PowerFlex Digital DC Drive

PowerFlex DC Drive V1.006 . . .6.004, PowerFlex DC Standalone Regulator V1.006 . . . 6.004

Important User Information

Read this document and the documents listed in the additional resources section about installation, configuration, and operation of this equipment before you install, configure, operate, or maintain this product. Users are required to familiarize themselves with installation and wiring instructions in addition to requirements of all applicable codes, laws, and standards.

Activities including installation, adjustments, putting into service, use, assembly, disassembly, and maintenance are required to be carried out by suitably trained personnel in accordance with applicable code of practice.

If this equipment is used in a manner not specified by the manufacturer, the protection provided by the equipment may be impaired.

In no event will Rockwell Automation, Inc. be responsible or liable for indirect or consequential damages resulting from the use or application of this equipment.

The examples and diagrams in this manual are included solely for illustrative purposes. Because of the many variables and requirements associated with any particular installation, Rockwell Automation, Inc. cannot assume responsibility or liability for actual use based on the examples and diagrams.

No patent liability is assumed by Rockwell Automation, Inc. with respect to use of information, circuits, equipment, or software described in this manual.

Reproduction of the contents of this manual, in whole or in part, without written permission of Rockwell Automation, Inc., is prohibited.

Throughout this manual, when necessary, we use notes to make you aware of safety considerations.
WARNING: Identifies information about practices or circumstances that can cause an explosion in a hazardous environment,
which may lead to personal injury or death, property damage, or economic loss.

Labels may also be on or inside the equipment to provide specific precautions.

SHOCK HAZARD: Labels may be on or inside the equipment, for example, a drive or motor, to alert people that dangerous voltage may be present.
BURN HAZARD: Labels may be on or inside the equipment, for example, a drive or motor, to alert people that surfaces may

reach dangerous temperatures. | ARC FLASH HAZARD: Labels may be on or inside the equipment, for example, a motor control center, to alert people to |
| :--- |
| potential Arc Flash. Arc Flash will cause severe injury or death. Wear proper Personal Protective Equipment (PPE). Follow ALL |
| Regulatory requirements for safe work practices and for Personal Protective Equipment (PPE). |

This manual contains new and updated information.

New and Updated Information

This table contains the changes made to this revision.

Topic	Page
Added the Maximum Surrounding Air Temperature Specifications.	$\underline{18}$
Updated the frame B drive dimensions to include another depth dimension for certain catalog numbers.	$\underline{20}$
Updated the Typical Power Wiring Diagrams to illustrate connections for frame D, series A, B, and C fans.	45
Updated the Frame D, Series B and C Heatsink Cooling Fan Specifications to include information on fan air-flow verification after wiring.	71
Updated the description for the DIP switch S20 to identify Z channel monitoring in software versus hardware.	$\underline{76}$
Changed the name of parameter 467 from [Max Fld Curr Pct] to [Max Fld Flux Pct]. The parameter name was only incorrect in this manual.	Throughout manual
Added a note to parameter 232 [Inertia Comp 0ut].	126
Updated the description for parameter 652 [Encoder Err Chk].	$\underline{139}$
Added a note to parameters 87 [Spd Reg Kp] and 88 [Spd Reg Ki], 459 [SpdReg Kp Bypass], and 460 [SpdReg Ki Bypass] that refers to the Manual Tuning the Speed Regulator procedures for firmware version 6.001 and later.	$\frac{146}{150} \text { and }$
Changed 920 ms to 960 ms to reflect the correct amount of time after which a Main Contactor fault occurs when the main and/or dynamic brake (DB) contactor fails to open or close.	$\underline{221}$
Added new values to the Testpoint Codes and Functions table.	$\underline{231}$
Removed the Certifications and Specifications information. See the PowerFlex Digital DC Drive Technical Data, publication 20P-TD001, for certification and specification information.	$\underline{234}$
Added a new table for frame D drive watts loss and series B fan capacity data.	$\underline{236}$
Added a new table for frame D drive watts loss and series C fan capacity data.	$\underline{236}$
Added a summary of the basic relationships between Speed Regulator gains, bandwidth, and tuning for firmware version 6.001 and later to the Manually Tuning the Speed Regulator for Firmware Revision 6.001 and Later procedure.	304

Changes to this manual for previous revisions are included in Appendix I History of Changes on page 383 .

Notes:

Preface Drive Storage Conditions 11
Drive Nameplate Data 12
Drive Series Letter 12
Drive Frame Sizes 12
Drive Firmware Version 12
Drive Specifications 12
Additional Resources 13
Technical Support 13
Conventions 13
General Precautions 14
Standard Drive Catalog Number Explanation 15
Standard Drive Catalog Number Explanation, Cont. 16
Standalone-Alone Regulator Catalog Numbers 16
Chapter 1
Installation and Wiring
Mount the Drive 18
Operating Conditions and Temperatures 18
Minimum Mounting Clearances 18
Maximum Surrounding Air Temperature Specifications 18
Approximate Drive Dimensions and Weights 19
Lifting PowerFlex DC Drives 25
Mount Frame C and D Drives 25
Remove the Drive Covers 27
Frame A Drives 27
Frame B and C Drives 28
Frame D 29
Isolation Transformers / Line Reactors 29
Contactors 30
AC Input Contactors 31
DC Output Contactors 31
Dynamic Brake Resistors 31
General Grounding Requirements 32
Safety Ground (PE) 33
Power Feeder 33
Encoder/Resolver Ground Connections 33
Tachometer Ground Connections 33
Grounding for Installations in an Ungrounded or High-Impedance, Neutral Ground, or System 34
Power Distribution 34
CE Conformity 39
Low Voltage Directive 39
EMC Directive 39
General Considerations 39
Installation Requirements Related to the Low Voltage Directive. 40
Installation Requirements Related to EN 61800-3 and the EMC Directive 40
Pollution Degree Ratings According to EN 61800-5-1 41
Power Circuit Protection 42
Control Power Circuit Protection 42
Cable and Wiring Recommendations 43
Power Wiring 44
AC Input Voltages 44
DC Output Voltages 45
Typical Power Wiring Diagrams 45
Armature Converter Connections 50
Armature Voltage Feedback Connections 53
Field Converter Connections 56
Field Current Configuration 60
Set DIP Switch S14 to the Correct Value 60
Relay Outputs 62
Thermistors and Thermal Switches 62
Control Circuit Input Power 65
Frame C Heatsink Cooling Fan Specifications 69
Frame D, Series B and C Heatsink Cooling Fan Specifications 71
Frame C and D Armature Fuse Signal Terminals 73
DIP Switch and Jumper Settings 75
I/O Wiring 80
I/O Signal and Control Wiring 81
I/O Wiring Examples 83
Digital Encoder Terminal Block 86
DC Analog Tachometer Terminal Block 88
Resolver Feedback Module 88
I/O and Control Wire Routing 89
Drive Start Up
Chapter 2
Drive Start Up Checklist 91
Before Applying Power to the Drive 92
Verify all Drive Configuration Settings 92
Verify the Power Wiring 92
Verify the Control and I/O Wiring 92
Apply Power to the Drive 93
Apply Voltage to the Control Circuits 93
Verify the Control Voltages 94
Load the Default Settings. 95
Configure the Most Commonly Used Parameters 95
Tune the Current Regulator 100
Verify Motor Rotation and Run Feedback Polarity Checks 102
Configure the Speed Feedback Parameters 105
Tune the Speed Regulator 107
Verify Speed Reference Settings and Drive Operation 109
Chapter 3
Programming and Parameters
Troubleshooting
Supplemental Drive Information
Appendix A
Certifications and Specifications 234
IP20 NEMA / UL Type Open Watts Loss 234
Communication Configurations 237
Typical Programmable-Controller Configurations 237
Logic Command/Status Words 237
Drive Power Circuit Protection 239
Frame A and B Fuse Information 239
Frame C and D Fuse Information 245
Control Power Circuit Protection Fuses 252
Switching Power Supply Circuit Board Fuses 252
Frame B Pulse Transformer Circuit Board Fuses 254
Frame C Transient Noise Filter Circuit Board Fuses 255
Frame D Overvoltage Clipping Circuit Board Fuses 256
AC Input Line Reactors and AC Input Contactors 257
Isolation Transformers 259
Dynamic Brake Resistor Kits and DC Output Contactors 261
DC Contactor Crimp Lug Kit Specifications 262
Alternate Dynamic Brake Resistor Kits and DC Output Contactors. 263
Alternate EMC Filters 264
Terminal Adapter Kits for Frame D Drives 267
Appendix B
HIM Overview
Application Notes
External and Internal Connections 269
LCD Display Elements 270
ALT Functions 270
Using the S.M.A.R.T. List Screen 271
Menu Structure 272
Viewing and Editing Parameters 274
LCD HIM 274
Removing/Installing the HIM 275
Appendix C
Alpha Test Mode 277
Alpha Test Setup and Operation 278
Analog Input Configuration 280
Example 1: 280
Example 2: 280
Analog-input Signal Comparison 281
Current / Speed Curve 282
Drive Reference and Feedback Scaling 283
Armature Voltage Feedback 284
DC Analog Tachometer Feedback 284
Encoder Feedback 284
Drive Reference and Feedback Scaling Examples 285
Valid Speed Feedback Values 287
Droop Compensation 289
Field-weakening Mode Configuration (v1.006) 289
Using a DC Contactor Only (Firmware v1.006 Only) 290
Using a DC Contactor and a Dynamic Brake (Firmware v1.006 Only) 290
Using an Inverting Fault Device Only (Firmware v1.006 Only) 291
Using a DC Contactor and an Inverting Fault Device (Firmwarev1.006 Only)291
Using a DC Contactor, a Dynamic Brake and an Inverting Fault Device (Firmware v1.006 Only) 292
Lifting/Torque Proving 293
Tuning The Motor For Torque Prove Applications 295
Crane Setup with Encoder/Resolver Feedback 295
Crane Setup - Encoderless 300
Manually Tuning the Speed Regulator for Firmware Revision 6.001 and Later 304
PID Function. 306
Configure a Line Speed Signal 306
Configure the Feedback Signal in the Follower Drive/Drives 308
Configure the Tension Set Point Signal in the Follower
Drive/Drives 309
Reference Control 310
"Auto" Speed Sources 310
"Manual" Speed Sources 310
Speed Source Changes 311
Torque Reference Source 311
Auto/Manual Examples. 311
Resolver Cable Balance Tuning Test 313
Performing the Cable Balance Tuning Test 313
Resolver Type Selection 314
Scale Blocks. 315
Link Parameters Via the Scale Block Parameters. 316
SCR Diagnostic Tests 316
Open SCR Test 317
Shorted SCR Test 318
S-curve Configuration 318
S-curve Acceleration Ramp Example: 320
Speed Regulation Functions 320
Adaptive Speed Regulator 320
Speed Up Function 323
Speed Threshold Indicators 324
Speed Zero Function 325
Speed Draw Function 326
Speed / Torque Mode Selection 327
Zero Torque Mode 327
Speed Regulation Mode 328
Torque Regulation Mode 328
Speed Limited Adjustable Torque (SLAT) Min Mode and SLAT Max
Mode. 328
Sum Mode 332
Start At Powerup 333
Fine-Tuning the Regulators 334
Manually Adjusting the Current Regulator Tune Settings 335
Fine-Tuning the Field Current Regulator 337
Fine-Tuning the Speed Regulator 339
Fine-Tuning the Voltage Regulator in the Field Converter 341
Tuning the Field Current Curve 343
Control Block Diagrams
Appendix D
Diagram Conventions 345
AppendixE
Installing a Communication Adapter Communication Adapter Kits 369
What The Communication Adapter Kit Includes 369
Tools That You Need 369
Safety Precautions 370
Installing the Communication Adapter Module in the Drive 370
Frame A 371
Frames B and C 372
Frame D 373
Appendix F
Optional Analog and Digital I/O What This Option Board Provides 375
Expansion Circuit Board I/O Expansion Board Wiring. 375
Appendix G
Optional 115V AC to 24V DC I/0 What This Option Board Provides 377
Converter Circuit Board I/O Converter Board Wiring 378
Appendix H
PowerFlex DC Standalone Regulator Installation and Wiring Instructions 381
Installation
History of Changes
Appendix I
20P-UM001K-EN-P, June 2015 383
20P-UM001J-EN-P, February 2014 383
20P-UM001I-EN-P, February 2013 385
20P-UM001H-EN-P, April 2011 385
20P-UM001G-EN-P, October 2010 386
20P-UM001F-EN-P, June 2009 388
Index

Topic	Page
Drive Storage Conditions	$\underline{11}$
Drive Nameplate Data	$\underline{12}$
Drive Specifications	$\underline{12}$
Additional Resources	$\underline{13}$
Technical Support	$\underline{13}$
Conventions	$\underline{14}$
General Precautions	$\underline{15}$
Standard Drive Catalog Number Explanation	$\underline{16}$
Standalone-Alone Regulator Catalog Numbers	

The purpose of this manual is to provide you with the basic information required to install, start-up, and troubleshoot the PowerFlex ${ }^{\circ} \mathrm{DC}$ drive. This manual is intended for qualified personnel. You must be able to program and operate DC drives. In addition, you must have an understanding of the parameter settings and functions that are detailed in this manual.

Drive Storage Conditions

If it is necessary to store the drive for any length of time before installation, follow these storage guidelines to provide satisfactory start-up operation and retain warranty coverage:

- After receipt and inspection, repack the drive in its original shipping container and store in a clean, dry place.
- Place where the ambient temperatures do not exceed $-25^{\circ} \mathrm{C}\left(-13^{\circ} \mathrm{F}\right)$ or $55^{\circ} \mathrm{C}\left(131^{\circ} \mathrm{F}\right)$
- Place where the range of relative air humidity does not exceed $5 . . .95 \%$.
- At an altitude of less than 3,000 meters ($10,000 \mathrm{ft}$.) above sea level.

Drive Nameplate Data

Drive Series Letter

Series B drives are identified as such on the data nameplate label. The drive series letter is on the top, right side of the label.

Drive Frame Sizes

Similar PowerFlex DC drive ratings are grouped into frame sizes to make ordering spare parts and drive dimensions simpler. The drive frame size is listed just above the serial number on the data nameplate label. See the Standard Drive Catalog Number Explanation on page 15 for a list of drive catalog numbers and their respective frame sizes.

Drive Firmware Version

The original firmware version of the drive as shipped from the factory appears on the data nameplate label just above the certifications. If the firmware version has been upgraded since the drive was shipped, you can view the current version on the HIM (if installed). See Diagnostics Menu on page 273 for details.

For drive specification information, see the PowerFlex Digital DC Drive, Technical Data, 20P-TD001.

Additional Resources

Technical Support

Conventions

These documents contain additional information concerning related products from Rockwell Automation.

Resource	Description
Preventive Maintenance of Industrial Control and Drive System Equipment, DRIVES-TD001	Provides a checklist for performing preventive maintenance.
Safety Guidelines for the Application, Installation, and Maintenance of Solid-State Control, SGI-1.1	Provides general guidelines for the application, installation, and maintenance of solid-state control in the form of individual devices or packaged assemblies that incorporate solid-state components.
A Global Reference Guide for Reading Schematic Diagrams, $100-2.10$	Provides a simple cross-reference of common schematic/ wiring diagram symbols that are used throughout various parts of the world.
Guarding Against Electrostatic Damage, 8000-4.5.2	Provides common practices that can help guard against ESD.
Industrial Automation Wiring and Grounding Guidelines,	Provides general guidelines for installing a Rockwell Automation ${ }^{\oplus}$ industrial system.
publication $\underline{\text { 1770-4.1 }}$	Provides declarations of conformity, certificates, and other Certification details.
Product Certifications website, http://ab.com	

You can view or download publications at http://www.rockwellautomation.com/literature. To order paper copies of technical documentation, contact your local Allen-Bradley distributor or Rockwell Automation sales representative.
U.S. Allen-Bradley Drives Technical Support - Tel: (1) 262.512.8176, Fax: (1) 262.512 .2222 , E-mail: support@drives.ra.rockwell.com Online: www.ab.com/support/abdrives.

- To help differentiate parameter names and LCD display text from other text, the following conventions are used:
- Parameter names appear in [brackets]. For example: [Armature Voltage].
- Display text appears in "quotes." For example: "Enabled."
- The following words are used throughout the manual to describe an action:

Word	Meaning
Can	Possible, able to do something
Cannot	Not possible, not able to do something
May	Permitted, allowed
Must	Unavoidable, you must do this

General Precautions

ATTENTION: This drive contains ESD (Electrostatic Discharge) sensitive parts and assemblies. Static control precautions are required when you install, test, service, or repair this assembly. If ESD control procedures are not followed, component damage can result. If you are not familiar with static control procedures, see publication 8000-4.5.2, "Guarding Against Electrostatic Damage" or any other applicable ESD protection handbook.

ATTENTION: An incorrectly applied or installed drive can result in component damage or a reduction in product life. Installation or application errors, such as, an undersized motor, incorrect or inadequate AC supply, or excessive air temperatures around the drive can result in malfunction of the system.

ATTENTION: Allow only qualified personnel, familiar with DC drives and associated machinery, to plan or implement the installation, start-up and subsequent maintenance of the system. Failure to comply can result in personal injury and equipment damage.

ATTENTION: An incorrectly applied or installed bypass system can result in component damage or reduction in product life. The most common causes are:

- An AC line connection to the drive output or control terminals.
- Improper bypass or output circuits that are not Allen-Bradley approved.
- Output circuits that do not connect directly to the motor.

Contact Allen-Bradley for assistance with your application or installation.

Standard Drive Catalog
 Number Explanation

Standard Drive Catalog
 Number Explanation, Cont.

Position											
1-3	4	5	6	7	8-10	11	12	13	14	15	16
20 P	4	1	A	D	4P1	R	A	0	N	N	N
a	b	c	d	e	f	g	h	i	j	k	1

g	
Field Supply	
Code	Type
R	Single-Phase Regulated

HIM	
Code	Operator Interface
0	Blank Cover *
Standard - for user installed options, see Human Interface and Wireless Interface Modules on page 9 .	
j	
I/O Options*	
Code	Control
N	None (8-24V DC Digital Inputs, 4 Digital Outputs, 3 Analog Inputs, and 2 Analog Outputs are Standard)
All I/O Options are purchased separately and are user installed. See I/O Options on page 9.	

h		
Packaging/Documentation		
Code	Shipping Carton	User Manual
A	Yes	Yes

are user installed. See I/O Options on page 9.

Standalone-Alone Regulator Catalog Numbers

Conformally coated circuit boards are provided with the following catalog numbers.

230V/460V AC Input Regulators	575V/690V AC Input Regulators	Field Amps
Cat. No.	Cat. No.	
23PMD4	23PMF4	40
23PMD7	23PMF7	70
23PAMP ${ }^{(1)}$	23PAMP ${ }^{(1)}$	(1)

(1) Gate Amplifier - used with all voltage classes of the Stand-Alone Regulator. The Stand-Alone Regulator and Gate Amplifier are currently sold through Rockwell Automation Drive Systems only. Consult the factory for availability.

Installation and Wiring

Topic	Page
Mount the Drive	$\underline{18}$
Approximate Drive Dimensions and Weights	$\underline{19}$
Lifting PowerFlex DC Drives	$\underline{25}$
Remove the Drive Covers	$\underline{27}$
Isolation Transformers / Line Reactors	$\underline{29}$
Contactors	$\underline{30}$
General Grounding Requirements	$\underline{32}$

Topic	Page
CE Conformity	$\underline{39}$
Power Circuit Protection	$\underline{42}$
Control Power Circuit Protection	$\underline{42}$
Cable and Wiring Recommendations	$\underline{43}$
Power Wiring	$\underline{44}$
DIP Switch and Jumper Settings	$\underline{75}$
I/O Wiring	$\underline{80}$

This chapter provides information on how to mount and wire the PowerFlex DC drive.

Most start-up difficulties are the result of incorrect wire connections. Take all precautions to assure that wire connections are done as instructed. All items must be read and understood before the actual installation begins.

For PowerFlex DC Stand-Alone Regulator (SAR) installations, see Appendix H for important installation and configuration information. A 23PMD x catalog number on the data nameplate on the drive identifies a SAR. (see Drive Nameplate Data on page 12 for location).

IMPORTANT	The PowerFlex DC drive is not designed for use with multiple motor applications or resistive loads. Contact your Local Solution Center for multiple motor applications. See Local Solution Centers, publication DSDC-BROO1, for more information.

IMPORTANT The recommended drive to motor horsepower ratio is 2:1.

ATTENTION: The following information is merely a guide for proper installation. Rockwell Automation cannot assume responsibility for the compliance or the noncompliance to any code, national, local or otherwise for the proper installation of this drive or associated equipment. If codes are ignored during installation, a hazard of personal injury and equipment damage exists.

Mount the Drive

Operating Conditions and Temperatures

PowerFlex DC drives are designed to operate at $0 \ldots . .50^{\circ} \mathrm{C}\left(32 \ldots 122^{\circ} \mathrm{F}\right)$ surrounding air temperature without derating. The drive must be mounted in a clean, dry location. Contaminants such as oils, corrosive vapors, and abrasive debris must be kept out of the enclosure. NEMA / UL Type Open, IP20 enclosures are intended for indoor use primarily to provide a degree of protection against contact with enclosed equipment. These enclosures offer no protection against airborne contaminants.

Minimum Mounting Clearances

Minimum clearance requirements are intended to be from drive to drive. Other objects can occupy this space; however, reduced airflow can cause protection circuits to fault the drive. The drive must be mounted in a vertical orientation as shown in Figure 1 and must not be mounted at an angle greater than 30° from vertical. Intake air temperature must not exceed the product specification.

Figure 1 - Drive Enclosure Minimum Mounting Clearances

Maximum Surrounding Air Temperature Specifications

- $0 . . .50^{\circ} \mathrm{C}\left(32 . . .122^{\circ} \mathrm{F}\right)$, typical
- De-rate 1.25% for every $1^{\circ} \mathrm{C}\left({ }^{\circ} \mathrm{F}\right)$ over $50^{\circ} \mathrm{C}\left(122^{\circ} \mathrm{F}\right)$, to $55^{\circ} \mathrm{C}\left(131^{\circ} \mathrm{F}\right)$
- Additional air cooling is required for temperatures above $55^{\circ} \mathrm{C}\left(131^{\circ} \mathrm{F}\right)$

Approximate Drive

Dimensions and Weights
The PowerFlex DC drive is available in a NEMA / UL Type Open, IP20 enclosure only. Follow all mounting clearances to provide proper drive operation.

ATTENTION: Remove all loose packing materials, including the containers of desiccants (if any), from the drive enclosure before you mount and energize the drive.

Figure 2 - Frame A Drive Dimensions

A	B	C	A1	A2	B1
mm (in.)					
$267(10.5)$	$359(14.0)$	$287(11.3)$	$7(0.3)$	$250(9.8)$	$275(10.8)$

Table 1-Frame A Weights

Drive Current Rating Code		Drive Weight	Drive and Packaging
230 V	460V	kg (lb)	kg (lb)'
7P0	4P1	8.4 (18.5)	10.5 (23.2)
9P0	6P0		
012	010		
020	014		
-	019		
029	027		
038	035	8.8 (19.4)	11 (24.3)
055	045		
-	052		
073	073	10.8 (23.8)	13 (28.7)
093	086		
110	100		
-	129		

Figure 3 - Frame B Drive Dimensions

A	A1	A2	A3	B	B1	C1	C2 $^{\mathbf{(1)}}$
mm (in.)							
$311(12.2)$	$275(10.8)$	$16.5(0.65)$	$7(0.3)$	$388(15.3)$	$375(14.8)$	$350(13.8)$	$380(15.0)$

(1) Only frame B drive catalog numbers 20P21AD330, 20P21AD412, 20P21AE405, 20P41AB360, 20P41AB434, 20P41AD330, 20P41AD412, 20P41AE405.

Table 2 - Frame B Weights

Drive w/ND Rating Code			Drive Weight	Drive and Packaging Weight
230V	$\mathbf{4 6 0 V}$	$\mathbf{5 7 5 V}$	$\mathbf{k g}$ (lb)	$\mathbf{k g}$ (lb)
146	167	067		$25.5(56.2)$
180	207	101		
218	-	135		
265	250	270	$29.5(65.0)$	$31.5(69.5)$
360	330	405	$32(70.5)$	$34(75)$
434	412	-		

Figure 4 - Frame C Drive Dimensions

A	A1	B	B1	B2	B3	B4	B5	C
mm (in.)								
$521(20.5)$	$499(19.7)$	$511(20.1)$	$400(15.7)$	$200(7.9)$	$55(2.2)$	$56(2.2)$	$10.5(0.4)$	$416(16.4)$

Table 3 - Frame C Weights

Drive w/ND Rating Code				Weight - Regenerative Drives		Weight - Non-regenerative Drives	
				Drive	Drive and Packaging	Drive	Drive and Packaging
230V	460V	575V	690V	kg (lb)	kg (lb)	kg (lb)	kg (lb)
-	495		-	61 (134.5)	83 (183.0)	57 (125.7)	79 (174.2)
521	667		-	65 (143.3)	87 (191.8)	62 (136.7)	84 (185.2)
700	-		-				
-	-	540	452	72 (158.7)	94 (207.2)	68 (150.0)	90 (198.4)
-	-	675	565				

Figure 5 - Frame D Dimensions - Right Side and Front Views
Dimensions are shown in mm and (in.)
Dimensions of terminals U, V, and W are the same.

Terminals C and D are 134 mm (5.3 in.) on drives with these ratings only:

- 460V AC input: 800 Hp and 900 Hp
- 575V AC input: 1000 Hp
- 690V AC input: $1100 \mathrm{Hp}, 1200 \mathrm{Hp}, 1250 \mathrm{Hp}$, and 1400 Hp

All other frame D drive ratings have 100 mm (4.0 in .) C and D terminals.

Figure 6-Frame D Dimensions - Left Side and Back Views
Dimensions are shown in mm and (in.)

Table 4-Frame D-230V AC Input Drive Weights

Drive w/ND Rating Code	Weight - Regenerative Drives		Weight - Non-regenerative Drives	
	Drive	Drive and Packaging	Drive	Drive and Packaging
	kg (lb)	kg (lb)	kg (lb)	kg (lb)
875	203 (447.5)	281 (619.5)	152 (335.1)	230 (507.1)
1 KO				

Table 5 - Frame D-460V AC Input Drive Weights

Drive w/ND Rating Code	Weight - Regenerative Drives		Weight - Non-regenerative Drives	
	Drive	Drive and Packaging	Drive	Drive and Packaging
	kg (lb)	kg (lb)	kg (lb)	kg (lb)
830	202 (445.3)	280 (617.3)	152 (335.1)	230 (507.1)
996				
1 K 1	215 (474.0)	293 (646.0)	165 (363.8)	243 (535.7)
1K3				
1K4				

Table 6-Frame D-575V AC Input Drive Weights

Drive w/ND Rating Code	Weight - Regenerative Drives			Weight - Non-regenerative Drives	
	Drive	Drive and Packaging	Drive	Drive and Packaging	
	kg (lb)	$\mathbf{k g}$ (lb)	$\mathbf{k g}$ (lb)	$\mathbf{k g}$ (lb)	
810	$198(436.5)$	$276(608.5)$	$148(326.3)$	$226(498.2)$	
1 KO					
1 K 2	$215(474.0)$	$293(646.0)$	$165(363.8)$	$243(535.7)$	
1 K 3	$222(489.4)$	$300(661.4)$	$172(379.2)$	$250(551.2)$	
1 K 6	$241(531.3)$	$319(703.3)$	$191(421.1)$	$269(593.0)$	

Table 7-Frame D-690V AC Input Drive Weights

Drive w/ND Rating Code	Weight - Regenerative Drives		Weight - Non-regenerative Drives	
	Drive	Drive and Packaging	Drive	Drive and Packaging
	kg (lb)	kg (lb)	kg (lb)	kg (lb)
678	198 (436.5)	276 (608.5)	148 (326.3)	226 (498.2)
791				
904	200 (440.9)	278 (612.9)	150 (330.7)	228 (502.7)
1 KO	202 (445.3)	280 (617.3)	152 (335.1)	230 (507.1)
$1 \mathrm{K1}$	215 (474.0)	293 (646.0)		
1K2			165 (363.8)	243 (535.7)
1K4	241 (531.3)	319 (703.3)	172 (379.2)	250 (551.2)
1K5			191 (421.1)	269 (593.0)

Lifting PowerFlex DC Drives

The dimensions and weights that are specified in Table 3 on page 21 and Table 4 ...Table 7 on page 24 must be considered when mounting the device. Use the proper equipment to lift and hold the weight of the drive while mounting.

ATTENTION: To guard against possible personal injury or equipment damage...

- Inspect all lifting hardware for proper attachment before lifting the drive.
- Do Not let any part of the drive or lift mechanism to contact electrically charged conductors or components.
- Do Not subject the drive to high rates of acceleration or deceleration while transporting to the mounting location or when lifting.
- Do Not let personnel or their limbs be directly underneath the drive when it is being lifted and mounted.

Mount Frame C and D Drives

All lifting equipment and components (hooks, bolts, lifts, slings, and chains) must have a minimum lifting capacity of $453.6 \mathrm{~kg}(1,000 \mathrm{lb})$.

IMPORTANT	Verify that all mounting screws are properly tightened before and after drive operation.

1. Verify the hole pattern on the panel on which you intend to mount the drive. See Figure 4 on page $\underline{21}$ or $\underline{22}$ on page $\underline{22}$.
2. Install the mounting hardware:

- For frame C drives, insert, but do not tighten, a bolt in one of the top holes in the panel. The bolt must be fully threaded into the panel before hanging the drive.
- For Frame D drives, insert, but do not tighten, the six bolts for the top mounting flange on the drive into the panel. The bolts must be fully threaded into the panel before hanging the drive.

3. To limit the pull in forces on the drive, the lifting devices that are connected to the hooks must be long enough to make the angle between the chain or cable and a vertical line that extends up from the flange center less than 45° angle as illustrated in Figure 7 on page $\underline{26}$ or Figure 8 on page 26.

- For frame C drives, insert the properly sized and rated lifting hooks into the holes on the lifting flanges at the top of the drive. See Figure 7 on page 26.
- For frame D drives, insert the properly sized lifting rod into the holes on the lifting flanges at the top of the drive. See Figure 8 on page 26.

Figure 7 - Lift Frame C Drives

Figure 8-Lift Frame D Drives

4. Lift the drive into place onto the bolts that are installed in the panel.
5. Install the remaining bolts into the panel. Tighten M8 bolts to a minimum torque of $15 \mathrm{~N} \cdot \mathrm{~m}$ ($132.7 \mathrm{lb} \cdot i n$) and M10 bolts to a minimum torque of 25 $\mathrm{N} \cdot \mathrm{m}$ (221.2 lboin).

