применяемых двигателей, указанным в таблице стандартных технических характеристик ПЧ. Если требуется высокий пусковой момент, быстрое ускорение или замедление, следует выбирать модель ПЧ (по мощности) на одну позицию больше стандартной

#### • Работа со специальными двигателями

При выборе ПЧ необходимо соблюдать следующее условие: номинальный ток инвертора должен быть больше номинального тока двигателя.

### Транспортировка и хранение

При транспортировке или хранении преобразоватечастоты следует соблюдать процедуры и выбирать места, соответствующие окружающей среды, указанным в спецификации преобразователя.

# <u>Л</u> Требования обеспечения безопасности

- Изделие следует эксплуатировать и хранить в условиях окружающей среды, определенных в инструкции и руководстве по эксплуатации. Высокая температура, высокая влажность, конденсация, пыль, агрессивные газы, масло, органические растворители, чрезмерная вибрация или ударное воздействие могут привести к поражению электрическим током, пожару, перебоям в работе или отказу.
- Для обеспечения безопасной эксплуатации изделия перед его использованием следует внимательно ознакомиться с инструкцией по эксплуатации или руководством пользователя, которые прилагаются к изделию, или проконсультироваться с торговым представителем компании Fuji, у которого оно было приобретено
- Изделия, представленные в этом каталоге, не предназначены для такого применения в системах или оборудовании, при котором существует вероятность воздействия на тело или жизнь человека.
- Клиентам, желающим использовать изделия, представленные в этом каталоге, в специальных системах или устройствах, предназначенных для таких областей, как управление атомной энергетикой, авиационно-космическое оборудование, медицинская техника, пассажирские транспортные средства и системы управления движением, необходимо проконсультироваться со специалистами компании Fuji Electric FA.
- Клиенты должны предусмотреть меры безопасности при использовании изделий, представленных в этом каталоге, в таких системах или устройствах, отказ которых в случае неисправности данных изделий может причинить вред здоровью людей или нанести серьезный материальный ущерб.
- Для обеспечения безопасной эксплуатации изделий, представленных в этом каталоге, монтажные работы должны выполняться только квалифицированными техниками, обладающими необходимыми техническими знаниями для проведения электротехнических или электромонтажных работ.
- При утилизации изделия следует соблюдать правила обращения с промышленными отходами.
- Для получения дополнительной информации следует обратиться к местному торговому представителю или непосредственно в компанию Fuji Electric FA.