Remove the Drive Covers

Some protective covers must be removed to provide access to the power and I/O terminals on the drive. Remove the upper cover only to install an optional communication adapter or service the drive. See Installing a Communication Adapter on page $\mathbf{3 6 9}$ for information.

Frame A Drives

You must remove both the lower protective cover and the power terminal cover on frame A drives to access the power terminals.

Remove the Power Terminal Cover

Remove the two screws as shown here and slide the cover down and off the chassis.

Remove the Lower Protective Cover

Remove the two screws as shown here and, while gently lifting along the top edge, slide the cover down and off the chassis.

Frame B and C Drives

1. Loosen, but do not remove, the two screws that secure the bottom cover.
2. Slide the cover down until the screw heads align with the key holes and lift the cover off the chassis.

Frame B Shown

Frame D

1. For any protective cover, loosen, but do not remove, the hexalobular head screws that secure the cover to the drive frame.
2. Slide the cover up until the screw heads align with the key holes and lift the cover off the chassis. The top and bottom most covers are also secured with screws at the top and bottom of the drive, respectively.

Isolation Transformers / Line Reactors

When connecting the drive directly to the main distribution system, an isolation transformer or $3 \ldots 5 \%$ impedance AC line reactor must be used to guard against system disturbance. If the isolation transformer provides the required $3 . . .5 \%$ impedance, a line reactor is not required.

See Isolation Transformers on page $\underline{259}$ for a list of recommended isolation transformers.

See AC Input Line Reactors and AC Input Contactors on page 257 for a list of recommended AC line reactors. The type of line reactor that is used depends upon the following:

- Current absorbed by the AC input
- AC input voltage
- Relative short-circuit voltage
- AC input frequency

Contactors

When an AC input contactor is used, the IEC AC1 rating of the contactor must be equal to the rated thermal (RMS) current value at the main input of the drive.
Drive configurations for AC or DC contactors, with or without a dynamic brake (DB), are as follows (see Typical Power Wiring Diagrams on page 45 for examples):

- When only an AC contactor is used:
- Set parameter 1391 [ContactorControl] to 1 "AC Cntctr" (default value) ${ }^{(1)}$
- Set one [Relay Out x Sel] parameter and one [Digital Inx Sel] parameter to "Contactor" (default value for parameters $\underline{1392}$ [Relay Out 1 Sel] and 140 [Digital In8 Sel])
- When only a DC contactor is used:
- Set parameter 1391 [ContactorControl] to 3 "DC Cntctr" ${ }^{(1)}$
- Set one [Relay Out x Sel] parameter and one [Digital Inx Sel] to "Contactor" (default value for parameters 1392 [Relay Out 1 Sel] and 140 [Digital In8 Sel])
- When an AC contactor and dynamic brake contactor are used:
- Set parameter 1391 [ContactorControl] to "AC Cntctr+DB" ${ }^{(1)}$
- Set one [Relay Out x Sel] parameter (1392 [Relay Out 1 Sel] or $\underline{629}$ [Relay Out 2 Sel]) to "Contactor" and the other relay output to "ContactorDB"
- Set one [Digital Inx Sel] parameter to "Contactor" (default value for parameter 140 [Digital In8 Sel])
- When a DC contactor and dynamic brake contactor are used:
- Set parameter 1391 [ContactorControl] to "DC Cntctr+DB" (1)
- Set one [Relay Out x Sel] parameter (1392 [Relay Out 1 Sel] or $\underline{629}$ [Relay Out 2 Sel]) to "Contactor" and the other relay output to "ContactorDB"
- Set one [Digital Inx Sel] parameter to "Contactor" (default value for parameter 140 [Digital In8 Sel])
- When a contactor is NOT used:
- Set parameter 1391 [ContactorControl] to "None" (1)
- Do NOT set either [Relay Out x Sel] parameter to "Contactor" or "ContactorDB"
- Do NOT set any [Digital Inx Sel] parameter to "Contactor"
(1) Par 1391 [ContactorControl] is contained in the "Advanced" parameter configuration group. See How Parameters are Organized on page 115 for more information.

When operating a drive with firmware revision 1.006 in field weakening mode with a DC contactor or inverting fault device that is installed in the armature circuit, see Field-weakening Mode Configuration (v1.006) on page 289.

AC Input Contactors

See AC Input Line Reactors and AC Input Contactors on page 257 for a list of recommended $A C$ input contactors.

DC Output Contactors

A DC output contactor can be used to connect the output of the armature circuit to the DC motor. If a DC output contactor is used, an AC input contactor is not needed.

See Dynamic Brake Resistor Kits and DC Output Contactors on page 261 for a list of recommended DC output contactors.

Dynamic Brake Resistors

See Dynamic Brake Resistor Kits and DC Output Contactors on page 261 for a list of recommended dynamic brake resistor kits.

General Grounding Requirements

The drive Safety Ground (PE) must be connected to system ground. Ground impedance must conform to the requirements of national and local industrial safety regulations and electrical codes. Periodically check the integrity of all ground connections.

For installations within a cabinet, use a safety ground point or ground bus bar connected directly to building steel. Ground all circuits, including the AC input ground conductor, independently and directly to this point/bar.

For installations in distribution systems that have ungrounded or high impedance, neutral connections or systems, see Grounding for Installations in an Ungrounded or High-Impedance, Neutral Ground, or System on page 34.

ATTENTION: To comply with the essential requirements of the CE Low Voltage Directive 2006/95/EC, PowerFlex DC drives cannot be powered from a cornerearthed (TN with one phase earthed) supply system. When operating PowerFlex DC drives from an IT or impedance-earthed supply system, only temporary operation is permitted after an earth fault is detected in the power system.

Figure 9-Typical Grounding

Safety Ground (PE)

The drive Safety Ground-PE must be connected to adjacent building steel (girder, joist), a floor ground rod, or bus bar (see Figure 9 on page 32). Ground points must comply with national and local industrial safety regulations and electrical codes.

Power Feeder

Each power feeder from the substation transformer to the drive must be provided with properly sized ground cables. Bond the conduit or cable armor to the substation ground at both ends. Each transformer enclosure or frame must be bonded to ground at a minimum of two locations.

Encoder/Resolver Ground Connections

If used, the encoder or resolver ground connections must be routed in grounded steel conduit. The conduit must be grounded at both ends. The encoder/resolver cable shield must be connected to the shield ground on the drive side. Do not connect the encoder/resolver cable shield to ground on the motor side.

Tachometer Ground Connections

If used, ground connections must be routed in grounded steel conduit. The conduit must be grounded at both ends. Ground the cable shield at the drive end by using only the shield clamps on the grounded metal plate that supports the control board. See Figure 58 on page 81 for shield clamp location.

Grounding for Installations in an Ungrounded or HighImpedance, Neutral Ground, or System

The PowerFlex DC drive was designed to work in distribution systems where the isolation transformer Wye neutral is connected to earth ground. PowerFlex DC drives are not designed to work in distribution systems that have ungrounded or high-impedance, neutral connections, or systems that have a phase that is referenced to earth. Symmetrical incoming power is required for correct drive operation.

The use of a grounded Wye neutral is highly recommended to prevent commonmode rejection problems with the feedback measurement circuits in the drive. Possible drive damage can occur because of inaccurate feedback measurements of the incoming AC voltage, armature voltage, or field current.

If the PowerFlex DC drive is installed in a system with an ungrounded Wye neutral or with an impedance ground connection, see Table 8 on page 35 . Table 8 contains the drive modifications that are required for proper installation.

Power Distribution

Figure 10 - Delta/Wye with Grounded Wye Neutral

Rockwell Automation strongly recommends the use of grounded neutral systems for the following reasons:

- Controlled path for common mode noise current
- Consistent line to ground voltage reference, which minimizes insulation stress
- Accommodation for system-surge protection schemes

Figure 11-Ungrounded Secondary

Grounding the transformer secondary is essential to the safety of personnel and safe operation of the drive. A floating secondary can allow dangerously high voltages occur between the chassis of the drive and the internal power-structure components.

Figure 12 - High-impedance Ground

Grounding the Wye secondary neutral through a resistor is an acceptable method of grounding. In this case, in a short-circuited secondary condition, none of the output phases to ground will exceed the normal line to line voltage. The resistor is often used to detect ground current by monitoring the associated voltage drop.

Table 8 - Drive Modifications to Support Ungrounded Wye Neutral or Impedance Grounded Connections

Frame	Circuit Board	Jumper/Connection	Figure to see for Details
A	Pulse transformer (FIR1-xx-xx)	Remove jumper S9	Figure 13 on page 35
B	Pulse transformer (FIR2-xx-xx)	Remove jumper SO	Figure 14 on page 36
C	Pulse transformer (FIR3-xx-xx)	Remove jumper 59	Figure 15 on page 36
	Transient noise filter (FIL-31), 200V. . .500V AC drives	Disconnect the filter board yellow/ green (ground) wire from the PE connection on the drive chassis	Figure 16 on page 37
	Transient noise filter (FIL-57, FIL-69), 575V. . . 690 V AC drives	Remove jumper S1	Figure 17 on page $\underline{37}$
D	Pulse transformer (FIR-D-xx-xx)	Remove capacitors C121 and C122	Figure 18 on page 38
	Overvoltage clipping (CFSF-xxx)	Remove jumper S1	Figure 19 on page 38

Figure 13 - Frame A Pulse Transformer Circuit Board S9 Jumper Location
Remove the front covers from the drive to access the pulse transformer circuit board. See page 27 for instructions.

$\square \square$
$\square \square$

Figure 14 - Frame B Pulse Transformer Circuit Board S9 Jumper Location

Figure 15 - Frame C Pulse Transformer Circuit Board S9 Jumper Location

The pulse transformer circuit board is behind the control EMI shield, near the top of the drive. See page 28 for instructions on removing the front covers from the drive and page $\underline{68 \text { for instructions on moving the control EMI shield. }}$

Figure 16 - Frame C Transient Noise Filter Circuit Board (FIL-31), 200V...500V AC Input Drives, Ground Wire Location

Remove the front covers from the drive to access the transient noise filter circuit board. See page $\underline{28}$ for instructions. The transient noise filter board is between terminals C and D below the control EMI shield.

Figure 17 - Frame C Transient Noise Filter Circuit Board (FIL-57, FIL-69), 575V...690V AC Input Drives, S1 Jumper Location

Remove the front covers from the drive to access the transient noise filter circuit board. See page $\underline{28}$ for instructions. The transient noise filter board is on the left side of the control EMI shield.

Figure 18-Frame D Pulse Transformer Circuit Board S1 Jumper Location
The pulse transformer circuit board is behind the top and bottom control-panel covers. See page $\underline{29}$ for instructions on removing the covers from the drive.

Figure 19 - Frame D Overvoltage Clipping Circuit Board S1 Jumper Location

CE Conformity

Compliance with the Low Voltage Directive and Electromagnetic Compatibility Directive has been demonstrated by using harmonized European Norm (EN) standards. References to European Norm standards are published in the Official Journal of the European Communities. PowerFlex DC drives comply with the EN standards listed here when installed according to this User Manual.

EU Declarations of Conformity are available online at:
www.rockwellautomation.com/products/certification/ce/

Low Voltage Directive

- EN 50178 Electronic equipment for use in power installations.

EMC Directive

- EN 61800-3 Adjustable speed electrical power drive systems Part 3: EMC product standard including specific test methods.

General Considerations

- For CE compliance, the drive installation must satisfy requirements that are related to both EN 50178 and EN 61800-3 provided in this document.
- PowerFlex DC drives comply with the EMC requirements of EN 61800-3 when installed according to good EMC practices and the instructions that are provided in this document. However, many factors can influence the EMC compliance of an entire machine or installation, and compliance of the drive itself does not ensure compliance of all applications.
- PowerFlex DC drives are not intended to be used on public low-voltage networks that supply domestic premises. Without additional mitigation, radio frequency interference is expected if used on such a network. The installer is responsible to take measures such as supplementary line filters and enclosures to prevent interference and follow all installation requirements of this document.
- PowerFlex DC drives generate notching and harmonic current emissions on the AC supply system. When operated on a public low-voltage network, it is the responsibility of the installer or user to be sure that applicable requirements of the distribution network operator have been met.

ATTENTION: PowerFlex DC drives can produce $D C$ current in the protective earthing conductor. This DC current can reduce the ability of residual currentoperated protective devices (RCD) or residual current-operated monitoring devices ($R C M$), of type A or $A C$, to provide protection for other equipment in the installation.

Installation Requirements Related to the Low Voltage Directive

- PowerFlex DC drives are designed to be CE-compliant only if they are NOT connected to "corner-earthed" supply systems where one of the three phases of the supply system has been earthed.
- PowerFlex DC drives are compliant with the CE LV Directive when used at altitudes no greater than $2,000 \mathrm{~m}(6,562 \mathrm{ft})$.
- PowerFlex DC drives provided in enclosure type IP20 must be installed in a pollution degree 1 or 2 environment to be compliant with the CE LV Directive. Characteristics of the different pollution degree ratings are provided on page 41.
- PowerFlex DC drives can produce leakage current in the protective earthing conductor that exceeds 3.5 mA AC or 10 mA DC . The minimum size of the protective earthing (ground) conductor that is used in the application must comply with local safety regulations for high-protective earthing conductor current equipment.
- Frame D PowerFlex DC drives must be installed in a supplementary enclosure that provides protection from electric shock to be compliant with the CE LV Directive.

Installation Requirements Related to EN 61800-3 and the EMC Directive

- The drive must be earthed (grounded) as described in this User Manual.
- PowerFlex DC drives require the use of an external EMC filter to comply with the EMC Directive and emission limits of EN 61800-3: 2004. PowerFlex DC drives have been tested and verified for compliance to the emission limits of EN 61800-3: 2004 by using only the specific input filters and motor cable lengths that are identified in Table 9. See Typical Power Wiring Diagrams on page 45 for more installation information.

Table 9-Standards and Limits for EMC Input Filters

[^0]IMPORTANT Use of EMC filters not listed in Table 9 on page page 40 must be verified in the application. Additional filters are listed in Alternate EMC Filters on page 264.

- Output power wiring to the motor must employ one of the following solutions.
- Cable with a braided shield providing 75% or greater coverage
- Cables that are housed in metal conduit
- Cables with equivalent shielding

Continuous shielding must be provided from the drive enclosure to the motor enclosure. Both ends of the motor cable shield (or conduit) must terminate with a low-impedance connection to earth.

- The motor-end cable shield or conduit must terminate in a shielded connector and be properly installed in an earthed motor wiring box that is attached to the motor. The motor wiring-box cover must be installed and earthed.
- All control (I / O) and signal wiring to the drive must use one of the following solutions.
- Cable with a braided shield providing 75% or greater coverage
- Cables that are housed in metal conduit
- Cables with equivalent shielding

When shielded cable is used, terminate only the drive end of the cable shield to earth with a low-impedance connection.

- Motor cables must be separated from control and signal wiring wherever possible.
- The maximum length of the motor cable must not exceed the length that is specified in the table on page 40. The maximum length that is specified is required for compliance with radio-frequency emission limits for the specific standard and installation environment.

Pollution Degree Ratings According to EN 61800-5-1

Pollution Degree	Description
1	No pollution or only dry, non-conductive pollution occurs. The pollution has no influence.
2	Normally, only non-conductive pollution occurs. Occasionally, however, a temporary conductivity due to condensation can be expected, when the drive is out of operation.
3	Conductive pollution or dry non-conductive pollution occurs, which becomes conductive due to condensation, which can be expected.
4	The pollution generates persistent conductivity that is caused, for example, by conductive dust, rain, or snow.

Power Circuit Protection

Control Power Circuit Protection

It is recommended that you install fast-acting fuses on four-quadrant, frame A, and B drives to protect the armature converter on the input and output sides. Internally mounted fuses for armature converter protection are provided with frame C and D PowerFlex DC drives. See Drive Power Circuit Protection on page 239 for a list of replacement fuses and general fuse locations.

The $115 \mathrm{~V} / 230 \mathrm{~V}$ AC control circuit power input terminals U 2 and V 2 are required to be short-circuit protected. This protection can be provided by using standard time-delay fuses or a circuit breaker (device). Either protective device must survive the short-circuit available current of the feeder source for this circuit and the inrush current of the drive power supply.

Size the device(s) to protect the wiring between the fuses or circuit breaker connections to terminals U 2 and V 2 , and not nuisance trip or blow from the inrush current.

Table 10 lists the input current characteristics of the control power.
Table 10-Control Power Protection

Frame	Control Power Supply					
	Circuit Board ID / Revision	Power	Rated input current		Inrush input current	
			115V AC	230V AC	115V AC	230V AC
A \& D	SW1-31 / H and below	60 W	1A	0.5 A	20 A	10 A
	SW1-31/I and above	80 W	1A	0.5 A	6A	10 A
B	SW2-32 / H and below	110 W	1.2 A	0.7 A	15 A	7.5 A
	SW2-32 / I and above	90 W	1.2 A	0.6A	6A	10 A
C	SW3-32 / H and below	110 W	1.2 A	0.7 A	15 A	7.5 A
	SW3-32 / a and above	90 W	1.2 A	0.6A	6A	10 A

Provide a power source for the control power input that is stabilized and buffered from the power system transients. The control power of many drives can be fed from one source, as long as proper distribution protection is provided.

Cable and Wiring Recommendations

Use the following cable and space recommendations for all drives sizes:

					Minimum Spacing Between Classes - Steel Conduit/Tray					See Cable Spacing Notes, on page 44		
Category	Wiring Class	Signal Definition	Signal Example	Cable Type	1	2/3/4	5/6	7/8	9/10/11			
Power	1	AC Power (600 V Or Greater)	2.3kV 3/ph AC Lines	Per NEC and Local Codes		$\begin{gathered} 3 / 9 \mathrm{in.} \\ (76 / 229 \mathrm{~mm}) \end{gathered}$	$\begin{gathered} 3 / 9 \mathrm{in.} \\ (76 / 229 \mathrm{~mm}) \end{gathered}$	$\begin{gathered} 3 / 18 \mathrm{in.} \\ (76 / 457 \mathrm{~mm}) \end{gathered}$	See Note 6	1/2/5		
	2	AC Power (Less Than 600V)	460V 3/ph AC Lines		$\begin{gathered} 3 / 9 \mathrm{in} . \\ (76 / 229 \mathrm{~mm}) \end{gathered}$	0	$\begin{gathered} 3 / 6 \mathrm{in} . \\ (76 / 152 \mathrm{~mm}) \end{gathered}$	$\begin{gathered} 3 / 12 \mathrm{in.} \\ (76 / 305 \mathrm{~mm}) \end{gathered}$	See Note 6	1/2/5		
	3	DC Power	DC Motor Armature									
	4	DC Power	DC Motor Field									
Control	5	115V AC/DC Logic	Relay Logic/PLCI/0 Motor Thermostat		$\begin{gathered} 3 / 9 \mathrm{in} . \\ (76 / 229 \mathrm{~mm}) \end{gathered}$	3/6 in. ($76 / 152 \mathrm{~mm}$)	0	$\begin{gathered} 3 / 9 \mathrm{in} . \\ (76 / 229 \mathrm{~mm}) \end{gathered}$	See Note 6	1/2/5		
		115V AC Power	Power Supplies, Instruments									
	6	24V AC/DC Logic	PLCI/0									
Signal (Process)	7	Analog Signals, DC Supplies	Reference/Feedback Signal, 5 To 24V DC	Shielded Cable Belden 8735, 8737,8404	$\begin{gathered} 3 / 18 \mathrm{in.} \\ (76 / 457 \mathrm{~mm}) \end{gathered}$	$\begin{gathered} 3 / 12 \mathrm{in.} \\ (76 / 305 \mathrm{~mm}) \end{gathered}$	$\begin{gathered} 3 / 9 \mathrm{in.} . \\ (76 / 229 \mathrm{~mm}) \end{gathered}$	0	$\begin{gathered} 1 / 3 \mathrm{in} . \\ (25 / 76 \mathrm{~mm}) \end{gathered}$	2/3/4/5		
		Digital (Low Speed)	TTL									
	8	Digital (High Speed)	I/O, Encoder, Resolver, Count Pulse Tach	Shielded Cable - Belden 9728, 9730								
Signal (Comm.)	9	Serial Communication	RS-232 (20-COMM-R), 422 To Terminals/printers	Shielded Cable Belden RS-232 8735, 8737 RS-422-9729, 9730	See Note 6			$\begin{gathered} 1 / 3 \mathrm{in} . \\ (25 / 76 \mathrm{~mm}) \end{gathered}$	0	-		
	11	Serial Communication (Greater Than 20k Baud)	PLC Remote I/0, PLC Data Highway	$\begin{aligned} & \text { Twinaxial Cable - } \\ & \text { Belden 9463, A-B } \\ & \text { 1770-CD } \end{aligned}$								

Example:

Space relationship between 480 V AC incoming power leads and 24 V DC logic leads:

- 480 V AC leads are Class $2 ; 24 \mathrm{~V}$ DC leads are Class 6
- For separate steel conduits, the conduits must be 3 inches (76 mm) apart
- In a cable tray, the two groups of leads are to be 6 inches (152 mm) apart

				Minimum Spacing Between Classes Steel Conduit/Tray		
Category	Wiring Class	Signal Definition	Signal Example	1	2/3/4	5/6
Power	2	AC Power (less than 600V)	460V 3/Ph AC Lines			$\begin{gathered} 3 / 6 \mathrm{in} . \\ (76 / 152 \mathrm{~mm}) \end{gathered}$
Control	6	24V AC/DC Logic	PLCI/0		$\begin{gathered} 3 / 6 \mathrm{in} . \\ (76 / 152 \mathrm{~mm}) \end{gathered}$	

Cable Spacing Notes:

1. Both outgoing and return current-carrying conductors must be routed in the same conduit or laid next to each other in a cable tray.
2. Cables of the following classes can be grouped.
a. Class 1 ; Equal to or above 601 V .
b. Classes 2, 3 and 4 can have their respective circuits that are routed in the same conduit or layered in the same tray.
c. Classes 5 and 6 can have their respective circuits that are routed in the same conduit or layered in the same tray. The bundle cannot exceed the conditions of NEC 310.
d. Classes 7 and 8 can have their respective circuits that are routed in the same conduit or layered in the same tray. Encoder cables that are run in a bundle can experience some amount of EMI coupling. The circuit application can dictate separate space requirements.
e. Classes 9,10 and 11 can have their respective circuits that are routed in the same conduit or layered in the same tray. Communication cables that are run in a bundle can experience some amount of EMI coupling and associated communication faults. The application can dictate separate space requirements.
3. All wires of class 7 ... 11 MUST be shielded per the recommendations.
4. In cable trays, steel separators are advisable between the class groupings.
5. If conduit is used, it must be continuous and composed of magnetic steel.
6. Space requirements for communication cables, classes $2 . . .6$ are listed in this table:

Conduit Spacing:	Through Air:
$115 \mathrm{~V}-25 \mathrm{~mm}$ (1 in.)	$115 \mathrm{~V}-51 \mathrm{~mm}$ (2 in.)
$230 \mathrm{~V}-38 \mathrm{~mm}$ (1.5 in.)	$230 \mathrm{~V}-01.5 \mathrm{~mm}$ (4 in.)
$380 / 575 \mathrm{~V}-76 \mathrm{~mm}$ (3 in.)	$380 / 575 \mathrm{~V}-203 \mathrm{~mm}$ ($8 \mathrm{in}$. .)
$575 \mathrm{~V}-$ proportional to 152 mm (6 in.) per 1000V.	575 V - proportional to 305 mm (12 in.) per 1000V.

Power Wiring

AC Input Voltages

PowerFlex DC drives are rated for the following AC input voltages @ $50 / 60 \mathrm{~Hz}$ $\pm 5 \%$:

Mains Circuit (Terminals U, V, W)

- $230 \mathrm{~V} \pm 10 \%, 3 \mathrm{Ph}$
- $400 \mathrm{~V} \pm 10 \%, 3 \mathrm{Ph}$
- $440 \mathrm{~V} \pm 10 \%, 3 \mathrm{Ph}$
- $460 \mathrm{~V} \pm 10 \%, 3 \mathrm{Ph}$
- $480 \mathrm{~V} \pm 10 \%, 3 \mathrm{Ph}$
- $575 \mathrm{~V} \pm 10 \%, 3 \mathrm{Ph}$
- $690 \mathrm{~V} \pm 10 \%, 3 \mathrm{Ph}$

Field Circuit (Terminals U1, V1)

- $230 \mathrm{~V} \pm 10 \%, 1 \mathrm{Ph}$
- $400 \mathrm{~V} \pm 10 \%, 1 \mathrm{Ph}$
- $460 \mathrm{~V} \pm 10 \%, 1 \mathrm{Ph}$

Control Circuit (Terminals U2, V2)

- $115 \mathrm{~V} \pm 15 \%$ or $230 \mathrm{~V} \pm 15 \%, 1 \mathrm{Ph}$

IMPORTANT For frame B and C drives only, a jumper must be placed between terminals SA-SB on the switching power supply circuit board for the control circuits to work with 115 V AC input. See Figure 47 on page 68 for terminal block location on frame B drives and Figure 48 on page 68 for terminal block location on frame C drives.

DC Output Voltages

The output voltages shown here include an AC input undervoltage within the stated tolerance limits and a voltage drop of 4% due to an AC input line reactor. It is the same as the rated armature voltage suggested for the connected motor.

Armature Circuit

AC Input Voltage	DC Output Armature Voltage (Terminals C \& D)	
(Terminals U, V, W)	Two Quadrant Drive	Four Quadrant Drive
$230 \mathrm{~V} \pm 10 \%, 3 \mathrm{Ph}$	260 V	240 V
$400 \mathrm{~V} \pm 10 \%, 3 \mathrm{Ph}$	470 V	420 V
$440 \mathrm{~V} \pm 10 \%, 3 \mathrm{Ph}$	530 V	460 V
$460 \mathrm{~V} \pm 10 \%, 3 \mathrm{Ph}$	560 V	480 V
$480 \mathrm{~V} \pm 10 \%, 3 \mathrm{Ph}$	580 V	500 V
$575 \mathrm{~V} \pm 10 \%, 3 \mathrm{Ph}$	680 V	600 V
$690 \mathrm{~V} \pm 10 \%, 3 \mathrm{Ph}$	810 V	720 V

Field Circuit

AC Input Voltage	DC Output Field Voltage ${ }^{(1)}$ (Terminals C1 \& D1)	
(Terminals U1 \& V1)	Fixed Field	Adjustable Field
$230 \mathrm{~V} \pm 10 \%, 1 \mathrm{Ph}$	200 V	200 V
$400 \mathrm{~V} \pm 10 \%, 1 \mathrm{Ph}$	310 V	310 V
$460 \mathrm{~V} \pm 10 \%, 1 \mathrm{Ph}$	360 V	360 V

(1) The max field voltage is equal to $0.85 \times \mathrm{AC}$ input line voltage

Typical Power Wiring Diagrams

Figure 20 on page $46 \ldots$ Figure 22 on page 48 represent recommended power wiring configurations for standard PowerFlex DC drive installations. For SAR installations, see Appendix H.

Figure 20-Power Wiring with AC Input Contactor

Figure 21 - Power Wiring with DC Output Contactor

Figure 22 - Power Wiring with DC Output/Dynamic Braking Contactor and a Dynamic Brake

Power Wiring Diagrams Notes

1. For frame B and C drives only, a jumper is required between terminals SA and SB for 115 V AC control input power. See Control Circuit Input Power on page Control Circuit Input Power for more information.
2. An Isolation Transformer and/or $3 \ldots . .5 \%$ impedance Line Reactor is required. If the Isolation Transformer provides the required 3...5\% impedance, a Line Reactor is not required. See AC Input Line Reactors and AC Input Contactors on page 257 and Isolation Transformers on page $\underline{259}$ for recommendations. It is recommended that the isolation transformer has a grounded Wye secondary neutral. If the PowerFlex DC drive is installed in a system with an ungrounded Wye neutral or with an impedance ground connection, see Grounding for Installations in an Ungrounded or High-Impedance, Neutral Ground, or System on page 34 for more information.
3. AC input fuses for the armature converter are not provided with frame A and B drives, but are provided and internally mounted in frame C and D drives. See Drive Power Circuit Protection on page 239 for fuse recommendations.
4. Par 140 [Digital In 8 Sel] set to 31 "Contactor."
5. If the +24 V internal power supply is used, terminal 18 (24 V common) must be jumpered to terminal 35 (digital input common).
6. Customer supplied armature output fuses are required on four quadrant and are recommended on two quadrant Frame A and B drives. See Drive Power Circuit Protection on page 239 for fuse recommendations.
7. Optional armature voltage feedback sensing not required with AC contactor.
8. The "Enable" input must be removed to perform a dynamic braking stop.
9. Par 1391 [ContactorControl] = 1 "AC Cntctr" and Par 1392 [Relay Out $1 \mathrm{Sel}]=25$ "Contactor". Important: Terminal 35 and 36 are on the Control Power / Relay Outputs Terminal block, NOT the I/O terminal blocks. See Figure 37 on page 63 ...Figure 41 on page 65.
10. Only frame C and D drives require an external power supply for the heatsink cooling fan(s). See Frame C Heatsink Cooling Fan Specifications on page 69 and Frame D, Series B and C Heatsink Cooling Fan Specifications on page 71 for more information.
11. See Field Converter Connections on page 56.
12. If sourced from the main 3 -phase AC input, the connections must be taken from the primary side of the isolation transformer or line reactor (clean power).
13. Fuses or a circuit breaker. See Frame C Heatsink Cooling Fan Specifications on page 69 and Frame D, Series B and C Heatsink Cooling Fan Specifications on page 71 for detailed information.
14. For frames B, C, and D drives, a pilot relay is required for the contactor coil.

Armature Converter Connections

Terminals	Description
$\mathrm{U}, \mathrm{V}, \mathrm{W}$	Three-phase AC input to the armature converter
C, D	DC output to the motor armature
PE	Safety ground

Table 11 - Armature and Safety Ground (PE) Terminal Specifications

$\begin{aligned} & \text { 部 } \\ & \text { 咅 } \end{aligned}$	Drive Current Rating Code ${ }^{(1)}$				Terminals	Wire Size and Type	Terminal Bolt Size (mm)	Recommended Torque $\mathrm{N} \cdot \mathrm{m}$ (lb•in)
	230 V	460V	575	690				
A	7P0... 055	4P1... 052	-	-	U, V, W, C, D, PE	See Cable and Wiring Recommendations on page 43	5	6 (53)
	073... 110	073... 129	-	-			Terminal Block	12 (106)
B	All	All	All	-	U, V, W, C, D		10	25 (221)
					PE		8	15 (132.75)
C	All	All	All	All	U, V, W, C, D		10	25 (221)
					PE		8	15 (132.75)
D	All	All	All	All	U, V, W, C, D, PE		12	45 (398.2)

(1) See Standard Drive Catalog Number Explanation on page 15, positions 8, 9 and 10 for the applicable drive HP rating, armature amp rating, and field amp rating.

IMPORTANT To meet UL installation requirements, certain frame D drives require the use of a terminal adapter kit for terminals U, V, W, and C and D. See Terminal Adapter Kits for Frame D Drives on page 267 for details.

Figure 23 - Frame A Armature Converter Terminal Locations

Front View

Front view of drive that is shown with bottom protective and power terminal covers removed. See Remove the Drive Covers on page $\underline{27}$ for information on removing the drive covers.

ATTENTION: Do not operate the drive with the power terminal cover removed.
Drive operation with the power terminal covers removed may result in a hazardous condition that could cause personal injury and/or equipment damage.

Figure 24 - Frame B Armature Converter Terminal Locations

Figure 25 - Frame C Armature Converter Terminal Locations
Front View

Bottom View

Figure 26 - Frame D Armature Converter Terminal Locations

Important: To meet UL installation requirements, certain frame D drives require the use of a terminal adapter kit(s) for terminals U, V, W, C, and D. See Terminal Adapter Kits for Frame D Drives on page 267 for details.

Armature Voltage Feedback Connections

The armature voltage feedback terminals can be used to monitor the armature voltage at the motor, regardless of the state of a DC output contactor or inverting fault device that is used with the drive. When this terminal block is not connected to the motor armature terminals, the terminals must be jumpered as described in Table 12. When the armature voltage feedback terminals are jumpered, the armature voltage feedback is only monitored internally in the drive. In this case, when a DC contactor is used without a speed feedback device, the drive cannot calculate motor speed from the armature voltage feedback signal.

> | IMPORTANT | $\begin{array}{l}\text { By default, these terminals are jumpered }-1 \mathrm{~A} 1 \text { to } \mathrm{A} 1 \text { and } 1 \mathrm{~A} 2 \text { to } \mathrm{A} 2 \text {. If these } \\ \text { terminals are not wired to the motor terminals, the jumpers must be installed. }\end{array}$ |
| :--- | :--- |

This terminal block is not present on drives that are shipped from the factory with firmware revision 2.006 or earlier installed. However, new pulse transformer circuit boards that are shipped as replacement parts from the factory contain this terminal block and can be used with any firmware revision.

Table 12 - Armature Voltage Feedback Terminal Jumper Positions

Terminals	Description
1A1	Jumpered to A1 when internal armature voltage feedback is used. Not used when A1 is connected to motor terminal A1.
A1	Voltage feedback from motor terminal A1.
1A2	Jumpered to A2 when internal armature voltage feedback is used. Not used when A2 is connected to motor terminal A2.
A2	Voltage feedback from motor terminal A2.

Table 13 - Armature Voltage Feedback Circuit Wire Sizes and Terminal Specifications

Frame	Terminals	Wire Size and Type ${ }^{(1)}$	Recommended Torque $\mathrm{N} \bullet \mathrm{m}$ (lboin)
A, B \& C	1A1, A1, 1A2, A2	24...10 AWG/kcmils	0.5...0.6 (4.4...5.3)
D		22... 8 AWG/kcmils	0.8...1.6 (7.1...14.2)

(1) Wire with an insulation rating of 600 V or greater is recommended. See Cable and Wiring Recommendations on page 43 for cable space requirements.

Figure 27 - Frame A Armature Voltage Feedback Circuit Terminal Block Location
Bottom of View of Drives

Shown with terminals jumpered for internal armature voltage feedback.

Figure 28 - Frame B Armature Voltage Feedback Circuit Terminal Block Location

Top of Drive

Shown with terminals jumpered for internal armature voltage feedback.

Figure 29 - Frame C Armature Voltage Feedback Circuit Terminal Block Location

Figure 30 - Frame D Armature Voltage Feedback Circuit Terminal Block Location

Field Converter Connections

For 575 V and 690 V AC input drives only, a step-down transformer must be installed ahead of the input to the field control circuit (terminals U1, V1). The step-down transformer must meet one of the secondary to motor field voltage characteristics listed here.

- 230 VAC secondary for a 150 V motor field
- 460 VAC secondary for a 300 V motor field

Also, If the rated voltage of the DC motor field is not compatible with the field DC output voltage of the drive, an external field-control transformer must be used. See the following example for transformer selection information.

Example: $10 \mathrm{Hp}, 240 \mathrm{~V}$ Armature, 17.2A, 240V Field, 2.0 A motor
a. The field control transformer must have a 230 V primary, a 460 V secondary, and be single-phase, 60 Hz
b. $\mathrm{kVA}=2 \mathrm{~A} \times 460 \mathrm{VAC} \times 1.5=1.38 \mathrm{kVA}(1.5 \mathrm{kVA}$ is closest $)$

In addition, the following configuration must be completed in the PowerFlex DC drive:
c. Control board DIP switch S 14 must be set to select a value of 2 A .
d. Parameter 374 [Drv Fld Brdg Cur] must be programmed to match DIP switch S14 = "2."
e. Parameter 280 [Nom Mtr Fld Amps] must be programmed to the rated motor nameplate field current " 2 ."

Field Converter Terminal Designations

Terminals	Description
U1, V1	Single phase AC input to the field circuit
C1, D1	DC output to the motor field

Table 14 - Frames A. . . C Field Circuit Wire Sizes and Terminal Specifications

Terminals	Wire Size and Type $^{(1)}$	Recommended Torque $\mathrm{N} \cdot \mathrm{m}(\mathrm{lb} \cdot \mathrm{in})$
U1, V1, C1, D1	$24 \ldots 10 \mathrm{AWG} / \mathrm{kcmils}$	$0.5 \ldots 0.8(4.4 \ldots 7.1)$

(1) See Cable and Wiring Recommendations on page 43 for more information.

Table 15 - Frame D Field Circuit Wire Sizes and Terminal Specifications

Drive Current Rating Code ${ }^{(1)}$				Terminals	Wire Size ${ }^{(2)}$	Recommended Torque $\mathrm{N} \cdot \mathrm{m}$ (lboin)
230 V	460V	575V	690V			
875	830	810	678	$\mathrm{U} 1, \mathrm{~V} 1, \mathrm{C} 1, \mathrm{D} 1$	6 AWG	4.0 (35.4)
1K0	996	1K0	791			
-	-	1K2	904			
-	-	1 K 3	1K0			
-	-	1K6	-			
-	1K1	-	1K1		2 AWG	
-	1K3	-	1K2			
-	1K4	-	1K4			
-	-	-	1K5			

(1) See Standard Drive Catalog Number Explanation on page 15, positions 8, 9 and 10 for the applicable drive HP rating, armature amp rating, and field amp rating.
(2) See Cable and Wiring Recommendations on page 43 for more information on wire types.

Figure 31 - Frame A Field Circuit Terminal Block Location

Figure 32-Frame B Field Circuit Terminal Block Location

Figure 33-230V/460V AC Input Frame C Field Circuit Terminal Block Location

Figure 34-575V/690V AC Input Frame C Field Circuit Terminal Block Location
Top, Left Side of Drive

Figure 35 - Frame D Field Circuit Terminal Block Location

Field Current Configuration

DIP switch S14 on the drive control circuit board is factory set to the minimum field current rating based on the drive size. See DIP Switch and Jumper Settings on page 75 for $S 14$ location. The configuration of this switch must be changed to be greater than or equal to the rated field current specified on the motor nameplate (unless a permanent magnet motor is being used) or possible motor damage may result. In addition, the value that is selected with switch $S 14$ must be entered in parameter 374 [Drv Fld Brdg Cur] in the control software when the drive is commissioned (see Drive Start Up on page 91.)

ATTENTION: DIP switch S14 must be set to a value that is greater than or equal to the rated field current specified on the motor nameplate or possible motor damage may result.

Set DIP Switch S14 to the Correct Value

Complete the following steps to set switch S14 to the correct field current value.

1. Locate and record the frame size and field supply amp rating that is listed on the drive data nameplate (see Drive Nameplate Data on page 12 for location).
2. Locate and record the rated field current value that is listed on the motor data nameplate.
3. For frame A, B, and C drives:

- Use Table 16 on page $\underline{61}$ to set switch S14 to be the equivalent or next higher value as compared to the rated field current of the motor.

For frame D drives:

- Use Table 17 or Table 18 on page 61 to set switch S14 to be the equivalent or next higher value as compared to rated field current of the motor.

Figure 36 - Example DIP Switch S14 Configuration

This illustration is an example configuration for a drive with a field supply amp rating of 20 A and a motor with a rated field current less than or equal to 17 A .

The configuration of switch S14 is not required if the motor field control is provided via an external source (for example, a permanent magnet motor). In this case, however, it is recommended that the switch settings be completed as described in Set DIP Switch S14 to the Correct Value.

Table 16-DIP Switch S14 Field Current Configuration Settings Frames A, B, and C Drives

Switch ohms >	168.5	333.3	182	36.4	845	1668	3333	-	Equivalent Resistance
Field Current Scale	S14-1	S14-2	S14-3	S14-4	S14-5	S14-6	S14-7	S14-8	Ohms
1 A	OFF	OFF	OFF	OFF	OFF	ON	Not used (OFF)		1668
2 A	OFF	OFF	OFF	OFF	ON	OFF			845
3 A	OFF	OFF	OFF	OFF	ON	ON			560.9
5 A	OFF	ON	OFF	OFF	OFF	OFF			333.3
10 A	ON	OFF	OFF	OFF	OFF	OFF			168.5
13 A	ON	OFF	OFF	OFF	ON	ON			129.6
17 A	OFF	ON	ON	OFF	ON	ON			97.3
20 A	ON	OFF	ON	OFF	OFF	ON			83.1

Table 17 - DIP Switch S14 Field Current Configuration Settings for Frame D Drives and Standalone Regulators with a Rated Field Supply of 40 A

Switch ohms >	168.5	333.3	182	36.4	845	1668	3333	-	Equivalent Resistance
Field Current Scale	S14-1	S14-2	S14-3	S14-4	S14-5	S14-6	S14-7	S14-8	Ohm
1A	OFF	OFF	OFF	OFF	OFF	OFF	ON	$\begin{aligned} & \text { Not } \\ & \text { used } \\ & \text { (OFF) } \end{aligned}$	3333
2 A	OFF	OFF	OFF	OFF	OFF	ON	OFF		1668
4A	OFF	OFF	OFF	OFF	ON	OFF	OFF		845
6A	OFF	OFF	OFF	OFF	ON	ON	OFF		560.9
10 A	OFF	ON	OFF	OFF	OFF	OFF	OFF		333.3
20 A	ON	OFF	OFF	OFF	OFF	OFF	OFF		168.5
30 A	ON	ON	OFF	OFF	OFF	OFF	OFF		111.9
40 A	ON	OFF	ON	OFF	OFF	ON	OFF		83.1

Table 18 - DIP Switch S14 Field Current Configuration Settings for Frame D Drives and Standalone Regulators with a Rated Field Supply of 70 A

Switch ohms >	168.5	333.3	182	36.4	845	1668	3333	-	Equivalent Resistance
Field Current Scale	S14-1	S14-2	S14-3	S14-4	S14-5	S14-6	S14-7	S14-8	Ohm
1A	OFF	OFF	OFF	OFF	OFF	ON	OFF	$\begin{aligned} & \text { Not } \\ & \text { used } \\ & \text { (OFF) } \end{aligned}$	1668
5 A	OFF	ON	OFF	OFF	OFF	OFF	OFF		333.3
10 A	ON	OFF	OFF	OFF	OFF	OFF	OFF		168.5
20 A	ON	OFF	ON	OFF	OFF	ON	OFF		83.1
50 A	OFF	ON	OFF	ON	OFF	OFF	OFF		32.8
70 A	ON	ON	ON	ON	OFF	OFF	OFF		23.9

Relay Outputs

Terminals 35 and 36 and 75 and 76 are N.O. relay outputs. The relay output between terminals 35 and 36 is configured with parameter $\underline{1392}$
[Relay Out 1 Sel]. The relay output between terminals 75 and 76 is configured with parameter 629 [Relay Out 2 Sel]. See Contactors on page 30 for more information.

Terminals	Description	Maximum Voltage	Maximum Current
35,36	Normally open contact. Configured with parameter 1392 [Relay 0ut 1 Sel], set to 25 "Contactor" by default.		
75,76	Normally open contact. Configured with parameter 629 [Relay 0ut 2 Sel], set to 5 "Ready" by default.	250V AC	1 A
78,79	Motor thermistor (PTC) or thermal switch connections		

If external contactor coil current ratings are greater than one amp, use an interposing relay between the drive relay 1 or relay 2 output and the contactor coil.

Thermistors and Thermal Switches

To detect motor overheating and protect the motor from overloading, an external, user-supplied thermistor (PTC) or thermal switch must be connected to terminals 78 and 79. The drive response to a motor over temperature fault is configured in parameter 365 [OverTemp Flt Cfg]. If a thermistor or thermal switch is not used, a $1 \mathrm{k} \Omega$ resistor must be connected between terminals 78 and 79 (installed at the factory). Follow the appropriate thermal sensor (thermistor or thermal switch) installation instructions.

Thermistors (PTC)

PTC thermistors that are installed in the motor can be connected directly to the drive via terminals 78 and 79. In this case, the $1 \mathrm{k} \Omega$ resistor is not required between terminals 78 and 79 .

Thermal Switches (Klixon ${ }^{\circ}$) in the Motor Windings

"Klixon" type temperature-dependent contacts can disconnect the drive from the motor via an external control or be configured as an external fault by using a drive digital input. Though not recommended, a Klixon can also be connected to terminals 78 and 79 to indicate a drive "Motor Over Temp" fault (F16). This connection can cause noise sensitivity of the current threshold circuitry. If a thermal switch is used, a $1 \mathrm{k} \Omega$ resistor must be placed in series between the switch and one of the terminals.

Table 19-Relay Outputs and Thermistor/Thermal Switch Wire Sizes and Specifications

Signal Type	Terminals	Wire Size and Type ${ }^{(\mathbf{1})}$		Recommended Torque N•m (lb•in)	
		Flexible $\left(\mathbf{m m}^{2}\right)$	Multi-core $\left(\mathbf{m m}^{2}\right)$	AWG	
Relay Outputs	$35 / 36$ and $75 / 76$	$0.140 \ldots 1.500$	$0.140 \ldots 1.500$	$26 \ldots 14$	$0.5(4.4)$
Thermistor and Thermal Switches	$78 / 79$				

(1) See Cable and Wiring Recommendations on page 43 for more information.

Figure 37 - Frame A Relay and Thermistor/Thermal Switch Terminal Block Locations

Figure 38 - Frame B Relay and Thermistor/Thermal Switch Terminal Block Locations

Figure 39-230V/460C AC Input Frame C Relay and Thermistor/Thermal Switch Terminal Block Locations

Figure 40-575V/690C AC Input Frame C Relay and Thermistor/Thermal Switch Terminal Block Locations

Lower, right side of the control pan.

Figure 41 - Frame D Relay and Thermistor/Thermal Switch Terminal Block Locations

Control Circuit Input Power

Only power the control circuit by using a clean, external 230 V AC, or 115 V AC single phase power supply. For frame B and C drives only, a jumper is required between terminals SA and SB for 115 V AC control input power. For frame B drive SA-SB terminal block location, see Figure 47 on page 68 . For frame C drive SA-SB terminal block location, see Figure 47 on page 68.

Terminals	Description
U2, V2	Single phase AC power for the control circuits
PE	Safety ground (on frame C drive terminal blocks only)

Table 20 - Control Circuit Wire Sizes and Terminal Specifications

Terminals	Wire Size and Type ${ }^{(\mathbf{1 7}}$		Recommended Torque N•m (lbexible $\left(\mathbf{m m}^{2}\right)$	Multi-core $\left(\mathbf{m m}^{2}\right)$
	$0.14 \ldots 1.5$	$0.14 \ldots 2.5$	$26 \ldots 14$	$0.5(4.4)$
PE	$2.5 \ldots 10$	$2.5 \ldots 10$	$12 \ldots 8$	$2.0(18.0)$

[^1]Figure 42 - Frame A Control Circuit Terminal Block Location

Figure 43 - Frame B Control Circuit Terminal Block Location

Figure 44-230V/460V AC Input Frame C Control Circuit Terminal Block Location

Figure 45 -575V/690V AC Input Frame C Control Circuit Terminal Block Location

Figure 46 - Frame D Control Circuit Terminal Block Location

Figure 47 - SA-SB Terminal Block Location on Frame B Drives

Figure 48-SA-SB Terminal Block Location on Frame C Drives

To access the SA-SB terminal block:

Frame C Heatsink Cooling Fan Specifications

Frame C drives require an external 230 V AC power supply for the heatsink cooling fans. If sourced from the main 3-phase AC input, the power supply connections must be taken from the primary side of the installed Isolation Transformer or Line Reactor (clean power).

In addition, the fan power input terminals U 3 and V 3 are required to be shortcircuit protected. This protection can be provided by using a circuit breaker or fuses.

- If a circuit breaker is used, it must be rated for the short-circuit available current of the feeder source for this circuit and the inrush current of the fan. Size the circuit breaker to protect the wiring from the circuit breaker connections to terminals U3 and V3, and not nuisance trip or blow from the inrush current.
- If fuses are used, they must be rated for either $230 \mathrm{~V} \mathrm{AC}, 2.0 \mathrm{Amps}$ (slow blow).

Table 21 - Frame C Heatsink Cooling Fans Terminal Designations

Terminal	Description	Maximum Voltage	Maximum Current
U3	Single-phase AC input power for cooling fans.	230 VAC	1 A
V3			

Table 22 - Frame C Heatsink Cooling Fans Wire Sizes and Terminal Specifications

Terminals	Wire Size and Type $^{(\mathbf{1 1}}$		Recommended Torque N•m (lb•in)	
	Flexible $\left(\mathbf{m m}^{2}\right)$	Multi-core $\left(\mathbf{m m}^{2}\right)$	AWG	$0.4(3.5)$
U3, V3	$0.14 \ldots 1.5$	$0.14 \ldots 2.5$	$26 \ldots 16$.1

(1) See Cable and Wiring Recommendations on page 43 for more information.

Figure 49-230V/460V AC Input Frame C Heatsink Cooling Fan Terminal Block Location

Figure 50-575V/690V AC Input Frame C Heatsink Cooling Fan Terminal Block Location

Lower, right side of the control pan.

Frame D, Series B and C Heatsink Cooling Fan Specifications

The Frame D, series B and C drive cooling fan requires 3-phase, 400 V ... 460 V AC input power. If sourced from the main 3-phase AC input, the power supply connections must be taken from the primary side of the installed isolation transformer or line reactor (clean power).

IMPORTANT When connecting the fan power wiring, verify that the airflow enters through the bottom and exits through the top of the drive. If the airflow is incorrect, switch the leads on terminals U 3 and V 3 .

The cooling fan power input terminals U3, V3, and W3 are required to be shortcircuit protected. This protection can be provided by using a circuit breaker or fuses.

- If a circuit breaker is used, it must be rated for the short-circuit available current of the feeder source for this circuit and the inrush current of the fan. Size the circuit breaker to protect the wiring from the circuit breaker connections to terminals U3, V3, and W3, and not nuisance trip or blow from the inrush current.
- If fuses are used, they must be rated for either $400 \mathrm{~V} \mathrm{AC}, 2.5 \mathrm{Amps}$ (slow blow), or $460 \mathrm{~V} \mathrm{AC}, 3.15 \mathrm{Amps}$ (slow blow).

To indicate a fan power supply failure, a normally closed contact can be wired between terminals 31 and 32 on the fan circuit board and one of the following selections.

- A drive digital input, configured for 14 "Aux Fault" in the applicable parameter (133...144)
- An external fault indication device

Table 23 - Frame D, Series B and C Heatsink Cooling Fan Terminal Designations

Terminal Block	Terminal	Description	AC Voltage	Max Current
	U3	Three-phase AC input power connections	400 V AC / 50 Hz 460 V AC / 60 Hz	1.5 A
	V3			
3	W3			
1	PE	Safety ground	-	-
	31	Normally closed contact	250 V AC	1A
	32			

Table 24 - Frame D, Series B and C Heatsink Cooling Fan Signal Wire Sizes and Terminal Specifications

Terminals	Wire Size and Type ${ }^{(\mathbf{1})}$		Recommended Torque N•m (lb•in)	
	Flexible $\left(\mathbf{m m}^{2}\right)$	Multi-core $\left(\mathbf{m m}^{2}\right)$	AWG	U3, V3, W3, 31,32, PE
$0.14 \ldots 1.5$	$0.14 \ldots 2.5$	$28 \ldots 12$	$0.5 \ldots 0.6(4.4 \ldots 5.3)$	

(1) See Cable and Wiring Recommendations on page 43 for more information.

Figure 51 - Frame D Heatsink Cooling Fan Terminal Block Location

Frame C and D Armature Fuse Signal Terminals

Terminals 81 and 82 on frame C and D drives are connected to the indicating switch mounted on each of the internal armature circuit protection fuses. These terminals can be connected to an external device to provide indication that the fuses have opened. Alternatively, terminals 81 and 82 can be wired to drive digital input terminals that are configured for 64 "Invert Flt" (via Pars 133...144).

Table 25 - Armature Fuse Signal Terminal Designations

Terminal	Description	Maximum Voltage	Maximum Current
81	Internal armature fuse intervention signal.	250 V AC	1 A
82			

Table 26 - Armature Fuse Signal Wire Size and Terminal Specifications

Terminals	Wire Size and Type ${ }^{(1)}$		Recommended Torque	
	Flexible $\left(\mathbf{m m}^{2}\right)$	Multi-core $\left(\mathbf{m m}^{2}\right)$	AWG	N•m (lb•in)
81,82	$0.14 \ldots 1.5$	$0.14 \ldots 2.5$	$26 \ldots 16$	$0.4(3.5)$

(1) See Cable and Wiring Recommendations on page 43 for more information.

Figure 52-230V/460V AC Input Frame C Internal Armature Fuse Signal Terminal Block Location

Figure 53 - 575V/690V AC Input Frame C Internal Armature Fuse Signal Terminal Block Location

Lower, right side of the control pan.

Figure 54 - Frame D Internal Armature Fuse Signal Terminal Block Location

DIP Switch and Jumper Settings

DIP switches and jumpers on the control circuit board are used to configure the drive for the following features:

- Firmware flash updates to the control board EEPROM
- Speed feedback device settings
- Analog input signal sources
- Minimum field current

Figure 55 - Control Circuit Board DIP Switch and Jumper Locations
See Table 27 on page 76 for descriptions corresponding to the ID numbers shown here.

Table 27 - Control Circuit Board Jumper and DIP Switch Settings

ID	Jumper/ Switch	Function	Factory Default	Example
1	SO	For factory boot flashing only. Leave set to the factory setting.	Jumper Off	
	S1	For factory boot flashing only. Leave set to the factory setting.	Jumper Off	
	S2	Not used. Leave set to the factory setting.	Jumper Off	
	S3	For factory boot flashing only. Leave set to the factory setting.	Jumper Off	
	S4	Configures the input voltage of the DC analog tachometer. See Table 28 on page 77 for configuration.	90 V	-
	S9	Configures the input signal of Analog Input 1 (terminals 1 and 2): Off Position $0 . . .20 \mathrm{~mA} / 4 \ldots 20 \mathrm{~mA}$ On Position $\quad 0 . . .10 \mathrm{~V} / \pm 10 \mathrm{~V}$ Par 71 [Anlg $\ln 1$ Config] must be programmed to match the input signal type selected with this switch.	On	$\begin{aligned} & \square \square=\text { ON } \\ & \square \square=\text { OFF } \end{aligned}$
	S10	Configures the input signal of Analog Input 2 (terminal 3 and 4): Off Position $0 . . .20 \mathrm{~mA} / 4 \ldots 20 \mathrm{~mA}$ On Position $\quad 0 . . .10 \mathrm{~V} / \pm 10 \mathrm{~V}$ Par 76 [Anlg In2 Config] must be programmed to match the input signal type selected with this switch.	On	
	S11	Configures the input signal of Analog Input 3 (terminals 5 and 6): Off Position $0 . . .20 \mathrm{~mA} / 4 \ldots 20 \mathrm{~mA}$ On Position $\quad 0 \ldots 10 \mathrm{~V} / \pm 10 \mathrm{~V}$ Par 81 [Anlg In3 Config] must be programmed to match the input signal type selected with this switch.	On	
	S12	Not used. Leave set to the factory setting.	Off	-
	S14	Field current resistors setting, see Field Current Configuration on page 60. The value that is selected with switch S 14 must be entered in Par 374 [Drv Fld Brdg Cur] when the drive is commissioned. For permanent magnet motor applications, leave set to the factory default settings.	Minimum field current rating based on drive size.	-
	S15	Configuration of the control circuit board to the appropriate drive size. Leave set to the factory setting, unless the control board has been supplied as a spare part. See DIP Switch S15 Settings on page 77 for switch configuration that is based on drive current rating code.	Armature current based on drive size.	-
	S18	Not used. Leave set to the factory setting.	Off	-
	S20	Monitoring (reported by Par 652 [Encoder Err Chk]) of the Z channel of the Digital Encoder on connector XE2. This switch adds/removes the Z channel in the encoder hardware check circuit. Par 652 enables/disables reading the result of that hardware check.	On	$\begin{aligned} & \square \square=0 \mathrm{~N} \\ & \square \square=\text { OFF } \\ & \square \square \end{aligned}$
	S21	Encoder power supply voltage and input selection: This switch setting determines both the power supply (input) and feedback level (output) voltage of the connected encoder. When control power is supplied to the drive, the appropriate LED lights to indicate the selection of the switch.	12...5V	

ATTENTION: The drive can overspeed if DIP switch 54 is set incorrectly or the tachometer is wired incorrectly. Failure to observe this precaution could result in damage to, or destruction of, the equipment.

DIP switch S4 must be configured to be greater than or equal to the maximum DC input voltage. Maximum DC Input Voltage $=($ Tach Volts $/ 1000 \mathrm{rpm}) \times$ Par 45 [Max Ref Speed] x 1.1. See Drive Reference and Feedback Scaling on page $\underline{283}$ for details on speed feedback value configuration.

Figure 56 - DC Analog Tachometer DIP Switch S4 Example

Table 28-DC Analog Tachometer DIP Switch S4 Configuration

Maximum DC Input Voltage	S4-1 S4-8	S4-2 $\mathbf{S 4 - 7}$	S4-3 $\mathbf{S 4 - 6}$	$\boldsymbol{S 4 - 4}$ $\mathbf{S 4 - 5}$
22 V	ON	ON	ON	ON
45 V	ON	ON	ON	OFF
90 V	ON	ON	OFF	OFF
180 V	ON	OFF	OFF	OFF
300 V	OFF	OFF	OFF	OFF

DIP Switch S15 Settings

DIP Switch S15 is configured for the appropriate drive size at the factory. Do not change the settings unless you are installing a replacement control board.

Figure 57 - Drive Size DIP Switch S15 Example

Table 29 - Drives with 230V Input - DIP Switch S15 Configuration

Frame	Drive Current Rating Code	S15-1	S15-2	S15-3	S15-4	S15-5	S15-6	S15-7	S15-8
A	7 PO	ON	OFF						
	9 PO	OFF	ON	OFF	OFF	OFF	OFF	OFF	OFF
	012	ON	ON	OFF	OFF	OFF	OFF	OFF	OFF
	020	OFF	OFF	ON	OFF	OFF	OFF	OFF	OFF
	029	ON	OFF	ON	OFF	OFF	OFF	OFF	OFF
	038	OFF	ON	ON	OFF	OFF	OFF	OFF	OFF
	055	ON	ON	ON	OFF	OFF	OFF	OFF	OFF
	073	OFF	OFF	OFF	ON	OFF	OFF	OFF	OFF
	093	ON	OFF	OFF	ON	OFF	OFF	OFF	OFF
	110	OFF	ON	OFF	ON	OFF	OFF	OFF	OFF
B	146	ON	ON	OFF	ON	OFF	OFF	OFF	OFF
	180	OFF	OFF	ON	ON	OFF	OFF	OFF	OFF
	218	ON	OFF	ON	ON	OFF	OFF	OFF	OFF
	265	OFF	ON	ON	ON	OFF	OFF	OFF	OFF
	360	ON	ON	ON	ON	OFF	OFF	OFF	OFF
	434	OFF	OFF	OFF	OFF	ON	OFF	OFF	OFF
c	521	ON	OFF	OFF	OFF	ON	OFF	OFF	OFF
	700	OFF	ON	OFF	OFF	ON	OFF	OFF	OFF
D	875	ON	ON	OFF	OFF	ON	OFF	OFF	OFF
	1K0	OFF	OFF	ON	OFF	ON	OFF	OFF	OFF

Table 30 - Drives with 460V Input - DIP Switch S15 Configuration

Frame	Drive Current Rating Code	S15-1	S15-2	S15-3	S15-4	S15-5	S15-6	S15-7	S15-8
A	4P1	OFF	OFF	OFF	OFF	OFF	OFF	ON	OFF
	6P0	ON	OFF	OFF	OFF	OFF	OFF	ON	OFF
	010	OFF	ON	OFF	OFF	OFF	OFF	ON	OFF
	014	ON	ON	OFF	OFF	OFF	OFF	ON	OFF
	019	OFF	OFF	ON	OFF	OFF	OFF	ON	OFF
	027	ON	OFF	ON	OFF	OFF	OFF	ON	OFF
	035	0FF	ON	ON	OFF	OFF	OFF	ON	OFF
	045	ON	ON	ON	OFF	OFF	OFF	ON	OFF
	052	OFF	OFF	OFF	ON	OFF	OFF	ON	OFF
	073	ON	OFF	OFF	ON	OFF	OFF	ON	OFF
	086	OFF	ON	OFF	ON	OFF	OFF	ON	OFF
	100	ON	ON	OFF	ON	OFF	OFF	ON	OFF
	129	OFF	OFF	ON	ON	0FF	OFF	ON	OFF

Frame	Drive Current Rating Code	S15-1	S15-2	S15-3	S15-4	S15-5	S15-6	S15-7	S15-8
B	167	ON	OFF	ON	ON	OFF	OFF	ON	OFF
	207	OFF	ON	ON	ON	OFF	OFF	ON	OFF
	250	ON	ON	ON	ON	OFF	OFF	ON	OFF
	330	OFF	OFF	OFF	OFF	ON	OFF	ON	OFF
	412	ON	OFF	OFF	OFF	ON	OFF	ON	OFF
C	495	OFF	ON	OFF	OFF	ON	OFF	ON	OFF
	667	ON	ON	OFF	OFF	ON	OFF	ON	OFF
D	830	OFF	OFF	ON	OFF	ON	OFF	ON	OFF
	996	ON	OFF	ON	OFF	ON	OFF	ON	OFF
	1K1	OFF	ON	ON	OFF	ON	OFF	ON	OFF
	1K3	ON	ON	ON	OFF	ON	OFF	ON	OFF
	1K4	OFF	OFF	OFF	ON	ON	OFF	ON	OFF

Table 31 - Drives with 575V Input - DIP Switch S15 Configuration

Fram e	Drive Current Rating Code	S15-1	S15-2	S15-3	S15-4	S15-5	S15-6	S15-7	S15-8
B	067	OFF	ON						
	101	ON	OFF	OFF	OFF	OFF	OFF	OFF	ON
	135	OFF	ON	OFF	OFF	OFF	OFF	OFF	ON
	270	ON	ON	OFF	OFF	OFF	OFF	OFF	ON
	405	OFF	OFF	ON	OFF	OFF	OFF	OFF	ON
C	540	ON	OFF	ON	OFF	OFF	OFF	OFF	ON
	675	OFF	ON	ON	OFF	OFF	OFF	OFF	ON
D	810	ON	ON	ON	OFF	OFF	OFF	OFF	ON
	1K0	OFF	OFF	OFF	ON	OFF	OFF	OFF	ON
	1K2	ON	OFF	OFF	ON	OFF	OFF	OFF	ON
	1K3	OFF	ON	OFF	ON	OFF	OFF	OFF	ON
	1K6	ON	ON	OFF	ON	OFF	OFF	OFF	ON

Table 32 - Drives with 690V Input - DIP Switch S15 Configuration

Frame	Drive Current Rating Code	S15-1	S15-2	S15-3	S15-4	S15-5	S15-6	S15-7	S15-8
c	452	OFF	OFF	OFF	OFF	OFF	OFF	ON	ON
	565	ON	OFF	OFF	OFF	OFF	OFF	ON	ON
D	678	OFF	ON	OFF	OFF	OFF	OFF	ON	ON
	791	ON	ON	OFF	OFF	OFF	OFF	ON	ON
	904	ON	OFF	ON	OFF	OFF	OFF	ON	ON
	1K0	OFF	ON	ON	OFF	OFF	OFF	ON	ON
	1K1	ON	ON	ON	OFF	OFF	OFF	ON	ON
	1K2	OFF	OFF	OFF	ON	OFF	OFF	ON	ON
	1K4	OFF	ON	OFF	ON	OFF	OFF	ON	ON
	1 K 5	ON	ON	OFF	ON	OFF	OFF	ON	ON

I/O Wiring

Observe the following points when installing I/O wiring:

- Use copper wire only.
- Wire with an insulation rating of 600 V or greater is recommended.

IMPORTANT I/0 terminals that are labeled " $(-)$ " or "Common" are not referenced to earth ground and are designed to reduce common mode interference. Grounding these terminals can cause signal noise.

ATTENTION: An analog input configured for current operation and driven from a voltage source could cause component damage. Verify the proper switch configuration before input signals are applied. See DIP Switch and Jumper Settings on page 75 .

ATTENTION: Hazard of personal injury or equipment damage exists when bipolar input sources are used. Noise and drift in sensitive input circuits can cause unpredictable changes in motor speed and direction. Use speed command parameters to help reduce input source sensitivity.

I/O Signal and Control Wiring

Eight digital inputs, four digital outputs, three analog inputs, and two analog outputs are available on the standard I/O terminal blocks that are provided with the drive. One digital input (1...8) must be configured for "Enable" (digital input 4 by default = "Enable"). See I/O and Control Wire Routing on page 89 for information on routing I/O signal and control wires.

Additional digital and analog I/O is available when the optional I/O expansion circuit board is installed. See Appendix F for more information. The optional 115 V AC converter circuit board can be used to convert 115 V AC digital input signals to 24 V DC digital inputs signals. This board can be used to interface with the digital inputs on the standard I/O terminal blocks. See Appendix G for more information.

Table 33 - Analog I/0, Digital I/0, and DC Analog Tachometer Wire Sizes and Terminal Specifications

Signal Type	Terminal Block (Terminals)	Wire Size and Type ${ }^{(\mathbf{1})}$		Recommended Torque
	Flexible $\left(\mathbf{m m}^{2}\right)$	Multi-core $\left(\mathbf{m m}^{2}\right)$	AWG	(lboin)
Analog and Digital I/0	TB1...4(1...40)	$0.140 \ldots 1.500$	$0.140 \ldots 1.500$	$26 \ldots 16$
DC Analog Tach	M3 (+ and -$)$	$0.4(3.5)$		

(1) See Cable and Wiring Recommendations on page $4 \underline{3}$ for more information.

Figure 58-I/0 Terminal Block Locations

Table 34-I/0 Terminal Block 1 Designations

	No.	Signal	Description	Factory Default	Config. Parameter
	1	Analog Input 1 (+)	Isolated ${ }^{(1)}$, bipolar, differential $\pm 10 \mathrm{~V} / 0 \ldots 20 \mathrm{~mA}$ or $4 \ldots 20 \mathrm{~mA}$. Important: $0 \ldots 20 \mathrm{~mA}$ or $4 \ldots 20 \mathrm{~mA}$ operation requires that switch S9, S10, and S11 on the control board be in the "Off" position. Drive damage may occur if the switch is not in the correct position based on the type of input signal. See Table 27 on page 54. Max $\pm 10 \mathrm{~V}$, Max 0.25 mA .	1 "Speed Ref A"	70 [Anlg $\ln 1 \mathrm{Sel}]$
	2	Analog Input 1 (-)			
	3	Analog Input 2 (+)		0 " 0 ff "	75 [Anlg $\ln 2 \mathrm{Sel}$]
	4	Analog Input 2 (-)			
	5	Analog Input 3 (+)		0 "0ff"	80 [Anlg $\ln 3$ Sel]
	6	Analog Input 3 (-)			
	7	+10V Pot Reference	$2 \ldots .5 \mathrm{k} \Omega$ load. Max $\pm 10 \mathrm{~V}, 10 \mathrm{~mA}$.	-	-
	8	-10V Pot Reference			
	9	Pot Common	For (+) and (-) 10V pot references.	-	-
	10	PE ground	PE ground to drive chassis.	-	-

(1) Differential Isolation - External source must be maintained at less than 160 V with respect to PE . Input provides high common-mode immunity.

Table 35 - I/0 Terminal Block 2 Designations

	No.	Signal	Description	Factory Default	Config. Parameter
	11	Internal OV (Gnd)		-	-
	12	Digital Input 1	Max $+30 \mathrm{~V}, 15 \mathrm{~V} / 3.2 \mathrm{~mA}, 24 \mathrm{~V} / 5 \mathrm{~mA}$, and $30 \mathrm{~V} / 6.4 \mathrm{~mA}$. A digital input (1...8) must be configured for "Enable".	2"Stop/CF"	133 [Digital In1 Sel]
	13	Digital Input 2		3"Start"	134 [Digital In2 Sel]
	14	Digital Input 3		11 "Jog"	135 [Digital In3 Sel]
	15	Digital Input 4		1 "Enable"	136 [Digital In4 Sel]
	16	Digital Input Common	Important: When the internal +24V DC supply (terminal 19) is used for digital inputs $1 \ldots 4$, you must connect the digital input common (terminal $16)$ to the +24 V supply common (terminal 18).	-	-
	17	Not Used		-	-
	18	24V Supply Common	Common for the internal power supply.	-	-
	19	Internal +24V DC Supply	Drive supplied +24 V DC I/0 power. Max. $+20 \ldots 30 \mathrm{~V}, 200 \mathrm{~mA}$ The total current draw is the sum of encoder power, digital outputs, and any other loads that are connected to terminal 19.	-	-
	20	PE ground	PE ground to drive chassis.	-	-

Table 36-I/O Terminal Block 3 Designations

	No.	Signal	Description	Factory Default	Config. Parameter
	21	Analog Output 1 (+)	Max. $\pm 10 \mathrm{~V}, 5 \mathrm{~mA}$.	12 "Motor Speed"	66 [Anlg Out1 Sel]
	22	Analog Output 1 (-)			
	23	Analog Output 2 (+)		13 "Motor Curr"	67 [Anlg Out2 Sel]
	24	Analog Output 2 (-)			
	25	Digital Output Common		-	-
	26	Digital Output 1	Max. +30V, 50 mA	5 "Ready"	145 [Digital Out1 Sel]
	27	Digital Output 2		9 "Fault"	146 [Digital Out2 Sel]
	28	Digital Output 3		2"Spd Thresh"	147 [Digital Out3 Sel]
	29	Digital Output 4		4 "CurrentLimit"	148 [Digital Out 4 Sel]
	30	Digital Output + 24VDC Source	Tie point for the internal supply or customer supplied voltage for the digital outputs. See the I/O Wiring Examples for sourcing digital outputs on page 85 for more information. Max. +30V DC, 80 mA . Important: When the internal +24 V DC supply (terminal 19) is used for digital outputs $1 . . .4$, you must connect terminal 19 to terminal 30 and the digital output common (terminal 25) to the +24 V supply common (terminal 18).	-	-

Table 37 - I/O Terminal Block 4 Designations

	No.	Signal	Description	Factory Default	Config. Parameter
	31	Digital Input 5	Max $+30 \mathrm{~V}, 15 \mathrm{~V} / 3.2 \mathrm{~mA}, 24 \mathrm{~V} / 5 \mathrm{~mA}$, and $30 \mathrm{~V} / 6.4 \mathrm{~mA}$. A digital input (1...8) must be configured for "Enable".	17 "Speed Sel 1"	137 [Digital In5 Sel]
	32	Digital Input 6		18 "Speed Sel 2"	138 [Digital In6 Sel]
	33	Digital Input 7		19 "Speed Sel 3"	139 [Digital In7 Sel]
	34	Digital Input 8		31 "Contactor"	140 [Digital In8 Sel]
	35	Digital Input Common	Important: When the internal +24 V DC supply (terminal 19) is used for digital inputs $5 \ldots 8$, you must connect the digital input common (terminal 35) to the +24 V supply common (terminal 18).	-	-
	36 \ldots 40	Not Used		-	-

I/O Wiring Examples

Input/Output	Connection Example	Required Parameter Changes
Potentiometer Unipolar Speed Reference $10 \mathrm{k} \Omega$ Pot. Recommended ($2 \mathrm{k} \Omega$ Minimum)		- Adjust Scaling: 72 [Anlg In1 Scale] and 73 [Anlg1 Tune Scale] - View Signal Value: 1404 [Analog In1 Value] - View Signal Output: 385 [Speed Ref Out] Verify that DIP switch 59 is set to " 0 n " ($0 \ldots$. 10 V). See Table 27 on page 54.
Joystick Bipolar Speed Reference $\pm 10 \mathrm{~V}$ Input Important: See the Attention statement on page 80 for important bipolar wiring information.		- Set Direction Mode: 1322 [Direction Mode] = 1 "Bipolar" - Adjust Scaling: 72 [Anlg $\ln 1$ Scale] and 73 [Anlg1 Tune Scale] - View Signal Value: 1404 [Analog $\ln 1$ Value] - View Signal Output: 385 [Speed Ref Out] Verify that DIP switch 59 is set to "On" (0... 10V). See Table 27 on page 54.
Analog Input Bipolar Speed Reference $\pm 10 \mathrm{~V}$ Input Important: See the Attention statement on page 80 for important bipolar wiring information.		- Set Direction Mode: 1322 [Direction Mode] $=1$ "Bipolar" - Adjust Scaling: 72 [Anlg $\ln 1$ Scale] and 73 [Anlg1 Tune Scale] - View Signal Value: 1404 [Analog In1 Value] - View Signal Output: 385 [Speed Ref Out] Verify that DIP switch S9 is set to "On" (0...10V). See Table 27 on page 54.
Analog Input Unipolar Speed Reference 0... 10 V Input, or $0 . . .20 \mathrm{~mA}$ or $4 \ldots 20 \mathrm{~mA}$		- Configure for Voltage or Current: 71 [Anlg In1 Config] - Adjust Scaling: 72 [Anlg $\ln 1$ Scale] and 73 [Anlg1 Tune Scale] - View Signal Value: 1404 [Analog $\ln 1$ Value] - View Signal Output: 385 [Speed Ref Out] Verify that DIP switch 59 is set to "On" for 0...10V operation, or "Off" for $0 \ldots 20 \mathrm{~mA}$ or $4 \ldots 20 \mathrm{~mA}$ operation. See Table 27 on page 54.

Input/0utput	Connection Example	Required Parameter Changes
Analog Output Bipolar Signal $\pm 10 \mathrm{~V}$ Bipolar (based on the signal of the assigned input source - for example Analog Input 1), or $0 . . .10 \mathrm{~V}$ Unipolar (shown)		- Select Source Value: 66 [Anlg Out1 Sel] - Adjust Scaling: 62 [Anlg Out1 Scale]
Enable Input 24V DC internal supply		- No Changes Required. If the digital input used for "Enable" is changed from the default setting of digital input 4, the wiring must be changed accordingly.
2-Wire Control Non-Reversing 24V DC internal supply Important: Programming inputs for 2 -wire control deactivates the HIM Start and Jog buttons.		- Disable Digital Input 1: 133 [Digital $\ln 1$ Sel] $=0$ "Not Used" - Set Digital Input 2: 134 [Digital In2 Sel] $=5$ "Run"
2-Wire Control Reversing 24V DC external supply Important: Programming inputs for 2 -wire control deactivates the HIM Start and Jog buttons.		- Set Digital Input 1 : 133 [Digital $\ln 1$ Sel] $=6$ "Run Forward" - Set Digital Input 2: 134 [Digital $\ln 2$ Sel] $=7$ "Run Reverse"
3-Wire Control 24V DC internal supply		- No Changes Required.

Input/0utput	Connection Example	Required Parameter Changes
3-Wire Control 24V DC external supply Requires 3 -wire functions only ([Digital In1 Sel]). Configuring 2 -wire selections causes a type 2 alarm (see page 226).		- No Changes Required
Sourcing Digital Outputs Internal 24V DC supply		- No Changes Required
Sourcing Digital Outputs External 24V DC supply		- No Changes Required

Digital Encoder Terminal Block

Always connect the encoder connection cables directly to the terminals on the encoder terminal block. The encoder cable must be composed of twisted pairs with the shield connected to the shield ground on the drive side. Do not connect the shield to ground on the motor side. In some cases (for example, cable lengths that exceed 100 meters), it may be necessary to ground the shield of each twisted pair on the power supply. See the PowerFlex Digital DC Drive Technical Data, publication 20P-TD001, for digital encoder specifications.

Figure 59 - Digital Encoder Terminal Block Location

Table 38 - Digital Encoder Terminal Designations

Terminal Block	Label	Signal	Description
	A+	Encoder A	Single channel A or dual channel quadrature A input
	A-	Encoder A (NOT)	
	B+	Encoder B	Single channel B or dual channel quadrature B input
	B-	Encoder B (NOT)	
	Z+	Encoder Z	Pulse, marker, or registration input ${ }^{(2)}$
	Z-	Encoder Z (NOT)	
	COM	$+5 / 12 \ldots 15 V^{(1)}$ DC Return	Internal power common
	+V	$+5 / 12 \ldots . .15 V^{(1)}$ DC Power	Internal power source 200 mA

[^2]Figure 60 - Sample Encoder Power Wiring

Power Source	Connection Example
Internal Drive Power ${ }^{(1)}$ +5/12...15V DC, 200 mA	
External Power Source	

(1) Shield connection is on drive control board EMI shield. See Figure 59 on page 86.

Figure 61 - Sample Encoder Signal Wiring

Encoder Signal	Connection Example
Single-Ended, Dual Channel	
Differential, Dual Channel	

DC Analog Tachometer Terminal Block

Figure 62 - Analog Tachometer Terminal Block Location

See the PowerFlex Digital DC Drive Technical Data, publication 20P-TD001, for DC analog tachometer specifications.

ATTENTION: The drive can overspeed if DIP switch S4 is set incorrectly, or the tachometer is wired incorrectly. Failure to observe this precaution could result in damage to, or destruction of, the equipment.

Table 39 - DC Analog Tachometer Terminal Designations

	Label	Signal	Description
	-	Negative input	-
	A B C	(Not Used)	
	+	Positive input See Verify Motor Rotation and Run Feedback Polarity Checks on page 102 for information on how to determine feedback polarity.	$22.7 / 45.4 / 90.7 / 181.6 / 302.9 V^{(1)}$ max voltage 8 mA max. current

(1) Maximum voltage depends on the configuration of DIP switch S4. See DC Analog Tachometer DIP Switch S4 Example on page 77.

Resolver Feedback Module

The resolver feedback module (catalog number 20P-RES-A0), which provides a drive interface to a selection of compatible resolvers, must be ordered and purchased separately from the drive. The resolver option module includes the PowerFlex DC Drive Resolver Feedback Module Installation Instructions, publication 20P-IN071, which provides installation and wiring information. See Resolver Type Selection on page 314 for more information on compatible resolvers.

I/O and Control Wire Routing

Frames A. . .C
Route all I/O and control wires from the bottom of the drive, between the lower front cover and the metal (frame A) or plastic (frames B and C) terminal cover.

Frame D
Route the field power input cables through the opening at the top left side of the control panel.

Route control and I/O cables through the opening at the bottom left side of the control panel.

Notes:

Drive Start Up

This chapter describes how to start up the PowerFlex DC drive. If you use the LCD HIM (Human Interface Module) to commission the drive, it is recommended that you read Appendix B - HIM Overview before performing these procedures.

ATTENTION: Power must be applied to the drive to perform the following startup procedure. Some of the voltages present are at incoming line potential. To avoid electric shock hazard or damage to equipment, allow only qualified service personnel to perform the following procedure. Thoroughly read and understand the procedure before beginning. If an event does not occur while performing this procedure, Do Not Proceed. Remove Power including user supplied control voltages. Correct the malfunction before continuing.

> IMPORTANT It is recommended that you uncouple the motor from all loads, until otherwise directed.

This checklist contains the major steps that are required to commission the drive.

- Verify all Drive Configuration Settings - page 92.
- Verify the Power Wiring - page 92.
- Verify the Control and I/O Wiring - page 92.
- Apply Voltage to the Control Circuits - page 93.
- Verify the Control Voltages - page 94.
- Load the Default Settings - page 95.
- Configure the Most Commonly Used Parameters - page 95.
- Tune the Current Regulator - page 100.
- Verify Motor Rotation and Run Feedback Polarity Checks - page 102.
- Configure the Speed Feedback Parameters - page 105.
- Tune the Speed Regulator - page 107.

V Verify Speed Reference Settings and Drive Operation - page 109.

Before Applying Power to the Drive

Complete these procedures before you apply power to the drive.

Verify all Drive Configuration Settings

1. With the bottom cover removed from the drive (see Remove the Drive Covers on page 27), verify that DIP switch S 14 is set correctly. The switch setting must be greater than, or equal to, the rated field current that is specified on the motor nameplate. See Table 16 on page 61.
2. Verify all switch settings (S9, S10, and S11) for the analog inputs. See Table 27 on page 76.
3. Verify all DIP switch and jumper settings for the digital encoder or analog tachometer. See Table 27 on page $\underline{76}$ and Figure 56 on page $\underline{77}$.

ATTENTION: The Drive can overspeed if DIP switch S4 is set incorrectly, or the tachometer is wired incorrectly. Failure to observe this precaution could result in damage to, or destruction of, the equipment.

Verify the Power Wiring

- Verify that the AC line power at the disconnect device is within the rated value of the drive and that all power wiring is correct. See Power Wiring on page 44 for further information.

ATTENTION: Do not connect any external power to the armature output terminals, personal injury and/or equipment damage can occur.

Verify the Control and I/0 Wiring

1. Verify that control power and I / O wiring is correct. A digital input ($1 . . .8$ only) must be wired and configured as a drive enable. See Control Circuit Input Power on page $\underline{65}$ and I/O Wiring on page $\underline{80}$ for further information.
2. If you are using a PTC thermistor or thermal switch to protect the motor from overloading, remove the $1 \mathrm{k} \Omega$ resistor between terminals 78 and 79 . See Thermistors and Thermal Switches on page $\underline{62}$

Apply Power to the Drive

The remainder of the "Drive Start Up" procedure in this manual uses a HIM to configure and autotune the drive. You can use the DriveExplorer ${ }^{\text {rux }}$, DriveTools ${ }^{\text {mu }}$ SP, or Connected Components Workbench ${ }^{\text {nex }}$ software to program drive parameters. A drive "Start Up" wizard (basic application configuration only) is available with DriveExplorer and Connected Components Workbench software. You must use DriveExplorer v 5.02 or higher or DriveTools SP v 4.01 or higher with a PowerFlex DC drive specific software patch. The patch can be downloaded from http://www.ab.com/support/abdrives/webupdate/.

If an operator interface is not available, use a remote device to start up the drive. For information on how to use the HIM, see the HIM Overview on page 269.

IMPORTANT When power is first applied, the HIM can require approximately 5 seconds until commands are recognized (including the Stop key).

Apply Voltage to the Control Circuits

1. Apply power to the control circuits (terminals U 2 and V 2) of the drive.
2. If any of the digital inputs are configured to "Stop/CF" (CF = Clear Fault), "Enable" or "Aux Fault," verify that signals are present or reconfigure [Digital Inx Sel]. If a fault code displays, see Chapter 4Troubleshooting on page 217.
3. If the STS LED is not currently flashing green, see Figure 63 on page $\underline{94}$.

Figure 63 - Drive Status Indicators

\#	Name	Color	State	Description
1	STS (Status)	Green	Flashing	Drive ready, but not running and no faults are present.
			Steady	Drive running, no faults are present.
		Yellow	Flashing, Drive Stopped	A condition exists that is preventing the drive from starting. Check parameters 1403 [Start Inhibits] and/or 1380 [Drive Alarm 1].
			Flashing, Drive Running	An intermittent type 1 alarm condition is occurring. Check parameter 1380 [Drive Alarm 1]. See Fault Descriptions on page $\underline{220}$ and/or Alarm Descriptions on page 226.
			Steady, Drive Running	A continuous type 1 alarm condition exists. Check parameter 1380 [Drive Alarm 1]. See Fault Descriptions on page 220 and/or Alarm Descriptions on page 226.
		Red	Flashing	A fault has occurred. Check [Fault x Code] or view the Fault Queue on the HIM. See Fault Descriptions on page 220.
			Steady	A non-resettable, non-configurable fault has occurred. Check [Fault x Code] or view the Fault Queue on the HIM. See Fault Descriptions on page 220.
2	PORT	See the Communication Adapter User Manual.		Status of DPI port internal communications (if present).
	MOD			Status of communications module (when installed).
	NET A			Status of network (if connected).
	NET B			Status of secondary network (if connected).

Verify the Control Voltages

Verify that the following voltages are present at I/O terminal block 1 and 2. See I/ O Signal and Control Wiring on page $\underline{81}$:

Terminal Number...	Voltage	To Terminal Number...
7	+10 V	9
8	-10 V	9
19	$24 \ldots 30 \mathrm{~V}$	18

Load the Default Settings

It is recommended that you reset the drive to the default settings. By resetting the drive to the default settings, any previous parameter modifications you have made are overwritten.

1. On the HIM, from the "Main" menu scroll to the "Memory Storage" menu.
2. Press Enter.
3. Scroll to "Reset To Defaults" and press Enter.\}
4. A message displays to verify that you want to reset the drive to the factory settings.
5. Press Enter.

A "Params Defaulted" (F48) entry is made in the drive Fault Queue to indicate the change.

Configure the Most Commonly Used Parameters

If your application only requires basic drive parameter setup, you can use the S.M.A.R.T. list screen available on the HIM to program the drive. See Using the S.M.A.R.T. List Screen on page 271 for more information.

IMPORTANT	To access all parameters in this procedure, you must set the Parameter View option to "Advanced".

1. At the Main menu, scroll to the Parameter option.
2. Press ALT and then Sel.
3. Scroll to the Numbered List option.
4. Press Enter.
5. Type 211.
6. Press Enter.
7. Press Sel.
8. Type 1.
9. Press Enter.
10. Press Esc.
11. Press ALT and then Sel.
12. Scroll to the File-Group-Par option.
13. Press Enter.
14. Scroll to the "Motor Control" file.
15. Press Enter.
16. With the "Motor Data" group selected, press Enter.
17. Configure the following parameters:

Parameters 45 [Max Ref Speed] and 162 [Max Feedback Spd] are typically set to the motor nameplate base speed. However, if a speed feedback device is used (encoder or tachometer), see Drive Reference and Feedback Scaling on page 283 for details on setting these parameters.

- 45 [Max Ref Speed] - Enter the motor nameplate base speed.
- 162 [Max Feedback Spd] - Enter the motor nameplate base speed.
- 175 [Rated Motor Volt] - Enter the rated motor nameplate armature voltage. This value is the measured armature voltage when the motor is running at base speed with rated field current. This value also represents 100% of the rated armature voltage when field weakening is not used. If field weakening is used, set this value to 90% of the rated armature voltage. This prevents a possible overvoltage condition when the drive transitions to the field weakening mode.
- 179 [Nom Mtr Arm Amps] - Enter the rated motor nameplate armature current. To prevent current scaling/resolution issues, the drive size cannot exceed the motor size (as set by Par 179) by more than three times. The drive size is set at the factory with DIP switch S15 and is displayed in Par 465 [Drive Size].
- 374 [Drv Fld Brdg Cur] - Enter the rated current of the field bridge regulator to match the value set by using the DIP switch S14. See Field Current Configuration on page 60 .
- 280 [Nom Mtr Fld Amps] - Enter the rated motor nameplate field current. When a permanent magnet motor is used, leave this parameter set to the default value.

18. Access the "Field Config" group.
19. Configure the following parameters:

- If the motor field power is supplied by an external source, set Par 497 [Field Reg Enable] = 0 "Disabled". Otherwise, verify that this parameter is set to 1 "Enabled" (default). Leave set to the default value when a permanent magnet motor is used.
- If you are utilizing field economy, set Par 1407 [Field Econ Delay] to the desired amount of time to elapse after the drive stops or reaches zero speed before field economy becomes active. The default value is 300 seconds. The minimum field current (value of field economy) is set in Par 468 [Min Fld Curr Pct]. Leave Par 1407 set to the default value when a permanent magnet motor is used.
- Par 469 [Field Mode Sel] - select the desired field mode (default $=0$ "Base Speed", constant field current):
- 1 "Field Weaken", field weakening mode
- 2 "External", power to the field is supplied externally
- 3 "PM External", a permanent magnet motor creates an external field
I. If you are utilizing field economy at zero speed, set 468 [Min Fld Curr Pct] to the desired minimum field current for field economy (default $=30 \%$). Leave set to the default value when a permanent magnet motor is used.
- If you are operating the drive in field weakening mode, set Par 456 [Fld Weaken Ratio] = Motor nameplate base speed / Par 45 [Max Ref Speed] x 100. Leave set to the default value when a permanent magnet motor is used.

IMPORTANT When operating the drive in field weakening mode, it is necessary to refer to the CEMF value or to the crossover data. If the maximum field current is not within 10% of the maximum value of the internal field converter, configure the current feedback by using DIP switch S14. See Field Current Configuration on page $\underline{60}$.
20. Access the "Utility" file.
21. Press Enter.
22. Access the "Alarms" group.
23. Configure the following parameters:

- Par 481 [UnderVolt Thresh] - Enter the value at which the drive detects an AC under voltage condition. The default value is 200 V on a 240 V AC line and 400 V on a 480 V AC line. Typically, this value is approximately 85% of the nominal AC line voltage.
- Par 584 [OverCurrent Thr] - Enter the value at which a drive over current condition is detected (default $=175 \%$). Set the threshold level at least 10% above the selected operating current limit (Par 7 [Current Limit]).

24. Par 585 [OverSpeed Val] - Enter a value that is 10% above the maximum speed that the motor achieves. Typically 10% higher than Par 162 [Max Feedback Spd].
25. Access the "Input \& Output" file.
26. Press Enter.
27. Access the "Analog Inputs" group.
28. Configure the following:

- If you have connected a potentiometer to analog input 1 for a speed reference:
- Verify that Par 70 [Anlg In 1 Sel] is set to 1 "Speed Ref A" (default).
- Verify that switch S9 and Par 71 [Anlg In 1 Config] are configured to match (voltage versus a current signal). See DIP Switch and Jumper Settings on page 75.
- Set Par 72 [Anlg In1 Scale] and Par 74 [Anlg In1 Offset] appropriately.
- If you are using the HIM on the drive cover (Port 1) for the speed reference, set Par 70 [Anlg In 1 Sel] to 0 "Off".

29. Access the "Digital Inputs" group.
30. Configure the following parameters:

- Par 1391 [ContactorControl] - Select the type of contactor that is used with the drive: 1 "Contactor" (default, AC input, or DC output contactor), 2 "Contactor+DB" (AC input or DC output contactor and dynamic brake contactor), or 0 "None".

If you select 0 "None" for Par 1391 [ContactorControl], a "CntactrCflct" alarm displays. The alarm is resolved and automatically cleared when you complete the Digital Output configuration in the next sub step.

If Par 1391 [ContactorControl] is set to 1 or 2, an Auxiliary Status contactor must be wired to a digital input (default for digital input 8).

- Par 140 [Digital In8 Sel] - If a contactor is NOT used, set to other than 31 "Contactor" (for example, 0 "Not Used").
- If an auxiliary status contactor is wired to a digital input, set the appropriate [Digital Inx Sel] parameter to 31 "Contactor".

31. Access the "Digital Outputs" group.
32. Configure the following parameters:

- If a contactor and a dynamic brake resistor are used:
- Par 629 [Relay Out 2 Sel] $=24$ "ContactorDB".
- If a contactor or a dynamic brake resistor is not used:
- Par 629 [Relay Out 2 Sel] $=$ Set to other than 24 "ContactorDB" or 25 "Contactor" (for example, 0 "Not Used").
- Par 1392 [Relay Out 1 Sel] = Set to other than 24 "ContactorDB" or 25 "Contactor" (for example, 0 "Not Used").

33. If you are using the HIM on the drive cover (Port 1) for the speed reference, complete the following steps:

- Access the "DPI Inputs" group.
- Set Par 1323 [DPI P1 Select] to 1"Speed Ref A".
- Access the "Analog Inputs" group.
- Set Par 70 [Anlg In 1 Sel] to 0 "Not Used".

34. If you are using a source other than the HIM for the speed reference, complete the following steps:

- Select one of the parameter sources that are listed here and set it to 1 "Speed Ref A".
- [DPI Px Select]
- [Anlg In $x \operatorname{Sel}]$
- Set Par 70 [Anlg In 1 Sel] to 0 "Not Used", if appropriate.

Tune the Current Regulator

IMPORTANT Because the field cannot be disconnected in a permanent magnet motor, tuning the current regulator, as directed, does not work. The appropriate procedure for tuning the current regulator for a permanent magnet motor is performed later in the Drive Start Up procedures. When a permanent magnet motor is used, continue with Verify Motor Rotation and Run Feedback Polarity Checks on page 102.

IMPORTANT If the Powerflex DC drive is wired for two-wire control, with a digital input programmed for "Run,", the HIM Start/Stop cannot be used for autotune. Maintain the "Run" input for autotune.

ATTENTION: Do not attempt to perform the "Tune the Current Regulator" procedure with a Powerflex DC drive and permanent magnet motor combination. Drive and/or motor damage may occur.

ATTENTION: Before tuning the current regulator, you must provide a hardwired, maintained, external operator accessible coast/stop push button to disable the machine in case of improper operation. If a means to coast/stop the drive is not provided, uncontrolled machine operation can result. Failure to observe this precaution could result in severe bodily injury or loss of life.

ATTENTION: Current regulator tuning may cause unintentional motor rotation or incorrect speed references that can damage connected equipment. Before tuning the current regulator, uncouple the motor from equipment.

Complete this test before running the drive for the first time. Upon completing this tuning procedure, the armature resistance value is stored in Par 453 [Arm Resistance] and the armature inductance value is stored in Par 454 [Arm Inductance].

1. If an external supply is used to power the motor field, disconnect the wires from the motor field terminals. If the drive supplies power to the motor field, the internal field circuit is automatically disabled during this test.

IMPORTANT Verify that the motor does not start rotating (less than one-half a full turn) during the Current Regulator tuning test (due to remnant magnetization, series field, and so forth). If necessary, mechanically block the motor shaft so it does not turn.
2. Access the "Motor Control" file and the "Torq Attributes" group.
3. Set Par 7 [Current Limit] to the appropriate level for your application. This parameter defaults to 150%. The drive armature output current corresponds to Par 179 [Nom Mtr Arm Amps] x Par 7 [Current Limit].

Par 8 [Current Lim Pos] is the drive current limit for the positive direction. Par 9 [Current Lim Neg] is the drive current limit for the negative direction. These parameters are set to 150% by default. If necessary, you can change the value of these parameters to suit your application.
4. Access the "Speed Feedback" group.
5. Verify that Par 414 [Fdbk Device Type] is set to 3 "Armature" (default).
6. Press the Esc key until you return to the "File" menu.
7. Access Par 452 [CurrReg Autotune] in the "Autotune" group, in the "Motor Control" file, and select 1 "On."
8. Press Enter.
9. The HIM displays "Ready for RL."
10. Press the Start button on the HIM.

The current regulator auto tuning test starts, which could take several minutes.

$$
\begin{array}{ll}
\text { IMPORTANT } & \begin{array}{l}
\text { Programming inputs for 2-wire control deactivates the HIM start and jog } \\
\text { buttons. }
\end{array}
\end{array}
$$

At the end of the test, Par 453 [Arm Resistance] and Par 454 [Arm Inductance] are updated. The drive is automatically stopped and Par 452 [CurrReg Autotune] is set to 0 "Off".

It is also possible to tune the current regulator manually (other than permanent magnet motors). See Manually Adjusting the Current Regulator Tune Settings on page 335 for more information.

If a drive fault occurs during the tuning procedure, see the list of Fault Descriptions that starts on page 220 for possible causes and actions.

Verify Motor Rotation and Run Feedback Polarity Checks

The jog function (on the HIM or terminal block) is used to check motor direction and encoder/resolver operation. If the STS LED is not currently flashing green, see Figure 63 on page $\underline{94}$ for more information.

1. When the motor polarity check is run, power is applied to the drive and the motor rotates. Verify that the motor is uncoupled from the load. If the motor cannot be uncoupled from the load, the following motor checks are recommended.

- All electrical connections are tight.
- The brushes are properly seated.
- The motor shaft is free to rotate.

2. Access the "Motor Control" file, "Speed Feedback" group.
3. Verify that Par 414 [Fdbk Device Type] is set to 3 "Armature" (default).
4. Access the "Speed Command" file, "Discrete Speeds" group.
5. Verify that Par 266 [Jog Speed] is set to the default value (100 rpm) or to an acceptable speed level for this test.
6. If analog input 1 is wired, access the "Analog Inputs" group, and verify that the voltage level is 0V in Par 1404 [Analog In1 Value].
7. View Par 233 [Output Voltage], assert a Jog command (via the HIM keypad or digital input on the I/O terminal block), and observe the motor rotation direction.
8. Verify whether Par 233 [Output Voltage] is positive.
9. If the observed rotation direction is correct, continue with step 15 on page 103. If the observed rotation direction is incorrect, continue with step 10, while referring to the motor connection diagrams in Figure 64 on page 103.
10. Remove power from the drive.
11. Verify that power is turned off and locked out.
12. Switch the armature leads connected to $C(+)$ and $D(-)$.

Figure 64 - Motor Connections

Straight Shunt Machine, CCW Rotation Facing Commutator End

Straight Shunt Machine, CW Rotation Facing Commutator End
13. Apply power to the drive.
14. Repeat step 6... step 9 on page 102 . When the motor rotation direction is correct, continue with step 15.
15. Complete the appropriate procedure for the type of feedback device that is used for the application:

- For armature voltage feedback - Continue with step 16.
- For analog tachometer feedback, assert a Jog command and verify that the sign and value of Par 1408 [Tachometer Speed] corresponds with the actual direction of the motor. If the sign and value of Par 1408 [Tachometer Speed] and the motor direction do not correspond, remove power from the drive and reverse the tachometer connections at the drive. Verify proper motor rotation and continue with step 16.
- For encoder feedback, assert a Jog command and verify that the sign and value of Par 420 [Encoder Speed] correspond with the actual direction of the motor. If the sign and value of [Par 420 [Encoder Speed] and the motor direction do not correspond, remove power from the drive and reverse the encoder connections at the drive. Reverse the polarity of only one channel, for example, B and B NOT. See Table 38 on page 86 for digital encoder terminal block designations. Verify proper motor rotation and continue with step 16.
- For resolver feedback, assert a Jog command and verify that the sign and value of Par 428 [Resolver Speed] correspond with the actual direction of the motor. If the sign and value of Par 428 [Resolver Speed] and the motor direction do not correspond, do one of the following:
- Change the setting of bit 5 "Resolver Dir" in Par 425 [Resolver Config]. Verify proper motor rotation and continue with step 16.
- Remove power from the drive and verify the correct resolver connections to the drive (refer to resolver installation instructions for details).

16. For permanent magnet motors only, continue with Tune the Current Regulator for a Permanent Magnet Motor on page 104. For all other motors, continue with Configure the Speed Feedback Parameters on page 105.

Tune the Current Regulator for a Permanent Magnet Motor

Only complete this procedure when you are using a permanent magnet motor.

ATTENTION: Before tuning the current regulator, you must provide a hardwired, maintained, external operator accessible coast/stop push button to disable the machine in case of improper operation. If a means to coast/stop the drive is not provided, uncontrolled machine operation can result. Failure to observe this precaution could result in severe bodily injury or loss of life.

ATTENTION: Current regulator tuning requires motor rotation and applied speed references that can damage material or process loads. Before tuning the current regulator, remove any material or process load.

1. Verify that Par 414 [Fdbk Device Type] is set to 3 "Armature" (default).
2. Set the value of Par 453 [Arm Resistance], calculated as:
(Par 175 [Rated Motor Volt] / Par 179 [Nom Mtr Arm Amps]) x 0.04
3. Leave Par 454 [Arm Inductance] set to the default value (based on drive size).
4. Verify that there is no material or process load present and the motor shaft is free to rotate.
5. Start the drive and run the motor at approximately 50% of base speed. Observe the value of Par 587 [I Reg Err] after it has settled to a value and do one of the following.

- If Par 587 [I Reg Err] is positive, increase the value of Par 454 [Arm Inductance]. The value of Par 587 determines the magnitude of change. Generally, make large increases (for example, double) when Par 587 is large (greater than 40) and smaller increases as Par 587 gets closer to zero.
- If Par 587 [I Reg Err] is negative, decrease the value of Par 454 [Arm Inductance]. The value of Par 587 determines the magnitude of change. Generally, make large increases (for example, double) when Par 587 is large (greater than -40) and smaller increases as Par 587 gets closer to zero.

6. Repeat step 4 until Par 587 [I Reg Err] is as close to zero as possible. Values less than 20/-20 are acceptable as close to zero. However, with some motors, the minimum value of Par 587 may only be $60 /-60$. Stop the drive and continue with Configure the Speed Feedback Parameters on page 105.

Configure the Speed Feedback Parameters

1. Access the "Speed Feedback" group.
2. Configure the following parameters:

If an encoder or tachometer is used, see Drive Reference and Feedback Scaling on page 283 for instructions on associated parameter settings.

- Par 414 [Fdbk Device Type] - Select the source for motor velocity feedback:
- 1 "Encoder"
- 2 "DC Tach"
- 3 "Armature" (default)
- 4 "Resolver"

If operating the drive in field weakening mode, Par 414 [Fdbk Device Type] must be set to 1 "Encoder", 2 "DC Tach", or 4 "Resolver."

- Par 457 [Spd Fdbk Control] - If you are using an encoder, tachometer, or resolver set this parameter to 1 "Enabled" to activate speed feedback control.
- If the speed feedback source is an analog tachometer, set the fine scaling value in Par 562 [Anlg Tach Gain]. After the drive hardware conditions the value of Par 562, it is used to scale the analog tachometer feedback signal.

ATTENTION: The drive can overspeed if DIP switch $S 4$ is set incorrectly, or the tach is wired incorrectly. Failure to observe this precaution could result in damage to the drive or process equipment. See Table 56 on page 77.
\square If the speed feedback source is a digital encoder, complete the following steps:
a. Enter the pulses per revolution from the encoder nameplate in Par 169 [Encoder PPR]. See Valid Speed Feedback Values on page $\underline{287}$ for more information on setting the value of this parameter.
b. Set Par 652 [Encoder Err Chk] to 1 "Enabled" to activate monitoring of the digital encoder signals (verifies the presence of the $\mathrm{A}, \mathrm{B}, \mathrm{A}-, \mathrm{B}-$ - or Z channel signals).

Par 457 [Spd Fdbk Control] must be set to 1 "Enabled" for encoder monitoring to occur.

Switch S20 must be set correctly to prevent encoder faults. See Table 27 on page 76 .

- If the speed feedback source is a resolver, complete the following steps:
a. Select the type of resolver that is used in Par 423 [Reslvr Type Sel]. See Resolver Type Selection on page 314 for details on compatible resolver types.
b. Select the appropriate ratio of resolver electrical to mechanical turns in Par 424 [Reslvr Spd Ratio].
c. Configure the resolver to digital conversion resolution and moving average speed filter period in par 425 [Resolver Config].
d. Cycle power to the drive to apply these changes in the resolver board.

3. Access the "Speed Command" file.
4. Press Enter.
5. With the "Limits" group selected, press Enter.
6. Configure the following parameters:

- Par 1 [Minimum Speed] - Enter the minimum speed reference limit.
- Par 2 [Maximum Speed] - Enter the required maximum speed for the application. The maximum speed can be above the motor base speed if field weakening is used.

7. Access the "Dynamic Control" file.
8. Press Enter.
9. Access the "Ramp Rates" group and configure the following parameters:

- Par 660 [Accel Time 1] - Set the desired acceleration ramp time.
- Par 662 [Decel Time 1] - Set the desired deceleration ramp time.

Tune the Speed Regulator

The speed regulator auto tuning test detects the total inertia value of the motor shaft (in $\mathrm{Kg} \bullet \mathrm{m}^{2}$), the friction value (in $\mathrm{N} \bullet \mathrm{m}$), and the calculation of the proportional (P) and integral (I) gains of the speed regulator.

IMPORTANT	If upgrading a drive to firmware revision 6.001 or later (from firmware revision 5.007 or earlier) and it is not possible to perform speed regulator autotuning, see Appendix C, Manually Tuning the Speed Regulator for Firmware Revision 6.001 and Later on page 304 for instructions on setting the proper gains in the Speed Loop.
IMPORTANT	This test requires the free rotation of the motor shaft and load. The auto tuning test of the speed loop cannot be conducted on machines with a limited stroke.
IMPORTANT	If the PowerFlex DC drive is wired for two-wire control, with a digital input programmed for "Run", the HIM Start/Stop cannot be used for autotune. Maintain the "Run" input for autotune.

ATTENTION: The motor rotates during this tuning procedure. Hazard of personal injury exists due to motor shaft rotation and/or machinery motion.

IMPORTANT The test is conducted by using the torque limit value set in the Par 1048 [Autotune Cur Lim] (recommended value $=20 \%$). The torque reference is applied via a step reference (without a ramp). Therefore, there must not be any "backlash" in the mechanical transmission and it must be compatible with those operations using the torque limit value set in the Par 1048 [Autotune Cur Lim]. You can modify the torque limit value via this parameter.

IMPORTANT In applications where the system total inertia value is high, it is necessary to increase the value of Par 1048 [Autotune Cur Lim] to avoid "Time out" errors. The speed regulator auto tuning test of the speed loop is not suitable for drives that are used in "elevator" and/or lifting system applications.

1. While still in the "Autotune" group, configure the motor shaft rotation direction via Par 1029 [Speed Tune Dir], with reference to the motor commutator end.

- 1 "Forward" = clockwise
- 2 "Reverse" = counter-clockwise

2. Speed Regulator Autotune assumes that full field is applied. Verify that parameters 280 [Nom Mtr Fld Amps] and 467 [Max Fld Flux Pct] are set correctly. Tuning with less than full field current results in different gains because of the lower motor torque values.
3. Select Par 1027 [Spd Reg Autotune] and enter "1."
4. Press Enter.
5. Press the Start button on the HIM. The speed regulator auto tuning test starts, which could take several minutes. When the test has been completed, the drive automatically stops.

During the test the following are completed:

- An acceleration test, with the torque limit value set in the Par 1048 [Autotune Cur Lim].
- A deceleration test, with a lower torque limit value applied, until zero speed has been reached.
- Par 1013 [Torque Const] is calculated and updated based on the entered motor data.

The test threshold speed is 33% of the lowest value set in the following parameters:

- 45 [Max Ref Speed]
- 3 [Max Speed Fwd] or 4 [Max Speed Rev] based on the rotation direction that is chosen in Par 1029 [Speed Tune Dir]

The drive determines the speed loop gains (Pars 87 [Spd Reg Kp] and 88 [Spd Reg Ki]) based on the motor and load inertia and friction characteristics.

If any faults occur during the test, see Auto Tuning Faults on page 110 for a description and more information.

Note: If any manual adjustments are required (due to vibrations, and so on), make them based on the value of the integral gain in Par 88 [Spd Reg Ki]. If the speed regulator auto tuning test does not provide satisfactory results, see Fine-Tuning the Regulators on page 334.

The values that result from the Speed Regulator tuning test are updated and displayed, respectively, in the parameter pairs that are listed here.

- 87 [Spd Reg Kp], 1032 [Speed Tune Kp]
- 88 [Spd Reg Ki], 1033 [Speed Tune Ki]
- 1014 [Inertia], 1030 [Spd Tune Inertia]
- 1015 [Friction], 1031 [SpdTune Friction]

The values of Pars 1030... 1033 can be used as a record of the Speed Regulator auto tuning results. This is helpful, if the values of Pars $87,88,1014$ and 1015 are later changed.

Verify Speed Reference Settings and Drive Operation

Verify the following speed and direction (for four quadrant drives) references of the drive under a load.

ATTENTION: This test requires the free rotation of the motor shaft and load.
The steps in the "Drive Start Up" procedure must have been completed before completing this step.

1. Set the speed reference to " 0 " (zero) by using the assigned source (HIM or analog potentiometer). See Reference Control on page 310 for more information on speed reference sources.
2. View Par 385 [Speed Ref Out] and verify that the value is " 0 ".
3. Press the Start button on the HIM and slowly increase the speed reference until full speed is reached (viewed in Par 385 [Speed Ref Out]).
4. For only four quadrant (regenerative) drive applications, press the Direction button on the HIM and verify that the motor ramps down to " 0 " speed and then to full speed in the opposite direction.
5. Press the Stop button on the HIM.
6. Verify that the drive ramps to " 0 " speed and stops.

Auto Tuning Faults

Table 40 lists faults that can display during the speed regulator auto tuning test. In some cases, the drive control circuits can detect a value that is out of range for the configuration settings during the speed regulator auto tuning test. In these cases, make the suggested adjustments and repeat the test. If the fault occurs again, complete the Fine-Tuning the Regulators procedures on page 334.

Table 40 - Speed Regulator Auto Tuning Faults

Fault	No.	Description	Action
STune Overspeed	56	The measured motor speed is too high during the speed regulator auto tuning procedure.	Decrease the value of Par 1048 [Autotune Cur $\mathrm{Lim}]$ and repeat the auto tune procedure.
STune Stalled	57	The drive has stalled during the speed regulator auto tuning procedure.	Increase the value of Par 1048 [Autotune Cur $\mathrm{Lim}]$ and repeat the auto tune procedure.
STune LoadHi	58	One of the following has occurred:	
		- The loading torque value is too high at zero speed to complete the speed regulator auto tuning procedure.	Decrease the load torque, where applicable, and repeat the auto tune procedure.
		- Par 107 [Speed Zero Level] and/or 108 [Speed Zero Delay] is set too high.	Set Pars 107 and 108 to their default values when performing the Speed Loop Autotuning function.
STune CurLimit	59	One of the following has occurred:	
		- The value of Par 1048 [Autotune Cur Lim] for auto tuning the speed regulator is set too high.	Decrease the value of Par 1048 [Autotune Cur $\mathrm{Lim}]$ and repeat the auto tune procedure.
		- Par 107 [Speed Zero Level] and/or 108 [Speed Zero Delay] is set too high.	Set Pars 107 and 108 to their default values when performing the Speed Loop Autotuning function.
STune FrictionLo	60	The friction value that is attained during the auto tuning procedure is zero or lower than the control precision limit.	Decrease the value of Par 1048 [Autotune Cur Lim] and repeat the auto tune procedure.
STune Timeout	61	The speed regulator auto tuning procedure did not complete within the available time.	Verify the value in Par 1048 [Autotune Cur Lim]. If this value is set too low, the motor does not reach a maximum speed of 33% of the lowest value of one of these parameters: - Par 45 [Max Ref Speed] - Par 3 [Max Speed Fwd] - Par 4 [Max Speed Rev] In this case, the test does not run. Set these values appropriately and repeat the auto tuning procedure.
STune Aborted	62	The speed regulator auto tuning procedure was manually stopped.	Informational only.

For additional regulator fine-tuning procedures, see Fine-Tuning the Regulators on page 334.

Speed-Up Function

Oscillation can occur during a speed change with loads presenting a high moment of inertia. These oscillations can be reduced by enabling the "Speed Up" function. See Speed Up Function on page 323 for more information.

Configuring the Speed Zero Logic

The speed zero logic is factory set to 0 "Disabled". See Speed Zero Function on page 325 for more information.

Adaptive Speed Regulation

The adaptive function of the speed regulator is factory set to 0 "Disabled". Only use this function when the gain of the speed regulator must go higher than the speed range. For instructions on how to configure these parameters, see Adaptive Speed Regulator on page 320.

Notes:

Programming and Parameters

Topic	Page
About Parameters	113
How Parameters are Organized	$\underline{115}$
Monitor File	$\underline{123}$
Motor Control File	$\underline{128}$
Speed Command File	$1 \underline{4} 5$
Dynamic Control File	$\underline{152}$
Applications File	$\underline{158}$
Utility File	1774
Communications File	$\underline{188}$
Input / Output File	$\underline{192}$
Parameter Cross Reference - by Name	$\underline{204}$
Parameter Cross Reference - by Number	$\underline{210}$

This chapter provides a complete listing of the PowerFlex DC drive parameters. The list contains a description, default value, minimum and maximum values, units, and data type for each drive parameter. The parameters can be viewed and edited (programmed) using a Human Interface Module (HIM). As an alternative, programming can also be performed using DriveExplorer, DriveTools SP $^{(1)}$, or Connected Components Workbench software ${ }^{(2)}$ and a personal computer. See Appendix B for a brief description of the LCD HIM. See Appendix D for drive control block diagrams.

About Parameters

To configure a drive to operate in a specific way, certain parameters may need to be changed from the default value. Three types of parameters exist:

- ENUM Parameters

ENUM parameters provide a selection of two or more items. The LCD HIM will display a text message for each item.

- Bit Parameters

Bit parameters have individual bits associated with features or conditions. If the bit is " 0 ", the feature is off or the condition is false. If the bit is " 1 ", the feature is on or the condition is true.

- Numeric Parameters

These parameters have a single numerical value and unit (for example, 0.1 Volts).

The example on the following page shows how each parameter type is presented in this manual.

[^3]
Parameters Table Example

How Parameters are
 Organized

The LCD HIM displays parameters in a File-Group-Parameter or Numbered List view order. To switch display mode, access the Main Menu, press ALT, then Sel (View) while the cursor is on the Parameter menu selection. In addition, using Par 211 [Param Access Lvl], you have the option to display the most commonly used parameters (Basic Parameter view) or all parameters (Advanced Parameter View).

File-Group-Parameter Order

This simplifies programming by grouping parameters that are used for similar functions. The parameters are organized into files. Each file is divided into groups, and each parameter is an element in a group. By default, the LCD HIM displays parameters by File-Group-Parameter view.

Numbered List View

All parameters are in numerical order.

Cross Reference Tables

See Parameter Cross Reference - by Name on page 204 and Parameter Cross Reference - by Number on page 210 for a list of parameters and page numbers.

Basic Parameter View

Parameter 211 [Param Access Lvl] set to option 0 "Basic".

File	Group	Parameters					
	Speed Meters	[Speed Ref A] [Speed Ref A Pct] [Speed Ref B] [Speed Ref B Pct] [Speed Ref Out] [Spd Ref Out Pct] [Ramp In] [Ramp In Pct] [Ramp Out]	$\begin{aligned} & 44 \\ & 47 \\ & 48 \\ & 49 \\ & 385 \\ & 384 \\ & 110 \\ & 111 \\ & 113 \end{aligned}$	[Ramp Out Pct] [Speed Draw Out] [Spd Draw Out Pct] [Droop Out] [Droop Out Pct] [Speed Reg In] [Speed Reg In Pct] [Spd Reg Err] [Spd Reg Err Pct]	114 1018 1019 1006 1007 118 117 1010 1011	[Spd Reg Fdbk] [Spd Reg Fdbk Pct] [Spd Feedback] [Spd Feedback Pct] [Actual Speed] [Encoder Speed] [Tachometer Speed] [Resolver Speed]	1008 1009 122 121 924 420 1408 428
	Current Meters	[Inertia Comp Out] [Spd Reg Out Pct] [Current Reg In] [Arm Current] [Arm Current Pct]	$\begin{aligned} & 232 \\ & 236 \\ & 41 \\ & 200 \\ & 199 \end{aligned}$	[Field Current] [FId Current Pct] [Cur Lim Pos Out] [Cur Lim Neg Out] [Filt TorqCur Pct]	$\begin{aligned} & 351 \\ & 234 \\ & 10 \\ & 11 \\ & 928 \end{aligned}$	[Flux Ref Pct] [Field Curve Out] [Selected TorgRef] [Motor Trq Ref]	$\begin{aligned} & 500 \\ & 476 \\ & 14 \\ & 17 \end{aligned}$
	Drive Data	[FaultCode] [AC Line Voltage] [ACLine Freq] [Output Voltage]	$\begin{aligned} & \text { 57 } \\ & 466 \\ & 588 \\ & 233 \end{aligned}$	[Output Power] [Drive Type] [Drive Size] [Elapsed Lifetime]	$\begin{aligned} & 1052 \\ & 300 \\ & 465 \\ & 235 \end{aligned}$	[Software Version] [Drive Checksum]	$\begin{aligned} & 331 \\ & 332 \end{aligned}$
Motor Control	Motor Data	[Max RefSpeed] [Max Feedback Spd]	$\begin{aligned} & 45 \\ & 162 \end{aligned}$	[Rated Motor Volt] [Nom Mtr Arm Amps]	$\begin{aligned} & 175 \\ & 179 \end{aligned}$	[Nom Mtr Fld Amps] [Drv Fld Brdg Cur]	$\begin{aligned} & 280 \\ & 374 \end{aligned}$
	Field Config	[Field Reg Enable] [Field Economy En] [Field Econ Delay]	$\begin{aligned} & 497 \\ & 499 \\ & 1407 \end{aligned}$	[Field Mode Sel] [Max Fld Flux Pct] [Min Fld Curr Pct]	$\begin{aligned} & 469 \\ & 467 \\ & 468 \end{aligned}$	[FId Weaken Ratio] [Arm Volt Kp] [Arm Volt Ki]	$\begin{aligned} & 456 \\ & 493 \\ & 494 \end{aligned}$
	Torq Attributes	[Current Limit] [Current Lim Pos] [Current Lim Neg]	$\begin{aligned} & 7 \\ & 8 \\ & 9 \end{aligned}$	[Torque Ref] [Trim Torque] [Torque Reduction]	$\begin{aligned} & 39 \\ & 40 \\ & 342 \end{aligned}$	[Zero Torque]	353
	Speed Feedback	[Fdbk Device Type] [Anlg Tach Gain]	$\begin{aligned} & 414 \\ & 562 \end{aligned}$	[Feedback Offset] [Spd Fdbk Control]	$\begin{aligned} & 563 \\ & 457 \end{aligned}$	[SpdReg FB Bypass]	458
	Autotune	[Autotune Cur Lim] [CurrReg Autotune] [Arm Resistance] [Arm Inductance]	$\begin{aligned} & 1048 \\ & 452 \\ & 453 \\ & 454 \end{aligned}$	[Spd Reg Autotune] [Speed Tune Dir] [Speed Tune Kp] [Speed Tune Ki]	$\begin{aligned} & 1027 \\ & 1029 \\ & 1032 \\ & 1033 \end{aligned}$	[Spd Tune Inertia] [SpdTune Friction] [SpdReg Kp Pct] [SpdReg Ki Pct]	$\begin{aligned} & 1030 \\ & 1031 \\ & 1034 \\ & 1035 \end{aligned}$
Speed Command	Limits	[Minimum Speed] [Min Speed Fwd]	$\begin{aligned} & 1 \\ & 5 \end{aligned}$	[Min Speed Rev] [Maximum Speed]	$\begin{aligned} & 6 \\ & 2 \end{aligned}$	[Max Speed Fwd] [Max Speed Rev]	$\begin{aligned} & 3 \\ & 4 \end{aligned}$
	Discrete Speeds	[Jog Speed] [Jog Off Delay] [Preset Speed 1] [Preset Speed 2]	$\begin{aligned} & 266 \\ & 1409 \\ & 154 \\ & 155 \end{aligned}$	[Preset Speed 3] [Preset Speed 4] [Preset Speed 5] [Preset Speed 6]	$\begin{aligned} & 156 \\ & 157 \\ & 158 \\ & 159 \end{aligned}$	[Preset Speed 7] [TB Manual Ref]	$\begin{aligned} & 160 \\ & 267 \end{aligned}$
	Speed References	[Trim Ramp] [Trim Ramp Pct]	$\begin{aligned} & 42 \\ & 378 \end{aligned}$	[Trim Speed] [Trim Speed Pct]	$\begin{aligned} & \hline 43 \\ & 379 \end{aligned}$	[Speed Ratio]	1017
	Speed Regulator	[Speed Reg En]	$242{ }^{(1)}$	[Spd Reg Kp]	87	[Spd Reg Ki]	88
		(1) This parameter availab	use with fil	version 2.005 and lower only.			
Dynamic Control	Control Config	[Spd Trq Mode Sel]	241				
	Ramp Rates	[Speed Ramp En] [Ramp Type Select] [Accel Time 1] [Decel Time 1]	$\begin{aligned} & 245 \\ & 18 \\ & 660 \\ & 662 \end{aligned}$	[Accel Time 2] [Decel Time 2] [MOP Accel Time] [MOP Decel Time]	$\begin{aligned} & 24 \\ & 32 \\ & 22 \\ & 30 \end{aligned}$	[Jog Ramp Time] [S Curve Time]	$\begin{aligned} & 1410 \\ & 19 \end{aligned}$
	Restart Modes	[Start At Powerup]	1344	[Powerup Delay]	1345		

File	Group	Parameters					
Utility	Reference Config	[Direction Mode] [Save HIM Ref]	$\begin{aligned} & 1322 \\ & 209 \end{aligned}$	[Man Ref Preload] [MOP Ref Config]	$\begin{aligned} & 210 \\ & 249 \end{aligned}$	[MOP Select]	1375
	Drive Memory	[Param Access Lvl]	211	[Reset Defauls]	258	[Language]	302
	Diagnostics	[Drive Status 1] [Drive Status 2] [Speed Ref Source] [Spd Ref Sel Sts]	$\begin{aligned} & 381 \\ & 382 \\ & 1329 \\ & 1330 \end{aligned}$	[Last Stop Source] [Start Inhibits] [Drive Logic Rstt] [At Speed]	$\begin{aligned} & 1402 \\ & 1403 \\ & 1328 \\ & 394 \end{aligned}$	[At Zero Speed] [CurrLimit Active] [Spd Limit Active]	$\begin{aligned} & 395 \\ & 349 \\ & 372 \end{aligned}$
	Faults	[Clear Fault Que] [Fault Clear] [Fault Clr Mode] [Status1 at Fault]	$\begin{aligned} & 263 \\ & 1347 \\ & 1348 \\ & 1349 \end{aligned}$	[Status2 at Fault] [Fault Arm Amps] [Fault Speed] [Fault Field Amps]	$\begin{aligned} & 1350 \\ & 1371 \\ & 1372 \\ & 1373 \end{aligned}$	[Fault Voltage] [Fault 1 Code]	$\begin{aligned} & 1374 \\ & 1351 \end{aligned}$
	Alarms	[Drive Alarm 1]	1380				
Communications\square	Comm Control	[DPI Baud Rate] [DPI Port Sel]	$\begin{aligned} & 589 \\ & 590 \end{aligned}$	[DPI Fdbk Select]	1321	[DPI Port Value]	1343
	Masks \& Owners	[Logic Mask] [Start Mask] [Jog Mask] [Direction Mask] [Reference Mask] [Accel Mask] [Fault Clr Mask]	$\begin{aligned} & 591 \\ & 592 \\ & 593 \\ & 594 \\ & 595 \\ & 596 \\ & 597 \end{aligned}$	[MOP Mask] [Local Mask] [Decel Mask] [Stop Owner] [Start Owner] [Jog Owner] [Direction Owner]	598 599 631 600 601 602 603	[Reference Owner] [Accel Owner] [Fault Clr Owner] [MOP Owner] [Local Owner] [Decel Owner]	$\begin{aligned} & 604 \\ & 605 \\ & 606 \\ & 607 \\ & 608 \\ & 609 \end{aligned}$
	Datalinks	[Data In A1] [Data In A2] [Data In B1] [Data In B2] [Data \ln C1] [Data In C2]	$\begin{aligned} & 610 \\ & 611 \\ & 612 \\ & 613 \\ & 614 \\ & 615 \end{aligned}$	[Data In D1] [Data In D2] [Data Out A1] [Data Out A2] [Data Out B1] [Data Out B2]	$\begin{aligned} & \hline 616 \\ & 617 \\ & 618 \\ & 619 \\ & 620 \\ & 621 \end{aligned}$	[Data Out C1] [Data Out C1] [Data Out D1] [Data Out D2] [Data In Val Sel] [Data In SelData]	$\begin{aligned} & \hline 622 \\ & 623 \\ & 624 \\ & 625 \\ & 1319 \\ & 1320 \end{aligned}$
	Security	[Logic Mask]	591				
Input / Output	Analog Inputs	[Anlg $\ln 1 \mathrm{Sel}$] [Anlg $\ln 1$ Config] [Anlg $\ln 2$ Sel] [Anlg $\ln 2$ Config] [Anlg $\ln 3$ Sel] [Anlg $\ln 3$ Config]	$\begin{aligned} & 70 \\ & 71 \\ & 75 \\ & 76 \\ & 80 \\ & 81 \end{aligned}$	[Anlg $\ln 1$ Target] [Anlg $\ln 2$ Target] [Anlg $\ln 3$ Target] [Anlg $\ln 1$ Cmp] [Anlg $\ln 1$ Cmp Err] [Anlg $\ln 1$ Cmp Dly]	$\begin{aligned} & 295 \\ & 296 \\ & 297 \\ & 1042 \\ & 1043 \\ & 1044 \end{aligned}$	[Anlg $\ln 1$ Cmp Eq] [Analog $\ln 1$ Value] [Analog $\ln 2$ Value] [Analog In3 Value]	$\begin{aligned} & 1045 \\ & 1404 \\ & 1405 \\ & 1406 \end{aligned}$
	Analog Outputs	[Anlg Out1 Sel] [Anlg Out2 Sel] [Anlg Out3 Sel]	$\begin{aligned} & 66 \\ & 67 \\ & 68 \end{aligned}$	[Anlg Out 4 Sel] [Analog Out1 Scale] [Analog Out2 Scale]	$\begin{aligned} & 69 \\ & 62 \\ & 63 \end{aligned}$	[Analog Out3 Scale] [Analog Out4 Scale]	$\begin{aligned} & 64 \\ & 65 \end{aligned}$
	Digital Inputs	[Dig In Status] [Digital $\ln 1$ Sel] [Digital In2 Sel] [Digital $\ln 3$ Sel] [Digital $\ln 4$ Sel] [Digital $\ln 5$ Sel] [Digital In6Sel] [Digital $\ln 7$ Sel] [Digital In8 Sel]	$\begin{aligned} & 564 \\ & 133 \\ & 134 \\ & 135 \\ & 136 \\ & 137 \\ & 138 \\ & 139 \\ & 140 \end{aligned}$	[Digital In9 Sel] [Digital $\ln 10$ Sel] [Digital $\ln 11$ Sel] [Digital $\ln 12$ Sel] [Dig In Term 1] [Dig In Term 2] [Dig In Term 3] [Dig In Term 4] [Dig In Term 5]	141 142 143 144 565 566 567 568 569	[Dig In Term 6] [Dig In Term 7] [Dig In Term 8] [Dig In Term 9] [Dig In Term 10] [Dig In Term 11] [Dig In Term 12]	570 571 572 573 574 575 576
	Digital Outputs	[Dig Out Status] [Digital Out1 Sel] [Digital Out2 Sel] [Digital Out3 Sel]	$\begin{aligned} & 581 \\ & 145 \\ & 146 \\ & 147 \end{aligned}$	[Digital Out4 Sel] [Digital Out5 Sel] [Digital Out6 Sel] [Digital Out7 Sel]	$\begin{aligned} & 148 \\ & 149 \\ & 150 \\ & 151 \end{aligned}$	[Digital Out8 Sel] [Relay Out 1 Sel] [Relay Out 2 Sel]	$\begin{aligned} & 152 \\ & 1392 \\ & 629 \end{aligned}$
	DPI Inputs	[DPI P1 Select] [DP1 P2 Select]	$\begin{aligned} & 1323 \\ & 1324 \end{aligned}$	[DPI P3 Select] [DPI P4 Select]	$\begin{aligned} & 1325 \\ & 1326 \end{aligned}$	[DPI P5 Select]	1327

Advanced Parameter View

Parameter 211 [Param Access Lvl] set to option 1 "Advanced".

File	Group	Parameters					
Monitor	Speed Meters	[Speed Ref A]	44	[Ramp Out Pct]	114	[Spd Reg Fdbk]	1008
		[Speed Ref A Pct]	47	[Speed Draw Out]	1018	[Spd Reg Fdbk Pct]	1009
		[Speed Ref B]	48	[Spd Draw Out Pct]	1019	[Spd Feedback]	122
		[Speed Ref B Pct]	49	[Droop Out]	1006	[Spd Feedback Pct]	121
		[Speed Ref 0ut]	385	[Droop Out Pct]	1007	[Actual Speed]	924
		[Spd Ref Out Pct]	384	[Speed Reg In]	118	[Encoder Speed]	420
		[Rampln]	110	[Speed Reg In Pct]	117	[Tachometer Speed]	1408
		[Ramp In Pct]	111	[Spd Reg Err]	1010	[Resolver Speed]	428
		[Ramp 0ut]	113	[Spd Reg Err Pct]	1011		
	Current Meters	[Inertia Comp Out]	232	[FId Current Pct]	234	[Flux Ref Pct]	500
		[Spd Reg Out Pct]	236	[SpdReg PosLmOut]	89	[Field Curve Out]	476
		[Current Reg In]	41	[SpdReg NegLmOut]	90	[Selected TorqRef]	14
		[Arm Current]	200	[Cur Lim Pos Out]	10	[Motor Trq Ref]	17
		[Arm Current Pct]	199	[Cur Lim Neg Out]	11		
		[Field Current]	351	[Filt TorqCur Pct]	928		
	Drive Data	[FaultCode]	57	[Output Power]	1052	[Software Version]	331
		[ACLine Voltage]	466	[Drive Type]	300	[Drive Checksum]	332
		[AC Line Freq]	588	[Drive Size]	465		
		[Output Voltage]	233	[Elapsed Lifetime]	235		
Motor Control	Motor Data	[Max RefSpeed]	45	[Nom Mtr Fld Amps]	280	[MtrOvrld Speed]	334
		[Max Feedback Spd]	162	[Drv Fld Brdg Cur]	374	[SAR Volts Scale]	464
		[Rated Motor Volt]	175	[MtrOvrld Type]	376	[Drive Type Sel]	201
		[Nom Mtr Arm Amps]	179	[MtrOvrld Factor]	333		
	Field Config	[Field Reg Enable]	497	[Arm Volt Ki]	494	[FId Reg Ki Base]	98
		[Field Economy En]	499	[Arm Volt Kp Base]	495	[Set Fld Curve]	919
		[Field Econ Delay]	1407	[Arm Volt Ki Base]	496	[Reset Fld Curve]	920
		[Field Mode Sel]	469	[FId Reg Kp]	91	[FId Const 40 Pct]	916
		[Max Fld Flux Pct]	467	[FId Reg Ki]	92	[FId Const 70 Pct]	917
		[Min Fld Curr Pct]	468	[Force Min Field]	498	[FId Const 90 Pct]	918
		[FId Weaken Ratio]	456	[Out Volt Level]	921	[Flux Divide]	462
		[Arm Volt Kp]	493	[FId Reg Kp Base]	97	[Flux Filter BW]	463
	Torq Attributes	[Current Limit]	7	[Torque Reduction]	342	[TrqTpr Lim3]	754
		[Current Lim Pos]	8	[Zero Torque]	353	[TrqTpr Lim4]	755
		[Current Lim Neg]	9	[TrqTpr Enable]	750	[TrgTpr Spd]	756
		[Current Rate Lim]	12	[TrqTpr Lim0]	751	[Torq Cur Filter]	926
		[Torque Ref]	39	[TrqTpr Lim1]	752		
		[Trim Torque]	40	[TrqTpr Lim2]	753		
	Speed Feedback	[Fdbk Device Type]	414	[Spd FB Filt BW]	915	[Reslvr Type Sel]	423
		[Anlg Tach Gain]	562	[Act Spd Filter]	923	[Reslvr Spd Ratio]	424
		[Feedback Offset]	563	[Encoder PPR]	169	[Resolver Config]	425
		[Spd Fdbk Control]	457	[Encoder Config]	170	[Resolver Status]	426
		[SpdReg FB Bypass]	458	[Encoder Out Sel]	1021	[Reslvr Position]	427
		[Spd Fdbk Invert]	461	[Encoder Err Chk]	652	[Resolver Pos Sel]	429
		[Spd FB Loss Lvl]	455	[Encoder Counts]	1022	[Resolver Spd Sel]	430
		[Spd FB Filt Gain]	914	[Fdbk Option ID]	422	[Reslvr Cable Bal]	431
	Autotune	[Autotune Cur Lim]	1048	[Speed Tune Kp]	1032	[Torque Const]	1013
		[CurrReg Autotune]	452	[Speed Tune Ki]	1033	[Inertia]	1014
		[Arm Resistance]	453	[Spd Tune Inertia]	1030	[Friction]	1015
		[Arm Inductance]	454	[SpdTune Friction]	1031	[Spd Reg Kp Base]	93
		[Spd Reg Autotune]	1027	[I Reg Error]	587	[Spd Reg Ki Base]	94
		[Speed Tune Dir]	1029	[Inertia C Filter]	1012	[SpdReg Kp Pct]	1034
						[SpdReg Ki Pct]	1035
	Test Generator	[TstGen Output]	58	[Arm Test Angle]	167	[OpenSCR Flt Cfg]	216
		[TstGen Frequency]	59	[FId Test Angle]	168	[OpenSCR Threshld]	217
		[TstGen Amplitude]	60	[SCR Diag Test En]	213	[OpenSCR Trip Lvi]	218
		[TstGen Offset]	61	[SCR Diag Status]	214		
		[Alpha Test]	166	[OpenSCR WarnLvl]	215		

File	Group	Parameters					
Speed Command	Limits	[Minimum Speed] [Min Speed Fwd]	$\begin{aligned} & \hline 1 \\ & 5 \end{aligned}$	[Min Speed Rev] [Maximum Speed]	$\begin{aligned} & \hline 6 \\ & 2 \end{aligned}$	[Max Speed Fwd] [Max Speed Rev]	$\begin{aligned} & \hline 3 \\ & 4 \end{aligned}$
	Discrete Speeds	[Jog Speed] [Jog Off Delay] [Preset Speed 1] [Preset Speed 2]	$\begin{aligned} & 266 \\ & 1409 \\ & 154 \\ & 155 \end{aligned}$	[Preset Speed 3] [Preset Speed 4] [Preset Speed 5] [Preset Speed 6]	$\begin{aligned} & 156 \\ & 157 \\ & 158 \\ & 159 \end{aligned}$	[Preset Speed 7] [TB Manual Ref]	$\begin{aligned} & 160 \\ & 267 \end{aligned}$
	Speed References	[Trim Ramp] [Trim Ramp Pct]	$\begin{aligned} & 42 \\ & 378 \end{aligned}$	[Trim Speed] [Trim Speed Pct]	$\begin{aligned} & 43 \\ & 379 \end{aligned}$	[Speed Ratio]	1017
	Speed Regulator	[Speed Reg En] [Spd Reg Kp] [Spd Reg Ki] [Total Inertia] [Spd Reg BW] [Act Spd Reg BW] [Spd Reg Damping] [Spd Reg Kp Outpt] [Spd Reg Ki Outpt] [Spd Reg Pos Lim] [Spd Reg Neg Lim] [SpdOut FiltGain]	$242^{(1)}$ 87 88 433 434 435 436 99 100 95 96 238	[Spd0ut FiltBW] [Speed Thresh Pos] [Speed Thresh Neg] [Threshold Delay] [At Speed Error] [At Speed Delay] [Ref Zero Level] [Speed Zero Level] [Speed Zero Delay] [Spd Zerol IEn] [Spd RefZero En] [Spd Zero P En]	239 101 102 103 104 105 106 107 108 123 124 125	[Spd Zero P Gain] [Lock Speed Integ] [Flying Start En] [SpdReg AntiBckup] [Spd Reg P Filter] [Spd Up Gain Pct] [Speed Up Base] [Speed Up Filter] [SpdReg Kp Bypass] [SpdReg Ki Bypass] [SpdReg BW Bypass] [SpdFuncSelect]	126 348 388 643 444 445 446 447 459 460 448 1016
	Control Config	(1) This parameter available for use with firmware eversion 2.005 and lower only.					
Dynamic Control		[Spd Trq Mode Sel]	241	[SLAT Err Stpt]	15	[SLAT Dwell Time]	16
	Ramp Rates	[Speed Ramp En] [Ramp Type Select] [Accel Time 1] [Decel Time 1] [Accel Time 2] [Decel Time 2]	$\begin{aligned} & 245 \\ & 18 \\ & 660 \\ & 662 \\ & 24 \\ & 32 \\ & \hline \end{aligned}$	[MOP Accel Time] [MOP Decel Time] [Jog Ramp Time] [S Curve Time] [S Curve Accel 1] [S Curve Decel 1]	$\begin{aligned} & 22 \\ & 30 \\ & 1410 \\ & 19 \\ & 665 \\ & 666 \end{aligned}$	[S Curve Accel 2] [S Curve Decel 2] [Ramp Delay] [Zero Ramp Output] [Zero Ramp Input] [Freeze Ramp]	$\begin{aligned} & 667 \\ & 668 \\ & 20 \\ & 344 \\ & 345 \\ & 373 \end{aligned}$
	Load Limits	[Enable Droop] [Droop Percent] [Droop Filter]	$\begin{aligned} & 699 \\ & 696 \\ & 697 \end{aligned}$	[Droop Limit] [Load Comp] [Torq Red CurLim]	$\begin{aligned} & 700 \\ & 698 \\ & 13 \end{aligned}$	[Torq Limit Type]	715
	Stop Modes	[Fast Stop Time] [Spd 0 Trip Delay]	$\begin{aligned} & 38 \\ & 627 \end{aligned}$	[Closing Speed] [Opening Delay]	$\begin{aligned} & 1262 \\ & 1263 \end{aligned}$	[Ramp In Zero En] [Actuator Delay]	$\begin{aligned} & 1265 \\ & 1266 \end{aligned}$
	Restart Modes	[Start At Powerup]	1344	[Powerup Delay]	1345		
	Adaptv Regulator	[Adaptive Spd En] [Adaptive Reg Typ] [Adaptive Ref] [Adaptive Spd 1] [Adaptive Spd 2]	$\begin{aligned} & 181 \\ & 182 \\ & 183 \\ & 184 \\ & 185 \end{aligned}$	[Adaptive Joint 1] [Adaptive Joint 2] [Adaptive P Gain1] [Adaptive I Gain1] [Adaptive P Gain2]	$\begin{aligned} & 186 \\ & 187 \\ & 188 \\ & 189 \\ & 190 \end{aligned}$	[Adaptive I Gain2] [Adaptive P Gain3] [Adaptive I Gain3]	$\begin{aligned} & 191 \\ & 192 \\ & 193 \end{aligned}$

File	Group	Parameters					
Applications	PI Control	[Enable PI]	769	[PI Prop Gain PID]	765	[PI Central v3]	778
		[PI Output]	771	[PI Integral Gain]	764	[PI Central v sel]	779
		[PI Steady Thrsh]	695	[PI Upper Limit]	784	[PI Central vs0]	780
		[PID Steady Delay]	731	[PI Lower Limit]	785	[PI Central vs1]	781
		[PI Init Prop Gn]	793	[PI Central v1]	776	[Pl integr freeze]	783
		[PI Init Intg\| Gn]	734	[PI Central v2]	777		
	PD Control	[Enable PD]	770	[PD Prop Gain 2]	788	[PD Deriv Gain 1]	766
		[PD Output PID]	421	[PD Prop Gain 3]	790	[PD Deriv Gain 2]	789
		[PD Prop Gain 1]	768	[PD Deriv Filter]	767	[PD Deriv Gain 3]	791
	PID Control	[Enable PIPD]	1258	[PID Target]	782	[PID Clamp]	757
		[PID Output]	774	[PID Output Scale]	773	[PID Setpoint 0]	760
		[Feed Fwd PID]	758	[PID Output Sign]	772	[PID Setpoint 1]	761
		[Real FF PID]	418	[PID Feedback]	763	[PID Setpoint Sel]	762
		[PID Source]	786	[PID Error]	759	[PID Accel Time]	1046
		[PID Source Gain]	787	[PID Error Gain]	1254	[PID Decel Time]	1047
	Init Diam Calc	[Diameter Calc]	794	[Gear Box Ratio]	797	[Diameter Calc St]	800
		[DncrPosSpd]	795	[Dancer Constant]	798		
		[Max Deviation]	796	[Minimum Diameter]	799		
	Diameter Calc	[Minimum Diameter]	799	[Line Speed Pct]	1160	[Diam Preset 1]	1165
		[Max Diameter]	1153	[Line Spd Thresh]	1155	[Diam Preset 2]	1166
		[Roll Diameter]	1154	[Base Omega]	1163	[Diam Preset 3]	1167
		[Diam Threshold]	1158	[Diameter Filter]	1162	[Diam Preset Sel]	1168
		[Diameter Reached]	1159	[Diam Init Filter]	1206	[Diameter Reset]	1157
		[Winder Type]	1187	[Diam Stdy Delay]	1207	[Diam Calc Dis]	1161
		[Line Spd Source]	1204	[Diam Inc Dec En]	1205		
		[Line Spd Gain]	1156	[Diam Preset 0]	1164		
	Winder Functions	[Torque Winder En]	1209	[InertiaCompCnst]	1191	[Ref Line Speed]	1286
		[Tension Ref]	1180	[InertiaCompVar]	1192	[W Target]	1210
		[Act Ten Ref Pct]	1194	[Static Friction]	1174	[W Reference]	1217
		[Torg Current Pct]	1193	[Static F Zero]	1287	[Winder Side]	1201
		[Int Acc Calc En]	1183	[Dynamic Friction]	1175	[W Gain]	1202
		[Time AccDec Min]	1182	[Actual Comp]	1213	[W Offset]	1199
		[Acc Dec Filter]	1212	[Closed Loop En]	1214	[Offs Accel Time]	1198
		[Line Accel Pct]	1184	[Close Loop Comp]	1208	[Speed Match]	1195
		[Line Decel Pct]	1185	[Tension Scale]	1181	[Spd Match Gain]	1200
		[Line FastStp Pct]	1186	[Taper Enable]	1176	[Spd Match Acc]	1196
		[Accel Status]	1188	[Initial Diameter]	1177	[Spd Match Dec]	1197
		[Decel Status]	1189	[Final Diameter]	1178	[Spd Match Torque]	1216
		[Fast Stop Status]	1190	[Tension Reduct]	1179	[Spd Match Compl]	1203
		[Variable J Comp]	1171	[Speed Demand En]	1215	[Jog TW Enable]	1256
		[Constant J Comp]	1172	[Ref Spd Source]	1284	[Jog TW Speed]	1255
		[Materl Width Pct]	1173	[Ref Speed Gain]	1285		
	Torque Prove	[Torq Prove Cfg]	1100	[Spd Band Intgrtr]	1106	[Float Tolerance]	1111
		[Torq Prove Setup]	1101	[Brk Release Time]	1107	[MicroPsnScalePct]	1112
		[Torq Prove Sts]	1103	[Brk Set Time]	1108	[ZeroSpdFloatTime]	1113
		[Torq Limit Slew]	1104	[Brk Alarm Travel]	1109	[Brake Test Torq]	1114
		[Speed Dev Band]	1105	[Brk Slip Count]	1110		
	Scale Blocks	[Scale1 Input]	484	[Scale3 Input]	1218	[Scale5 Input]	1236
		[Scale1 Output]	485	[Scale3 Output]	1219	[Scale5 Output]	1237
		[Scale1 Mul]	486	[Scale3 Mul]	1220	[Scale5 Mul]	1238
		[Scale1 Div]	487	[Scale3 Div]	1221	[Scale5 Div]	1239
		[Scale1 In Max]	488	[Scale3 In Max]	1222	[Scale5 In Max]	1240
		[Scale1 In Min]	489	[Scale3 In Min]	1223	[Scale5 In Min]	1241
		[Scale1 In Off]	490	[Scale3 In 0ff]	1224	[Scale5 In Off]	1242
		[Scale1 Out Off]	491	[Scale3 Out Off]	1225	[Scale5 Out 0ff]	1243
		[Scale1 In Abs]	492	[Scale3 In Abs]	1226	[Scale5 In Abs]	1244
		[Scale2 Input]	553	[Scale4 Input]	1227	[Scale6 Input]	1245
		[Scale2 Output]	554	[Scale4 Output]	1228	[Scale6 Output]	1246
		[Scale2 Mul]	555	[Scale4 Mul]	1229	[Scale6 Mul]	1247
		[Scale2 Div]	556	[Scale4 Div]	1230	[Scale6 Div]	1248
		[Scale2 In Max]	557	[Scale4 In Max]	1231	[Scale6 In Max]	1249
		[Scale2 In Min]	558	[Scale4 In Min]	1232	[Scale6 In Min]	1250
		[Scale2 In 0ff]	559	[Scale4 In 0ff]	1233	[Scale6 ln 0ff]	1251
		[Scale2 Out Off]	560	[Scale4 Out Off]	1234	[Scale6 Out Off]	1252
		[Scale2 In Abs]	561	[Scale4 In Abs]	1235	[Scale6 In Abs]	1253

File	Group	Parameters					
Utility	Reference Config	[Direction Mode]	1322	[Man Ref Preload]	210	[MOP Select]	1375
		[Save HIM Ref]	209	[MOP Ref Config]	249		
	Drive Memory	[Param Access Lvl]	211	[Reset Defauls]	258	[Language]	302
	Diagnostics	[Drive Status 1]	381	[Spd Limit Active]	372	[Ramp Select 1] [Spd Fdbk State]	404
		[Drive Status 2]	382	[Speed Threshold]	393		651
		[Speed Ref Source]	1329	[Torque Positive]	346	[Reslvr Error Cnt]	432
		[Spd Ref Sel Sts]	1330	[Torque Negative]	347	[Mtrovrld Status]	1290
		[Last Stop Source]	1402	[MOP Inc Active]	396	[TestPoint Sel]	1381
		[Start Inhibits]	1403	[MOP Dec Active]	397	[TestPoint Data]	1382
		[Drive Logic Rsit]	1328	[Spd Select 0]	400	[TaskLoad 1 ms]	1384
		[At Speed]	394	[Spd Select 1]	401	[TaskLoad 2 ms]	1385
		[At Zero Speed]	395	[Spd Select 2]	402	[TaskLoad 8 ms]	1386
		[CurrLimit Active]	349	[Ramp Select 0]	403		
	Faults	[Clear Fault Que]	263	[Fault 2 Code]	1352	[Fault 2 Time]	1362
		[Fault Clear]	1347	[Fault 3 Code]	1353	[Fault 3 Time]	1363
		[Fault Clr Mode]	1348	[Fault 4 Code]	1354	[Fault 4 Time]	1364
		[Status1 at Fault]	1349	[Fault 5 Code]	1355	[Fault 5 Time]	1365
		[Status2 at Fault]	1350	[Fault 6 Code]	1356	[Fault 6 Time]	1366
		[Fault Arm Amps]	1371	[Fault 7 Code]	1357	[Fault 7 Time]	1367
		[Fault Speed]	1372	[Fault 8 Code]	1358	[Fault 8 Time]	1368
		[Fault Field Amps]	1373	[Fault 9 Code]	1359	[Fault 9 Time]	1369
		[Fault Voltage]	1374	[Fault 10 Code]	1360	[Fault 10 Time]	1370
		[Fault 1 Code]	1351	[Fault 1 Time]	1361		
	Alarms	[Drive Alarm 1]	1380	[FIdLoss Flt Cfg]	473	[UnderVIt Flt Dly]	470
		[Drive Alarm 2]	1394	[FIdLoss Flt Dly]	475	[OverCurrent Thr]	584
		[OverVolt Flt Cfg]	203	[Spd Loss Flt Cfg]	478	[Overspeed Val]	585
		[Aux Inp Flt Cfg]	354	[Mtrovrld Flt Cfg]	479		
		[OverTemp Flt Cfg]	365	[UnderVolt Thresh]	481		
	User Defined	[UsrDsplyMulto]	50	[UserDefined14]	517	[UsrDeffitWrdA15]	535
		[UsrDsplyDiv0]	51	[UserDefined15]	518	[UsrDefBitWrdB]	536
		[UsrValMultt]	53	[UsrDefBitWrdA]	519	[UsrDefBitWrdB0]	537
		[UsrValDiv1]	54	[UsrDefBitWrdA0]	520	[UsrDefBitWrdB1]	538
		[UserDefined0]	503	[UsrDefBitWrdA1]	521	[UsrDefBitWrdB2]	539
		[UserDefined1]	504	[UsrDefBitWrdA2]	522	[UsrDefBitWrdB3]	540
		[UserDefined2]	505	[UsrDefBitWrdA3]	523	[UsrDefBitWrdB4]	541
		[UserDefined3]	506	[UsrDefBitWrdA4]	524	[UsrDefBitWrdB5]	542
		[UserDefined4]	507	[UsrDefBitWrdA5]	525	[UsrDefBitWWrdB6]	543
		[UserDefined5]	508	[UsrDefBitWrdA6]	526	[UsrDefBitWrdB7]	544
		[UserDefined6]	509	[UsrDefBitWrdA7]	527	[UsrDefBitWrdB8]	545
		[UserDefined7]	510	[UsrDefBitWrdA8]	528	[UsrDefBitWrdB9]	546
		[UserDefined8]	511	[UsrDefBitWrdA9]	529	[UsrDefBitWrdB10]	547
		[UserDefined9]	512	[UsrDefBitWrdA10]	530	[UsrDefBitWrdB11]	548
		[UserDefined10]	513	[UsrDefBitWrdA11]	531	[UsrDefBitWrdB12]	549
		[UserDefined11]	514	[UsrDefBitWrdA12]	532	[UsrDefBitWrdB13]	550
		[UserDefined12]	515	[UsrDefBitWrdA13]	533	[UsrDefBitWrdB14]	551
		[UserDefined13]	516	[UsrDefBitWrdA14]	534	[UsrDefBitWrdB15]	552
Communications	Comm Control	[DPI Baud Rate] [DPI Port Sel]	$\begin{aligned} & 589 \\ & 590 \end{aligned}$	[DPI Fdbk Select]	1321	[DPI Port Value]	1343
	Masks \& Owners	[Logic Mask]	591	[MOP Mask]	598	[Reference Owner]	604
		[Start Mask]	592	[Local Mask]	599	[Accel Owner]	605
		[Jog Mask]	593	[Decel Mask]	631	[Fault Clr Owner]	606
		[Direction Mask]	594	[Stop Owner]	600	[MOP Owner]	607
		[Reference Mask]	595	[Start Owner]	601	[Local Owner]	608
		[Accel Mask] [Fault Clr Mask]	$\begin{aligned} & 596 \\ & 597 \end{aligned}$	[Jog Owner] [Direction Owner]	602 603	[Decel Owner]	609
	Datalinks	[Data In A1]	610 611	${ }^{\text {[Data } \operatorname{ln~D1]~}}$	616 617	[Data Out C1] [Data Out C1]	622 623
		[Data In B1]	612	[Data Out A1]	618	[Data Out D1]	624
		[Data In B2]	613	[Data Out A2]	619	[Data Out D2]	625
		[Data In C1]	614	[Data Out B1]	620	[Data In Val Sel]	1319
		[Data $\ln \mathrm{C} 2$]	615	[Data Out B2]	621	[Data In SelData]	1320
	Security	[Logic Mask] [Logic Mask Act]	$\begin{aligned} & \hline 591 \\ & 1376 \end{aligned}$	[Write Mask Act] [Write Mask Cfg]	$\begin{aligned} & 1377 \\ & 1378 \end{aligned}$	[Port Mask Act]	1379

File	Group	Parameters					
Input / Output	Analog Inputs	[Anlg $\ln 1$ Sel]	70	[Anlg $\ln 20$ Offset]	79	[Anlg In2 Target]	296
		[Anlg In1 Config]	71	[Anlg In2 Tune]	260	[Anlg $\ln 3$ Target]	297
		[Anlg In 1 Scale]	72	[Anlg In2 Filter]	801	[Anlg $\ln 1$ Cmp]	1042
		[Anlg1 Tune Scale]	73	[Anlg $\ln 3 \mathrm{Sel}$]	80	[Anlg $\ln 1$ Cmp Err]	1043
		[Anlg $\ln 10 \mathrm{ffset}]$	74	[Anlg In3 Config]	81	[Anlg $\ln 1$ Cmp Dly]	1044
		[Anlg $\ln 1$ Tune]	259	[Anlg $\ln 3$ Scale]	82	[Anlg $\ln 1 \mathrm{Cmp} \mathrm{Eq]}$	1045
		[Anlg $\ln 1$ Filter]	792	[Anlg3 Tune Scale]	83	[Analog $\ln 1$ Value]	1404
		[Anlg $\ln 2 \mathrm{Sel}]$	75	[Anlg In3 0 Offset]	84	[Analog $\ln 2$ Value]	1405
		[Anlg In2 Config]	76	[Anlg $\ln 3$ Tune]	261	[Analog $\ln 3$ Value]	1406
		[Anlg $\ln 2$ Scale]	77	[Anlg $\ln 3$ Filter]	802		
		[Anlg2 Tune Scale]	78	[Anlg In 1 Target]	295		
	Analog Outputs	[Anlg Out1 Sel]	66	[Anlg Out4 Sel]	69	[Analog Out3 Scale]	64
		[Anlg Out2 Sel]	67	[Analog Out1 Scale]	62	[Analog Out 4 Scale]	65
		[Anlg Out3 Sel]	68	[Analog Out2 Scale]	63		
	Digital Inputs	[ContactorControl]	1391	[Digital $\ln 12 \mathrm{Sel}$]	144	[Dig In Term 1]	565
		[Dig In Status]	564	[Inversion In 1]	1276	[Dig In Term 2]	566
		[Digital $\ln 1$ Sel]	133	[Inversion In 2]	1277	[Dig In Term 3]	567
		[Digital $\ln 2$ Sel]	134	[Inversion In 3]	1278	[Dig In Term 4]	568
		[Digital In3 Sel]	135	[Inversion In 4]	1279	[Dig In Term 5]	569
		[Digital $\ln 4$ Sel]	136	[Inversion In 5]	1280	[Dig In Term 6]	570
		[Digital $\ln 5$ Sel]	137	[Inversion In 6]	1281	[Dig In Term 7]	571
		[Digital $\ln 6$ Sel]	138	[Inversion In 7]	1282	[Dig In Term 8]	572
		[Digital $\ln 7$ Sel]	139	[Inversion In 8]	1283	[Dig In Term 9]	573
		[Digital $\ln 8$ Sel]	140	[Inversion In 9]	1387	[Dig In Term 10]	574
		[Digital $\ln 9 \mathrm{Sel}$]	141	[Inversion $\ln 10]$	1388	[Dig In Term 11]	575
		[Digital $\ln 10$ Sel]	142	[Inversion In 11]	1389	[Dig In Term 12]	576
		[Digital $\ln 11 \mathrm{Sel}$]	143	[Inversion In 12]	1390		
	Digital Outputs	[Dig Out Status]	581	[Digital Out7 Sel]	151	[Inversion Out 4]	1270
		[Digital Out1 Sel]	145	[Digital Out8 Sel]	152	[Inversion Out 5]	1271
		[Digital Out2 Sel]	146	[Relay Out 1 Sel]	1392	[Inversion Out 6]	1272
		[Digital Out3 Sel]	147	[Relay Out 2 Sel]	629	[Inversion Out 7]	1273
		[Digital Out4 Sel]	148	[Inversion Out 1]	1267	[Inversion Out 8]	1274
		[Digital Out5 Sel]	149	[Inversion Out 2]	1268	[Inversion Relay 1]	1393
		[Digital Out6 Sel]	150	[Inversion Out 3]	1269	[Inversion Relay2]	1275
	DPI Inputs	[DP1 P1 Select]	1323	[DP1 P3 Select]	1325	[DP1 P5 Select]	1327
		[DP1 P2 Select]	1324	[DP1 P4 Select]	1326		

Monitor File

읖	응	$\stackrel{\text { ¢ }}{2}$	Parameter Name \& Description See page 114 for symbol descriptions	Values			T
		1010	[Spd Reg Err] Speed Regulator Error signal, the difference between Par 118 [Speed Reg In] and 1008 [Spd Reg Fdbk]. Note: This parameter was added for firmware version 4.001 .	Default: Min/Max: Units:	Read Only -/+8192 rpm	$\begin{aligned} & \hline \text { 16-bit } \\ & \text { Int } \end{aligned}$	$\begin{aligned} & \hline 118, \\ & 1008 \end{aligned}$
		1011	[Spd Reg Err Pct] Par 1010 [Spd Reg Err] shown as a percentage of Par 45 [Max Ref Speed]. Note: This parameter was added for firmware version 4.001.	Default: Min/Max: Units:	$\begin{aligned} & \hline \text { Read Only } \\ & -/+200.0 \\ & \% \end{aligned}$	Real	45
		1018	[Speed Draw Out] Speed draw output value. Notes: This parameter can be assigned to an analog output. See Speed Draw	Default: Min/Max: Units:	Read Only -/+ Par $45\left[\right.$ Max Ref Speed] ${ }^{1}$ rpm	$\begin{array}{\|l\|} \hline 16 \text {-bit } \\ \text { Int } \\ \hline \end{array}$	45
				${ }^{(1)}$ The valu	ef Speed] cannot exceed 8192 rpm .		
		1019	[Spd Draw Out Pct] Speed draw output as a percentage of Par 45 [Max Ref Speed]. Notes: This parameter can be assigned to an analog output. The min. and max. values of this parameter were changed from $-/+100.00$ for firmware version 3.001 .	Default: Min/Max: Units:	$\begin{aligned} & \text { Read Only } \\ & -/+100.0 \\ & \% \end{aligned}$	Real	45
		1408	[Tachometer Speed] Actual speed measured by the $D C$ analog tachometer. Note: The min. and max. values of this parameter were changed from -/ +32770 for firmware version 3.001	Default: Min/Max: Units:	Read Only -/+8192 rpm	Real	
		10	[Cur Lim Pos Out] Displays the value of the current limit for the positive torque direction as a percentage of the value in Par 179 [Nom Mtr Arm Amps].	Default: Min/Max: Units:	Read Only $0 / 250$ \%	Real	179
응		11	[Cur Lim Neg Out] Displays the value of the current limit for the negative torque direction as a percentage of the value in Par 179 [Nom Mtr Arm Amps].	Default: Min/Max: Units:	$\begin{aligned} & \hline \text { Read Only } \\ & 0 / 200 \\ & \% \\ & \hline \end{aligned}$	Real	179
ㅇ		14	[Selected TorqRef] Displays the selected torque reference based on Par 241 [Spd Trq Mode Sel] value. Scaled as a percentage of Par 179 [Nom Mtr Arm Amps]. Note: This parameter was added for firmware version 3.001 .	Default: Min/Max: Units:	$\begin{aligned} & \text { Read Only } \\ & -/+250 \\ & \% \end{aligned}$	Real	$\begin{aligned} & 179, \\ & 241 \end{aligned}$
		17	[Motor Trq Ref] Displays the total motor torque reference. Scaled as a percentage of Par 179 [Nom Mtr Arm Amps]. Note: This parameter was added for firmware version 3.001.	Default: Min/Max: Units:	$\begin{aligned} & \hline \text { Read Only } \\ & -/+250 \\ & \% \end{aligned}$	Real	179
		41	[Current Reg In] Total current reference value expressed as a percentage of the value in Par 179 [Nom Mtr Arm Amps]. Note: This parameter can be assigned to an analog output.	Default: Min/Max: Units:	$\begin{aligned} & \hline \text { Read Only } \\ & -/+250 \\ & \% \end{aligned}$	Real	179
		89	[SpdReg PosLm0ut] Indication of the positive limit value in effect on the output of the speed regulator. Note: This parameter was added for firmware version 5.002.	Default: Min/Max: Units:	$\begin{aligned} & \hline \text { Read Only } \\ & -/+250 \\ & \% \end{aligned}$	Real	
		90	[SpdReg NegLm0ut] Indication of the negative limit value in effect on the output of the speed regulator. Note: This parameter was added for firmware version 5.002.	Default: Min/Max: Units:	$\begin{aligned} & \text { Read Only } \\ & -/+250 \\ & \% \end{aligned}$	Real	
		199	[Arm Current Pct] Armature current expressed as a percentage of the value in Par 179 [Nom Mtr Arm Amps]. Note: This parameter can be assigned to an analog output and is the default selection for Par 67 [Anlg Out2 Sel].	Default: Min/Max: Units:	$\begin{aligned} & \hline \text { Read Only } \\ & -/+250 \\ & \% \end{aligned}$	$\begin{array}{\|l\|} \hline 16 \text {-bit } \\ \text { lnt } \end{array}$	179
		200	[Arm Current] Armature current in Amperes. Note: This parameter can be assigned to an analog output.	Default: Min/Max: Units:	Read Only $-/+2.5 \times$ [Nom Mtr Arm Amps] A	Real	

츺	은	\%	Parameter Name \& Description See page 114 for symbol descriptions	Values		亮	
$\begin{aligned} & \text { 을 } \\ & \text { 을 } \end{aligned}$	$\begin{aligned} & \text { 号 } \\ & \text { O} \\ & \text { Dù } \end{aligned}$	465	[Drive Size] Armature current rating (as indicated by the configuration of DIP switch S15 on the control board). This value is used to determine the Drive Overload fault (F64). Note: $S 15$ is set to the appropriate value at the factory. However, if the control board was supplied separate from the drive and installed as a replacement part, S 15 must be manually set to the appropriate drive size. See DIP Switch and Jumper Settings on page 75.	Default: Min/Max: Units:	Read Only 0 / Based on drive current rating A	$\begin{aligned} & \hline 16 \text {-bit } \\ & \operatorname{lnt} \end{aligned}$	
		466	[AC Line Voltage] AC input voltage.	Default: Min/Max: Units:	$\begin{aligned} & \hline \text { Read Only } \\ & 0 / 960 \\ & \text { Vac } \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 16 \text {-bit } \\ \text { lnt } \end{array}$	
		588	[AC Line Freq] AC input frequency.	Default: Min/Max: Units:	$\begin{aligned} & \text { Read Only } \\ & 0.00 / 70.00 \\ & \mathrm{~Hz} \\ & \hline \end{aligned}$	Real	
		1052	[Output Power] Output power. Note: This parameter can be assigned to an analog output.	Default: Min/Max: Units:	$\begin{aligned} & \hline \text { Read Only } \\ & 0.00 / 9999.99 \\ & \text { kW } \end{aligned}$	Real	

Motor Control File

흪	은	$\stackrel{\circ}{2}$	Parameter Name \& Description See page 114 for symbol descriptions	Values		号	
을 2 0 0 0 0		333 A	[Mtr0vrld Factor] Sets the derating factor for motor overload. The derating begins when the motor speed is below the value set in Par 334 [MtrOvrld Speed]. The motor overload level is determined by Par 376 [MtrOvrld Type] ("StandardDuty" is 150% of Par 179 [Nom Mtr Arm Amps] for 60 sec. or 200% for 3 sec., "HeavyDuty" is 200% for 60 sec.) and is linearly decreased from its maximum to the value of the motor overload factor at zero speed (zero speed is defined by Par 107 [Zero Speed Level]). This parameter can be used to lower the level of current that will cause the motor overload function to trip based on motor speed (The trip action is determined by Par 479 [MtrOvrld Flt Cfg]). For example, a value of 70% implies continuous operation up to 100% of motor nameplate current when operating above the value of Par 334 [MtrOvrld Speed] and only $70 \%(1.00$ * $70 \%)$ of motor nameplate current when operating at zero speed. Setting this parameter to 100% disables the motor overload derating function so the standard motor overload function is always active. Note: This parameter was added for firmware version 6.001.	Default: Min/Max: Units:	$\begin{aligned} & 70 \\ & 20 / 100 \\ & \% \end{aligned}$	$\begin{aligned} & \hline \text { 16-bit } \\ & \text { Int } \end{aligned}$	
		334	[MtrOvrld Speed] Sets the motor speed (as a percentage of Par 45 [Max Ref Speed]) where the derating factor (Par 333 [M trOvrld Factor]) for motor overload capacity begins. The motor overload capacity is linearly reduced when operating below [MtrOvild Speed]. This is to account for the reduced self-cooling capability of typical motors operating at slower speeds. For motors with low speed cooling capacity (for example, blower cooling), reduce this setting to take full advantage of the motor being used. Setting this parameter to 0\% disables the motor overload derating function so the standard overload function is independent of motor speed. Note: This parameter was added for firmware version 6.001.	Default: Min/Max: Units:	$\begin{aligned} & 0 \\ & 0 / 100 \\ & \% \end{aligned}$	16-bit Int	
		374 ([Drv FId Brdg Cur] Drive rated field bridge current $\left(I_{d F N}\right)$. The value in this parameter must be set equal to the value chosen with DIP switch S14 on the control board (see Table 16 on page 61 for DIP switch configuration). Leave set to the default value for permanent magnet motor applications.	Default: Min/Max: Units:	$\begin{aligned} & 1.00 \\ & 0.50 / 80.00 \\ & \mathrm{~A} \end{aligned}$	Real	
		376 A	[MtrOvrld Type] Allows selection of the type of motor overload calculation based on Par 179 [Motor Arm Amps]. - StandardDuty $=150 \%$ load for 1 minute or 200% load for 3 seconds before a motor overload condition is indicated. - HeavyDuty $=200 \%$ load for 1 minute before a motor overload condition is indicated (250% for 30 sec). This selection requires that the drive be oversized relative to the motor to be able to provide the necessary current without faulting from a "Drive Overload" (F64). Note: This parameter was added for firmware version 3.001.	Default: Options:	$\begin{array}{ll} 0= & \text { "StandardDuty" } \\ 0= & \text { "StandardDuty" } \\ 1= & \text { "HeavyDuty" } \end{array}$	16-bit Int	$\begin{aligned} & 179, \\ & 479, \\ & 1290 \end{aligned}$
		464	[SAR Volts Scale] Scales the following parameters so that they show actual voltage values rather than drive calculated values when in Standalone Regulator (SAR) mode: Notes: This parameter was added for firmware version 4.001. See Appendix H PowerFlex DC Standalone Regulator Installation on page 381 for more information. Important: When the drive is not in SAR mode, this parameter is clamped to the default value (1.0).	Default: Min/Max:	$\begin{aligned} & 1.0 \\ & 0.5 / 10.0 \end{aligned}$	Real	

츨	$\begin{aligned} & \text { 은 } \\ & \hline \end{aligned}$	$\stackrel{\circ}{2}$	Parameter Name \& Description See page 114 for symbol descriptions	Values			픛
	$\begin{aligned} & \text { 은 } \\ & \text { 흔 } \\ & \text { 문 } \end{aligned}$	$\begin{array}{\|c\|} \hline 91 \\ \mathrm{~A} \end{array}$	[FId Reg Kp] Proportional gain (K_{p}) of the flux regulator expressed as a percentage of Par 97 [Fld Reg Kp Base]. Leave set to the default value for permanent magnet motor applications.	Default: Min/Max: Units:	$\begin{aligned} & \hline 2.00 \\ & 0.00 / 100.00 \\ & \% \end{aligned}$	Real	97
		$\begin{array}{r} 92 \\ \mathrm{~A} \end{array}$	[FId Reg Ki] Integral gain $\left(K_{l}\right)$ of the flux regulator expressed as a percentage of Par 98 [FId Reg Ki Base]. Leave set to the default value for permanent magnet motor applications.	Default: Min/Max: Units:	$\begin{aligned} & 1.00 \\ & 0.00 / 100.00 \\ & \% \end{aligned}$	Real	98
		97	[FId Reg Kp Base] The proportional gain ($K_{P 0}$) of the field current regulator (base value). Leave set to the default value for permanent magnet motor applications.	Default: Min/Max:	$\begin{aligned} & \hline 3276.70 \\ & 0.10 / 32767.00 \end{aligned}$	Real	91
		98 O	[FId Reg Ki Base] Integral gain (K_{10}) of the field current regulator in (base value). Leave set to the default value for permanent magnet motor applications.	Default: Min/Max:	$\begin{aligned} & \hline 3276.70 \\ & 0.10 / 32767.00 \end{aligned}$	Real	92
		456	[FId Weaken Ratio] The ratio of Motor Nameplate Base Speed to Par 45 [Max RefSpeed] when Par 469 [Field Mode Sel] = 1 "Field Weaken". This value is the percentage of the maximum application speed when field weakening will begin: "Motor Base Speed" $/$ Par 45 [Max Ref Speed] x 100. If Par 469 [Field Mode Sel] $=0$ "Base Speed", this parameter must be $=100 \%$. Leave set to the default value for permanent magnet motor applications.	Default: Min/Max: Units:	$\begin{aligned} & \hline 100 \\ & 0 / 100 \\ & \% \end{aligned}$	$\begin{aligned} & \text { 16-bit } \\ & \text { Int } \end{aligned}$	$\begin{aligned} & \hline 921, \\ & 469 \end{aligned}$
		$\begin{gathered} 462 \\ A \end{gathered}$	[Flux Divide] Selects division by flux for Inertia Compensation or Torque Reference. Leave set to the default value for permanent magnet motor applications. Note: Added for firmware version 3.001.	Default: Options:	$0=$ "Torque Ref" $0=$ "Torque Ref" $1=$ "Inertia Comp"	$\begin{aligned} & \text { 16-bit } \\ & \text { Int } \end{aligned}$	
		$\begin{gathered} 463 \\ A \end{gathered}$	[Flux Filter BW] Adjustable low pass filter on the value of Par 500 [Flux Ref Pct]. The filtered result is used by the Torque Reference divide by flux function. Leave set to the default value for permanent magnet motor applications. Note: Added for firmware version 3.001.	Default: Min/Max: Units:	$\begin{aligned} & \hline 50 \\ & 0 / 2000 \\ & \mathrm{~ms} \end{aligned}$	16-bit Int	
		467	[Max Fld Flux Pct] Maximum allowable field flux. The maximum value (100%) corresponds to the value set in Par 280 [Nom Mtr Fld Amps]. The value of this field linearly affects the field current, unless a flux curve is set in Pars 916,917 , and 918 [FId Const xx Pct]. Leave set to the default value for permanent magnet motor applications. Note: This parameter can be assigned to an analog input or output.	Default: Min/Max: Units:	100 Par $468[$ Min Fld Curr Pct] / 100 $\%$	$\begin{aligned} & \text { 16-bit } \\ & \text { Int } \end{aligned}$	468
			ATTENTION: Failure to set this parameter to a value appropriate for the intended application could result in excessive motor speed, equipment damage, and/or bodily injury.				

은	$\begin{aligned} & \text { 은 } \\ & \hline \text { 응 } \end{aligned}$	$\stackrel{\circ}{2}$	Parameter Name \& Description See page 114 for symbol descriptions	Values		N	¢
		468	[Min FId Curr Pct] Minimum allowable field current. The value set in this parameter also influences the threshold at which the "Fld Current Loss" (F6) fault occurs. The threshold is half of the value of Par 468 [Min Fld Curr Pct]. The value of Par 351 [Field Current] equals the value of this parameter when Par 499 [Field Economy En] = 1 "Enabled" and Field Economy becomes active. Leave set to the default value for permanent magnet motor applications. ATTENTION: Failure to set this parameter to a value appro motor speed, equipment damage, and/or personal injury.	Default: Min/Max: Units: priate for th	30 0 / Par 467 [Max Fld Flux Pct] \% d application could result in excessive	$\begin{aligned} & \hline 16 \text {-bit } \\ & \text { Int } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 467, \\ & 499 \end{aligned}$
		469 \bigcirc	[Field Mode Sel] Operating mode of the field controller. - "Base Speed" = The motor field is regulated with constant current and controls the motor from zero to base speed. If a curve is defined through Pars 916,917 and 918 [Fld Const xx Pct], this value will change linearly through Par 467 [Max Fld Flux Pct] (which is a percentage of the nominal flux value set in Par 280 [Nom Mtr Fld Amps]). - "Field Weaken" = The motor field is regulated with a combination of torque and constant power (armature and field regulation -- field weakening). The maximum armature voltage is configured in Par 175 [Rated Motor Volt]. When using a DC contactor, this parameter is set to this option, and Par 458 [SpdReg FB Bypass] is set to 1 "Enabled", the armature voltage feedback terminals A1 and A2 must be connected to the motor terminals A 1 and A 2 , respectively. - "External" = The motor field power is supplied by an external rectifier/ converter (the drive's field output is disabled). - "PM External" = External field created by a permanent magnet (PM) motor. Note: Option 3 "PM External" was added for firmware version 5.002.	Default: Options:	$0=$ "Base Speed" $0=$ "Base Speed" $1=$ "Field Weaken" $2=$ "External" $3=$ "PM External"	$\begin{array}{\|l\|} \hline \text { 16-bit } \\ \text { Int } \end{array}$	$\begin{aligned} & \hline 456, \\ & 916, \\ & 917, \\ & 918, \\ & 921 \end{aligned}$
		493	[Arm Volt Kp] Proportional gain (K_{p}) of the field voltage regulator expressed as a percentage of the value defined in Par 495 [Arm Volt Kp Base].	Default: Min/Max: Units:	30.00 $0.00 / 100.00$ $\%$	Real	495
		494	[Arm Volt Ki] Integral gain (K_{1}) of the field voltage regulator expressed as a percentage of the value defined in Par 496 [Arm Volt Ki Base].	Default: Min/Max: Units:	$\begin{aligned} & \hline 40.00 \\ & 0.00 / 100.00 \\ & \% \\ & \hline \end{aligned}$	Real	496
		495 A	[Arm Volt Kp Base] The proportional gain ($K_{P O}$) of the field voltage regulator (base value).	Default: Min/Max: Units:	Based on drive current rating 0.10 / Based on drive current rating A/V	Real	493
		496	[Arm Volt Ki Base] The integral coefficient (K_{10}) of the field voltage regulator (base value).	Default: Min/Max: Units:	$\begin{aligned} & 0.90 \times{\mathrm{P} 496_{\text {max }}} \\ & 0.01 / \text { Based on drive current rating } \\ & \mathrm{A} / \mathrm{V} / \mathrm{ms} \end{aligned}$	Real	494
		497 \bigcirc	[Field Reg Enable] Enables/Disables the field regulator. Leave set to the default value for permanent magnet motor applications. - "Enabled" = The field regulator is enabled and controlling the field output. - "Disabled" $=$ The field regulator is disabled (the field current is zero).	Default: Options:	$\begin{array}{ll} 1= & \text { "Enabled" } \\ 0= & \text { "Disabled" } \\ 1= & \text { "Enabled" } \end{array}$	$\begin{array}{\|l} \hline \text { 16-bit } \\ \text { Int } \end{array}$	

츷	$\begin{array}{\|l} \text { 은 } \\ \hline \end{array}$	$\stackrel{\circ}{2}$	Parameter Name \& Description See page 114 for 5 ymbol descriptions	Values		2	
을응ㅇ을		498	[Force Min Field] Enables/Disables the minimum field current value. Leave set to the default value for permanent magnet motor applications. - "Enabled" = The field current corresponds to the value set via Par 468 [Min Fld Curr Pct]. - "Disabled" $=$ The field current is regulated based on the quadrant mode and situation in which the drive is operating. Note: This parameter can be assigned to a digital input (35 "Force MinFld"). ATTENTION: Enabling (forcing) the minimum field curren speed, equipment damage, and/or bodily injury.	Default: Options: t while the	$\begin{array}{ll} \hline 0= & \text { "Disabled" } \\ 0= & \text { "Disabled" } \\ 1= & \text { "Enabled" } \\ \\ \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 16 \text {-bit } \\ \text { lint } \\ \hline \end{array}$	
		499	[Field Economy En] When this parameter is set to $1=$ "Enabled" and the value in Par 107 [Speed Zero Level] is reached (after the amount of time specified in Par 1407 [Field Econ Delay] has elapsed), the minimum field current (set via Par 468 [Min Fld Curr Pct]) is produced. Leave set to the default value for permanent magnet motor applications. - "Disabled" = Disables field economy - "Enabled" = Enables field economy	Default: Options:	$1=$ "Enabled" $0=$ "Disabled" $1=$ "Enabled"	$\begin{array}{\|l\|} \hline 16 \text {-bit } \\ \text { lnt } \end{array}$	$\begin{aligned} & 395, \\ & 468, \\ & 1407 \end{aligned}$
		916	[FId Const 40 Pct] This value corresponds to the field current required to produce 40% armature voltage when the motor is running at base speed. Leave set to the default value for permanent magnet motor applications.	Default: Min/Max: Units:	40.00 $0.00 / 100.00$ $\%$	Real	469
		917 A	[FId Const 70 Pct] This value corresponds to the field current required to produce 70% armature voltage when the motor is running at base speed. Leave set to the default value for permanent magnet motor applications.	Default: Min/Max: Units:	$\begin{aligned} & \hline 70.00 \\ & 0.00 / 100.00 \\ & \% \end{aligned}$	Real	469
		918 A	[FId Const 90 Pct] This value corresponds to the field current required to produce 90% armature voltage when the motor is running at base speed. Leave set to the default value for permanent magnet motor applications.	Default: Min/Max: Units:	$\begin{aligned} & \hline 90.00 \\ & 0.00 / 100.00 \\ & \% \end{aligned}$	Real	469
		919 A	[Set FId Curve] When set to " 0 ", this parameter controls the motor field current to field reference curve according to the values specified in the [FId Const $x \mathrm{xPct}$] parameters. With this curve is defined, the result of [Max Fld Flux Pct] / [Flux Ref Pct] equals the percentage of field current according to the characteristic of the curve. This field is Write Only. After the value of this field is set to " " 0 ", it will automatically return to " 1 ". Leave set to the default value for permanent magnet motor applications. Note: See Tuning the Field Current Curve on page 343 for more information.	Default: Min/Max:	$\begin{aligned} & 1 \\ & 0 / 1 \end{aligned}$	$\begin{array}{\|l\|} \hline 16 \text {-bit } \\ \text { lint } \\ \hline \end{array}$	$\begin{aligned} & \hline 916, \\ & 917, \\ & 918 \end{aligned}$
		920 A	[Reset Fld Curve] When set to " 1 ", resets the drive to use a linear field curve. When this parameter is set, Par 280 [Nom Mtr Fld Amps] is linearly changed through [Max Fld Flux Pct] / [Flux Ref Pct]. This field is Write Only. After the value of this field is set to " 1 ", it will automatically return to " 0 ". Leave set to the default value for permanent magnet motor applications.	Default: Min/Max: Units:	$\begin{aligned} & 0 \\ & 0 / 1 \end{aligned}$	$\begin{array}{\|l\|} \hline 16 \text {-bit } \\ \text { lnt } \end{array}$	

은	$\begin{aligned} & \text { O} \\ & \text { 亭 } \end{aligned}$	$\dot{8}$	Parameter Name \& Description See page 114 for symbol descriptions	Values			¢
	苞	$\begin{array}{\|r} \hline 921 \\ \text { A } \end{array}$	[Out Volt Level] The percentage of maximum output voltage based on the value in Par 175 [Rated Motor Volt]. In regenerative, field-weakened applications (hoist, elevator, unwinder, etc.) set the value of this parameter less than 100%, to allow operation when overcoming gravity. The value of this parameter also determines the voltage where the drive begins field de-fluxing while Field Weaken mode is active (Par 469 [Field Mode Sel] = "Field Weaken"). Leave set to the default value for permanent magnet motor applications. Notes: This parameter can be assigned to an analog output or analog input (by selecting "Out Volt Lvl"). The maximum value of this parameter was changed from " 100 " for firmware version 3.001 .	Default: Min/Max: Units:	$\begin{array}{\|l\|} \hline 100.0 \\ 0.0 / 110.0 \\ \% \end{array}$	Real	469
		1407	[Field Econ Delay] Amount of time to elapse once the drive reaches zero speed (as determined by Par 107 (Speed Zero Level]) before field economy becomes active. Leave set to the default value for permanent magnet motor applications.	Default: Min/Max: Units:	$\begin{aligned} & \hline 300 \\ & 0 / 1800 \\ & s \end{aligned}$	$\begin{array}{\|l\|} \hline 16 \text {-bit } \\ \text { Int } \end{array}$	$\begin{array}{\|l\|} \hline 107, \\ 499 \end{array}$
은응응\vdots		7	[Current Limit] Symmetrical current limit expressed as a percentage of the value in Par 179 [Nom Mtr Arm Amps]. This value applies to both current directions for four quadrant drives. - If Par 7 [Current Limit] is changed, Pars 8 [Current Lim Pos] and 9 [Current Lim Neg] are set to the same value. If either the value of Pars 8 [Current Lim Pos] or 9 [Current Lim Neg] is changed later, the last change is valid. Note: The maximum value for this parameter has been changed from 200\% to 250\% for firmware version 5.006 .	Default: Min/Max: Units:	$\begin{aligned} & 150 \\ & 0 / 250 \\ & \% \end{aligned}$	$\begin{array}{\|l\|} \hline \text { 16-bit } \\ \text { lnt } \end{array}$	$\begin{aligned} & 8, \\ & 9, \\ & 9, \\ & 179 \end{aligned}$
		8	[Current Lim Pos] The drive current limit for the positive current direction expressed as a percentage of the value in Par 179 [Nom Mtr Arm Amps]. Notes: This parameter can be assigned to an analog input. The maximum value for this parameter has been changed from 200% to 250% for firmware version 5.006 .	Default: Min/Max: Units:	$\begin{aligned} & 150 \\ & 0 / 250 \\ & \% \end{aligned}$	Real	7
		9	[Current Lim Neg] The drive current limit for the negative current direction expressed as a percentage of the value in Par 179 [Nom Mtr Arm Amps]. This parameter is not active for two quadrant drives. Notes: This parameter can be assigned to an analog input. The maximum value for this parameter has been changed from 200% to 250% for firmware version 5.006.	Default: Min/Max: Units:	$\begin{aligned} & 150 \\ & 0 / 250 \\ & \% \end{aligned}$	Real	7
		12	[Current Rate Lim] Specifies the largest change in armature current reference that will be allowed per current loop scan ($2.7 \mathrm{~ms} @ 6 \mathrm{~Hz}, 3.3 \mathrm{~ms} @ 50 \mathrm{~Hz}$ AC line frequency). A value of 100% indicates that the armature current reference will not be permitted to change by more than rated motor current in a given speed loop scan period. Note: This parameter was added for firmware version 5.002 .	Default: Min/Max: Units:	$\begin{aligned} & 25 \\ & 0.1 / 250 \\ & \% \end{aligned}$	Real	
		39	[Torque Ref] First current reference value, before any trim signals are incorporated, as a percentage of the value set in Par 179 [Nom Mtr Arm Amps]. For firmware version 2.005 or lower, this parameter is only used when Par 242 [Speed Reg En] $=0$ "Disabled". Note: The current reference value is proportional to the armature current of the motor and determines the torque. The polarity determines the torque direction.	Default: Min/Max: Units:	$\begin{aligned} & 0 \\ & -1+200 \\ & \% \end{aligned}$	Real	
		40	[Trim Torque] Second current reference value as a percentage of the value set in Par 179 [Nom Mtr Arm Amps]. [Trim Torque] is added to Torque Reference and can be used as a correction value for the torque reference (regardless of the value of Par 242 [Speed Reg En]).	Default: Min/Max: Units:	$\begin{aligned} & 0 \\ & -1+200 \\ & \% \end{aligned}$	Real	

	은	\%	Parameter Name \& Description See page 114 for symbol descriptions	Values			汞	¢
운응응		423 A	[Reslvr Type Sel] The type of resolver used. See Resolver Type Selection on page 314 for descriptions of the attributes associated with each resolver type. To use the resolver as a speed feedback device, Par 414 [Fdbk Device Type] must $=4$ "Resolver". Important: After changing this parameter power to the drive must be cycled to have the new value incorporated into the resolver feedback module's operation. Note: This parameter was added for firmware version 5.002.	Default: Options:	$\begin{aligned} & 1= \\ & 1= \\ & 1= \\ & 3= \\ & 3= \\ & 4= \\ & 5= \\ & 6= \\ & 7= \\ & 7= \\ & 8= \\ & 9= \\ & 10= \\ & 11= \\ & 12= \\ & 13= \\ & 14= \\ & 15= \end{aligned}$	"T2014x1/AMCI" "T2014x1/AMCI" "T2014x2/2087" "T2014x5/2087" "Resolver 04" "Resolver 05" "Resolver 06" "Resolver 07" "Resolver 08" "Resolver 09" "Resolver 10" "Resolver 11" "Resolver 12" "Resolver 13" "Resolver 14" "Resolver 15"	$\begin{array}{\|l\|} \hline \text { 16-bit } \\ \text { Int } \end{array}$	414
			ATTENTION: If the incorrect resolver type is selected in excessive voltage and/or the motor could run at excess injury or destruction of equipment.	Par 423 [Re e speed or		olver could be subject to hich could result in personal		
		424 A	[Reslvr Spd Ratio] Ratio of resolver electrical to mechanical turns (a value of "x5" means 5 electrical turns for each mechanical revolution). The selected value must match the resolver selected in Par 423 [Reslur Type Sel] for correct speed determination. This parameter affects the maximum speed that can be measured by the resolver, see Table 425A, in Par 425 [Resolver Config], for limitations. See Resolver Type Selection on page 314 for descriptions of the attributes associated with each resolver type. Note: This parameter was added for firmware version 5.002 .	Default: Options:	$\begin{aligned} & 1= \\ & 1= \\ & 2= \\ & 3= \\ & 4= \\ & 5= \end{aligned}$	" $\times 1$ " " $\times 1$ " " $\times 2$ " " $\times 3$ " " $\times 4$ " " $x 5 " ~$	$\begin{aligned} & \text { 16-bit } \\ & \text { lnt } \end{aligned}$	$\begin{aligned} & 423, \\ & 425 \end{aligned}$
			ATTENTION: If the incorrect resolver speed ratio is sele excessive speed or become damaged, which could resut	ted in Par in persona	Spd R	the motor could run at of equipment.		

읓	을	$\stackrel{\circ}{2}$	Parameter Name \& Description See page 114 for symbol descriptions	Values		$\underset{\sim}{\stackrel{N}{2}}$	\%
		914 A	[Spd FB Filt Gain] First order lead/lag filter gain on the speed feedback signal. Note: This parameter was added for firmware version 3.001 .	Default: Min/Max:	$\begin{aligned} & 1.000 \\ & 0.000 / 2.000 \end{aligned}$	Real	915
		915	[Spd FB Filt BW] First order lead/lag filter bandwidth on the speed feedback signal. Note: This parameter was added for firmware version 3.001.	Default: Min/Max: Units:	$\begin{aligned} & 0 \\ & 0 / 2000 \\ & \mathrm{~ms} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 16-bit } \\ & \text { Int } \end{aligned}$	914
		923 A	[Act Spd Filter] First order low pass filter time constant for Par 924 [Actual Speed].	Default: Min/Max: Units:	$\begin{aligned} & \hline 0.100 \\ & 0.001 / 1.000 \\ & \mathrm{~s} \\ & \hline \end{aligned}$	Real	924
		1021	[Encoder Out Sel] Defines the speed reference to which the encoder signal can be input. This parameter is typically set to 0 "Off" and the encoder is used for speed feedback only. When set to other than 0 "Off", the choice of the speed reference destination must be made according to the configuration of the speed regulator (for example "Speed Ref A" cannot be used with an active ramp).	Default: Options:	$0=$ "Off" $0=$ "Off" $1=$ "Trim Speed" $2=$ "Trim Ramp" $3=$ "Speed Ref A" $4=$ "Speed Ref B"	16-bit Int	
		1022 A	[Encoder Counts] Displays an accumulated pulse count (32-bit integer) from the encoder. Each edge is counted, so a 1024 PPR device produces 4096 counts per revolution. Movement in either the forward or reverse direction results in an increase in the counter value. Note: This parameter was added for firmware version 3.001.	Default: Min/Max:	$\begin{aligned} & \text { Read Only } \\ & -/+2^{32} \end{aligned}$	$\begin{aligned} & \text { 32-bit } \\ & \text { Int } \end{aligned}$	
응응응0	를을룬	93	[Spd Reg Kp Base] The proportional gain ($K_{P 0}$) of the speed regulator (base value). Note: This parameter was moved from the Speed Command file and Speed Regulator group for firmware version 6.001.	Default: Min/Max: Units:	0.30 0.001 / Based on drive current rating A/rpm	R0	$\begin{aligned} & 87, \\ & 99 \end{aligned}$
		94	[Spd Reg Ki Base] The integral gain (K_{10}) of the speed regulator (base value). Note: This parameter was moved from the Speed Command file and Speed Regulator group for firmware version 6.001.	Default: Min/Max: Units:	0.30 0.001 / Based on drive current rating A/rpm x ms	RO	$\begin{aligned} & 88, \\ & 100 \end{aligned}$
		452 453	[CurrReg Autotune] Setting this parameter to 1 " On " and pressing "Start" on the HIM keypad initiates the current regulator auto tuning procedure. When the auto tuning procedure is complete, this parameter automatically resets to 0 " $O f f$ ". The resulting armature resistance and inductance values are set in parameters 453 [Arm Resistance] and 454 [Arm Inductance], respectively.	Default: Options:	$\begin{array}{ll} 0= & " 0 f f " \\ 0= & " 0 f f " \\ 1= & " O n " \end{array}$	16-bit Int	
			ATTENTION: Do not attempt to perform current regulat motor, drive and/or motor damage may occur.	tuning w	lex $D C$ drive and permanent magnet		
			[Arm Resistance] Motor armature resistance. This parameter can be manually changed to a value other than the value obtained when the current regulator auto tuning is completed.	Default: Min/Max: Units:	0.50 Based on drive current rating Ohm	Real	452
		454	[Arm Inductance] Motor armature inductance. This parameter can be manually changed to a value other than the value obtained when the current regulator auto tuning is completed.	Default: Min/Max: Units:	4.00 Based on drive current rating mH	Real	452
		587 A	[I Reg Error] Current Regulator tuning status parameter that is used as part of the manual tuning process. See Fine-Tuning the Regulators on page 334 for details.	Default: Min/Max: Units:	$\begin{aligned} & \text { Read Only } \\ & -/+80 \\ & \text { V } \end{aligned}$	16-bit Int	452
		1012 A	[Inertia C Filter] First order low-pass filter used to reduce noise caused by the speed differentiation process in the Inertia/Loss compensation block.	Default: Min/Max: Units:	$\begin{aligned} & \hline 0 \\ & 0 / 1000 \\ & \mathrm{~ms} \\ & \hline \end{aligned}$	16-bit Int	

Speed Command File

츺	$\begin{aligned} & \text { 은 } \\ & \hline \end{aligned}$	io	Parameter Name \& Description See page 114 for symbol descripions	Values			
		$\begin{gathered} 100 \\ A \end{gathered}$	[Spd Reg Ki Outpt] Displays the active integral coefficient of the speed regulator as a percentage of the value defined in Par 94 [Spd Reg Ki Base]. Note: Units changed from "\%" to "sec ${ }^{-1 "}$ for firmware version 6.001.	Default: Min/Max: Units:	$\begin{aligned} & \hline \text { Read Only } \\ & 0.00 / 100.00 \\ & \sec ^{-1} \end{aligned}$	Real	$\begin{aligned} & 88, \\ & 94 \end{aligned}$
		$\begin{gathered} 101 \\ \text { A } \end{gathered}$	[Speed Thresh Pos] Threshold speed for the drive above or below which the value of Par 393 [Speed Threshold] changes. When the speed of the drive exceeds the value of this parameter, Par 393 [Speed Threshold] displays "Above Thresh" (0). When the speed of the drive is below the value of this parameter, Par 393 [Speed Thresholdd displays "Below Thresh" (1). Note: See Speed Threshold Indicators on page 324 for more information.	Default: Min/Max: Units:	$\begin{aligned} & \hline 1000 \\ & 1 / 6000 \\ & \mathrm{rpm} \end{aligned}$	$\begin{array}{\|l\|} \hline \text { 16-bit } \\ \text { lnt } \\ \hline \end{array}$	393
		$\begin{array}{r} 102 \\ A \end{array}$	[Speed Thresh Neg] Threshold speed for the drive above or below which the value of Par 393 [Speed Threshold] changes. When the speed of the drive exceeds the value specified in this parameter, Par 393 [Speed Threshold] displays "Above Thresh" (0). When the speed of the drive is below this threshold, Par 393 [Speed Thresholdd displays "Below Thresh" (1). Note: See Speed Threshold Indicators on page 324 for more information.	Default: Min/Max: Units:	$\begin{aligned} & \hline 1000 \\ & 1 / 6000 \\ & \mathrm{rpm} \end{aligned}$	$\begin{array}{\|l\|} \hline 16 \text {-bit } \\ \text { lnt } \\ \hline \end{array}$	393
		$\begin{gathered} 103 \\ \mathrm{~A} \end{gathered}$	[Threshold Delay] Amount of time that must elapse before indication that the drive speed is above the value set in Par 101 [Speed Thresh Pos] or below the value set in Par 102 [Speed Thresh Neg]. Note: See Speed Threshold Indicators on page 324 for more information.	Default: Min/Max: Units:	$\begin{aligned} & \hline 100 \\ & 0 / 65535 \\ & \text { ms } \end{aligned}$	$\begin{array}{\|l\|} \hline \text { 16-bit } \\ \text { Int } \\ \hline \end{array}$	393
		$\begin{array}{r} 104 \\ \text { A } \end{array}$	[At Speed Error] Defines the speed above and below the speed reference (in Par 118 [Speed Reg In]) at which the value of Par 394 [At Speed] changes. When the difference between the speed reference and the actual speed is greater than the value of this parameter, Par 394 [At Speed] displays "Not Equal" (0). When the difference between the speed reference and the actual speed is less than the value of this parameter, Par 394 [At Speed] displays "Equal" (1). Note: See Speed Threshold Indicators on page 324 for more information.	Default: Min/Max: Units:	$\begin{aligned} & \hline 100 \\ & 1 / 6000 \\ & \mathrm{rpm} \end{aligned}$	$\begin{array}{\|l\|l\|} \hline 16 \text {-bit } \\ \text { Int } \end{array}$	394
		$\begin{gathered} 105 \\ \text { A } \end{gathered}$	[At Speed Delay] Amount of time that must elapse before indication that the drive speed reference is within the range specified in Par 104 [At Speed Error] occurs. Note: See Speed Threshold Indicators on page 324 for more information.	Default: Min/Max: Units:	$\begin{aligned} & \hline 100 \\ & 0 / 65535 \\ & \mathrm{~ms} \end{aligned}$	$\begin{array}{\|l\|} \hline \text { 16-bit } \\ \text { lnt } \\ \hline \end{array}$	394
		$\begin{array}{r} 106 \\ \text { A } \end{array}$	[Ref Zero Level] Speed below which speed references are equal to zero speed. Switch used in the Speed Zero function. Note: See Speed Threshold Indicators on page 324 for more information.	Default: Min/Max: Units:	$\begin{array}{\|l\|} \hline 20 \\ 1 / 6000 \\ \mathrm{rpm} \end{array}$	$\begin{array}{\|l\|} \hline 16 \text {-bit } \\ \text { Int } \\ \hline \end{array}$	$\begin{aligned} & \hline 123, \\ & 124, \\ & 125, \\ & 126 \\ & \hline \end{aligned}$

츤	$\begin{aligned} & \text { 은 } \\ & \hline \end{aligned}$	\%	Parameter Name \& Description See page 114 for symbol descriptions	Values			$\begin{array}{r} \stackrel{\rightharpoonup}{\underline{N}} \\ \frac{\stackrel{\rightharpoonup}{0}}{\widetilde{\sim}} \\ \hline 458 \end{array}$
		$\begin{gathered} 460 \\ A \end{gathered}$	[SpdReg Ki Bypass] The integral gain $\left(K_{l}\right)$ of the speed regulator when an encoder or tachometer feedback signal is changed to armature feedback (Par 458 [SpdReg FB Bypass] = 1 "Enabled"). This parameter can only be modified when Par 448 [SpdReg BW Bypass] is set to zero. See Manually Tuning the Speed Regulator for Firmware Revision 6.001 and Later on page 304 for more information. Note: Units were changed from " $\%$ " to "sec ${ }^{-1 "}$ for firmware revision 6.001.	Default: Min/Max: Units:	$\begin{aligned} & \hline 0.30 \\ & 0.00 / 100.00 \\ & \sec ^{-1} \end{aligned}$	Real	
		643	[SpdReg AntiBckup] Allows control of over-shoot/under-shoot in the step response of the speed regulator. Over-shoot/under-shoot can be effectively eliminated with a setting of 0.3 , which will remove backup of the motor shaft when zero speed is reached. This parameter has no affect on the drive's response to load changes. A value of zero disables this feature. Note: This parameter was added for firmware version 4.001.	Default: Min/Max	$\begin{aligned} & \hline 0.0 \\ & 0.0 / 0.50 \end{aligned}$	Real	
			[SpdFuncSelect] Selection of the "Speed Up" or "Inertia/Loss compensation" function. Notes: See Speed Up Function on page 323 for more information. Option 2 "Off" added for firmware version 4.001.	Default: Options:	$\begin{array}{ll} 2= & \text { "Off" } \\ 0= & \text { "Speed Up" } \\ 1= & \text { "Inertia/loss" } \\ 2= & \text { "Off" } \end{array}$	$\begin{array}{\|l\|} \hline 16 \text {-bit } \\ \text { lnt } \end{array}$	444, 445, 447, 1012, 1013, 1014, 1015

Dynamic Control File

Applications File

츺	$\begin{aligned} & \text { 은 } \\ & \hline \end{aligned}$	$\stackrel{\text { ¢ }}{\text { ¢ }}$	Parameter Name \& Description See page 114 for symbol descriptions	Values			
	은은	$\begin{array}{r} 768 \\ A \end{array}$	[PD Prop Gain 1] First proportional gain of the block PD. The value specified in this field depends on the enabling and configuration of Par 181 [Adaptive Spd En].	Default: Min/Max:	$\begin{aligned} & 10.00 \\ & 0.00 / 100.00 \end{aligned}$	Real	181
		$\begin{array}{r} \hline 770 \\ \hline \end{array}$	[Enable PD] Enables/disables the PD portion of the PID regulator. Note: This parameter can be assigned to a digital input.	Default: Options:	$0=$ "Disabled" $0=$ "Disabled" $1=$ "Enabled"	$\begin{aligned} & \text { 16-bit } \\ & \text { Int } \end{aligned}$	
		$\begin{array}{r} 788 \\ \text { A } \end{array}$	[PD Prop Gain 2] Second proportional gain of the block PD. The value specified in this field depends on the enabling and configuration of Par 181 [Adaptive Spd En].	Default: Min/Max:	$\begin{aligned} & 10.0 \\ & 0.0 / 100.0 \end{aligned}$	Real	181
		$\begin{gathered} 789 \\ A \end{gathered}$	[PD Deriv Gain 2] Second derivative gain of the PD block. The value specified in this field depends on the enabling and configuration of Par 181 [Adaptive Spd En].	Default: Min/Max:	$\begin{aligned} & 10.0 \\ & 0.0 / 100.0 \end{aligned}$	Real	181
		$\begin{array}{r} 790 \\ A \end{array}$	[PD Prop Gain 3] Third proportional gain of the block PD. The value specified in this field depends on the enabling and configuration of Par 181 [Adaptive Spd En].	Default: Min/Max:	$\begin{aligned} & 10.0 \\ & 0.0 / 100.0 \end{aligned}$	Real	181
		$\begin{array}{r} 791 \\ \text { A } \end{array}$	[PD Deriv Gain 3] Third derivative gain of the PD block. The value specified in this field depends on the enabling and configuration of Par 181 [Adaptive Spd En].	Default: Min/Max:	$\begin{aligned} & 1.00 \\ & 0.00 / 100.00 \end{aligned}$	Real	181
$\frac{n}{\frac{0}{2}}$	은응음	418	[Real FF PID] Represents the feed-forward value which has been recalculated according to the Pl correction. It will be calculated with the following formula: Par 418 [Real FF PID] = (Par 758 [Feed Fwd PID] / 1000) x Par 771 [PI Output] When either the negative or positive limit of this parameter has been reached, further increases in the value of Par 771 [PI Output] will be blocked to avoid undesirable saturation of the PID regulator. For example: When Par 758 [Feed Fwd PID] $=+8000$, the positive limit of Par 771 [PI Output] will be automatically set at $10000 /(8000 / 1000)=1250$.	Default: Min/Max:	$\begin{aligned} & \text { Read Only } \\ & -/+10000 \end{aligned}$	$\begin{aligned} & \hline 16 \text {-bit } \\ & \text { lnt } \end{aligned}$	$\begin{array}{\|l\|} \hline 758, \\ 771 \\ \hline \end{array}$
		$\begin{gathered} 757 \\ A \end{gathered}$	[PID Clamp] The PID "clamp" allows a smooth tension setting of a controlled system winder/ unwinder when the calculation of the initial diameter function cannot be used. - When enabling the drive, the dancer is at the lowest point of its full scale. In this case, with Par 759 [PID Error] at its maximum value, the motor could accelerate too fast to properly configure the dancer for its central operating position. By setting the value of Par 757 [PID Clamp] sufficiently low. e.g, $=1000$, when the drive starts and Par 770 [Enable PD] $=1$ "Enable", the value of Par 759 [PID Error] is limited to 1000 until the signal coming from the dancer (via Par 763 [PID Feedback]) goes above the value in this field. Then, the value of [PID Clamp] is automatically returned to its maximum value of 10000. The PID clamp is kept at 10000 until the drive stops or Par 770 [Enable PD] $=0$ "Disabled"	Default: Min/Max:	$\begin{aligned} & 10000 \\ & 0 / 10000 \end{aligned}$	$\begin{aligned} & \hline 16 \text {-bit } \\ & \text { lnt } \end{aligned}$	$\begin{aligned} & \hline 759, \\ & 763, \\ & 770 \end{aligned}$
		$\begin{array}{r} 758 \\ \text { A } \end{array}$	[Feed Fwd PID] Feedback from the transducer position (dancer) or tension.	Default: Min/Max:	$\begin{aligned} & \text { Read Only } \\ & -/+10000 \end{aligned}$	$\begin{array}{\|l\|} \hline 16 \text {-bit } \\ \text { lnt } \\ \hline \end{array}$	
		$\begin{array}{r} 759 \\ \mathrm{~A} \end{array}$	[PID Error] Error value input to the PID function (output of the PID Clamp block).	Default: Min/Max:	$\begin{aligned} & \text { Read Only } \\ & -/+10000 \end{aligned}$	$\begin{aligned} & \hline 16 \text {-bit } \\ & \text { lnt } \end{aligned}$	
		$\begin{gathered} 760 \\ \text { A } \end{gathered}$	[PID Setpoint 0] First offset value added to Par 763 [PID Feedback]. This parameter can be assigned to an analog input, for example, for the tension setting when a load cell must be used as feedback.	Default: Min/Max:	$\begin{aligned} & 0 \\ & -/+10000 \end{aligned}$	$\begin{aligned} & \hline 16 \text {-bit } \\ & \text { lnt } \end{aligned}$	763
		$\begin{array}{r} 761 \\ \mathrm{~A} \end{array}$	[PID Setpoint 1] Second offset value added to Par 763 [PID Feedback].	Default: Min/Max:	$\begin{aligned} & 0 \\ & -/+10000 \end{aligned}$	$\begin{aligned} & \hline 16 \text {-bit } \\ & \text { lint } \end{aligned}$	763
		$\begin{gathered} 762 \\ A \end{gathered}$	[PID Setpoint Sel] Selects the offset value added to Par 763 [PID Feedback]. This parameter can be assigned to a digital input.	Default: Options:	$\begin{array}{ll} 0= & \text { "Setpoint } 0 " \\ 0= & \text { "Setpoint } 0 " " \\ 1= & \text { "Setpoint } 1 " \end{array}$	$\begin{aligned} & \hline 16 \text {-bit } \\ & \text { lint } \\ & \hline \end{aligned}$	763

츷	$\begin{aligned} & \text { 은 } \\ & \hline \end{aligned}$	\%	Parameter Name \& Description See page 114 for symbol descriptions	Values			
		$\begin{gathered} 798 \\ \text { A } \end{gathered}$	[Dancer Constant] The measurement corresponding to the total bunching of the material in the dancer.	Default: Min/Max: Units:	$\begin{array}{\|l\|} \hline 1 \\ 1 / 10000 \\ \mathrm{~mm} \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 16 \text {-bit } \\ \text { Int } \end{array}$	
		799	[Minimum Diameter] Minimum value of the roll diameter. Note: Also included in the Diameter Calc group in the Applications file.	Default: Min/Max: Units:	$\begin{aligned} & \hline 100 \\ & 1 / 2000 \\ & \mathrm{~mm} \end{aligned}$	$\begin{array}{\|l} \hline 16 \text {-bit } \\ \text { lnt } \end{array}$	
		$\begin{gathered} 800 \\ \mathrm{~A} \end{gathered}$	[Diameter Calc St] Status of the initial diameter calculation. - " 0 " $=$ The initial diameter calculation has not completed. - " 1 " = The initial diameter calculation has completed. Note: This parameter can be assigned to a digital output.	Default: Min/Max:	Read Only $0 / 1$	$\begin{array}{\|l\|} \hline 16 \text {-bit } \\ \text { Int } \end{array}$	
$\begin{aligned} & \frac{n}{0} \\ & \frac{0}{5} \\ & \frac{2}{2} \\ & \hline \end{aligned}$			[Max Diameter] Maximum roll diameter.	Default: Min/Max: Units:	$\begin{aligned} & \hline 1.00 \\ & 0.00 / 32.00 \\ & \mathrm{~m} \end{aligned}$	Real	
		$\begin{gathered} 1154 \\ A \end{gathered}$	[Roll Diameter] Displays the calculated roll diameter. Note: This parameter can be assigned to an analog output as a percentage of Par 1153 [Max Diameter].	Default: Min/Max: Units:	$\begin{aligned} & \text { Read Only } \\ & 0.00 / 32.00 \\ & \mathrm{~m} \end{aligned}$	Real	
		$\begin{gathered} 1155 \\ \mathrm{~A} \end{gathered}$	[Line Spd Thresh] Line speed detecting threshold. When the value of Par 1286 [Ref Line Speed] is lower than the value of [Line Spd Thresh], the diameter calculation stops and the diameter is kept at a constant value. When the value of [Ref Line Speed] overcomes the threshold, the diameter calculation is enabled with an initial filter corresponding to the value in Par 1206 [Diam Init Filter] for the time set in Par 1207 [Diam Stdy Delay]. At the end of this time the filter will be set to the value of Par 1162 [Diameter Filter].	Default: Min/Max: Units:	$\begin{aligned} & \hline 5.00 \\ & 0.00 / 150.00 \\ & \% \end{aligned}$	Real	$\begin{aligned} & \hline 1162, \\ & 1206, \\ & 1207, \\ & 1286 \end{aligned}$
		$\begin{array}{r} 1156 \\ \text { A } \end{array}$	[Line Spd Gain] Calibration value used to obtain Par 1160 [Line Speed Pct] $=100 \%$ at its maximum value. The value of this parameter depends on the value of Par 1284 [Ref Spd Source]: [Line Spd Gain] = [32768 x $16384 /$ (maximum value of [Ref Spd Source] x 8)] -1	Default: Min/Max:	$\begin{aligned} & 0 \\ & 0 / 32767 \end{aligned}$	$\begin{array}{\|l} \hline 16 \text {-bit } \\ \text { Int } \end{array}$	$\begin{aligned} & \hline 1160, \\ & 1284 \end{aligned}$
		$\begin{array}{r} 1157 \\ \text { A } \end{array}$	[Diameter Reset] Diameter reset. When this parameter is set to " 1 ", the diameter starting value is set to the value in Par 1168 [Diam Preset Sel].	Default: Min/Max:	$\begin{aligned} & \hline 0 \\ & 0 / 1 \end{aligned}$	$\begin{aligned} & \text { 16-bit } \\ & \text { lit } \end{aligned}$	1168
		$\begin{array}{r} 1158 \\ A \end{array}$	[Diam Threshold] Diameter threshold as a percentage of Par 1153 [Max Diameter]. Par 1159 [Diameter Reached] is set to " 1 " when the value in this parameter is exceeded.	Default: Min/Max: Units:	$\begin{aligned} & \hline 10.00 \\ & 0.00 / 150.00 \\ & \% \\ & \hline \end{aligned}$	Real	$\begin{aligned} & \hline 1153, \\ & 1159 \end{aligned}$
		$\begin{array}{r} 1159 \\ A \end{array}$	[Diameter Reached] Indication that the diameter threshold set in Par 1158 [Diam Threshold] has been exceeded. - " 0 " $=$ The diameter threshold has not been exceeded. - " 1 " = The diameter threshold has been exceeded.	Default: Min/Max:	Read Only $0 / 1$	$\begin{aligned} & \text { 16-bit } \\ & \text { lit } \end{aligned}$	1158
		$\begin{array}{r} 1160 \\ A \end{array}$	[Line Speed Pct] Line speed.	Default: Min/Max: Units:	$\begin{aligned} & \hline \text { Read Only } \\ & 0.00 / 150.00 \\ & \% \\ & \hline \end{aligned}$	Real	
		$\begin{array}{r} 1161 \\ A \end{array}$	[Diam Calc Dis] Enables/Disables the diameter calculation (see also Par 1155 [Line Spd Thresh]). The last calculated diameter value is saved if this parameter is changed to 0 " 0 ff" while the diameter is being calculated.	Default: Options:	$\begin{array}{ll} 1= & " O n^{\prime \prime} \\ 0= & " \mathrm{Off} " \\ 1= & " \mathrm{On} " \end{array}$	$\begin{aligned} & \hline 16 \text {-bit } \\ & \mathrm{lnt} \end{aligned}$	1155

츨	흔	$\stackrel{\circ}{2}$	Parameter Name \& Description See page 114 for symbol descriptions			Values		N	
$\begin{aligned} & n \\ & 0 \\ & \frac{0}{6} \\ & \frac{0}{2} \\ & \frac{2}{2} \end{aligned}$		$\begin{array}{r} 1162 \\ \text { A } \end{array}$	[Diameter Filter] Diameter calculation filter.			Default: Min/Max: Units:	$\begin{aligned} & \hline 100 \\ & 0 / 5000 \\ & \mathrm{~ms} \end{aligned}$	$\begin{array}{\|l\|} \hline 16 \text {-bit } \\ \hline \text { lnt } \\ \hline \end{array}$	
		$\begin{array}{r} 1163 \\ \text { A } \end{array}$	[Base Omega] Winder speed at the maximum line speed and minimum diameter of the winder/ unwinder (motor shaft side).			Default: Min/Max: Units:	$\begin{aligned} & \hline 1500 \\ & 0 / 8191 \\ & \mathrm{rpm} \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 16 \text {-bit } \\ \text { lnt } \end{array}$	
		$\begin{array}{r} 1164 \\ \text { A } \end{array}$	[Diam Preset 0] First preset starting diameter. The value of this parameter must be set between the value of Pars 799 [Minimum Diameter] and 1153 [Max Diameter].			Default: Min/Max: Units:	$\begin{aligned} & 1.00 \\ & 0.00 / 32.00 \\ & \mathrm{~m} \end{aligned}$	Real	$\begin{aligned} & \hline 799, \\ & 1153 \end{aligned}$
		$\begin{array}{r} 1165 \\ \text { A } \end{array}$	[Diam Preset 1] Second preset starting diameter. The value of this parameter must be set between the value of Pars 799 [Minimum Diameter] and 1153 [Max Diameter].			Default: Min/Max: Units:	$\begin{aligned} & 1.00 \\ & 0.00 / 32.00 \\ & \mathrm{~m} \end{aligned}$	Real	$\begin{aligned} & \hline 799, \\ & 1153 \end{aligned}$
		$\begin{array}{r} 1166 \\ \mathrm{~A} \end{array}$	[Diam Preset 2] Third preset starting diameter. The value of this parameter must be set between the value of Pars 799 [Minimum Diameter] and 1153 [Max Diameter].			Default: Min/Max: Units:	$\begin{aligned} & 1.00 \\ & 0.00 / 32.00 \\ & \mathrm{~m} \end{aligned}$	Real	$\begin{aligned} & \hline 799, \\ & 1153 \end{aligned}$
		1167 A	[Diam Preset 3] Fourth preset starting diameter. The value of this parameter must be set between the value of Pars 799 [Minimum Diameter] and 1153 [Max Diameter]. This parameter can be assigned to an analog input. If an analog input is used, +10 V corresponds to the value of [Max Diameter] and the voltage corresponding to the minimum diameter $=10 \mathrm{x}$ ([Minimum Diameter] / [Max Diameter]).			Default: Min/Max: Units:	$\begin{aligned} & 1.00 \\ & 0.00 / 32.00 \\ & \mathrm{~m} \end{aligned}$	Real	$\begin{aligned} & \hline 799, \\ & 1153 \end{aligned}$
		$\begin{gathered} 1168 \\ A \end{gathered}$	[Diam Preset Sel] Selects the starting diameter for the Diameter Calculation function. - $0=$ Par 1164 [Diam Preset 0] - 1 = Par 1165 [Diam Preset 1] - 2 = Par 1166 [Diam Preset 2] - 3 = Par 1167 [Diam Preset 3] This parameter can also be set via two digital inputs programmed as 57 "Diam Preset0" and 58 "Diam Preset1"; the selection in this case is carried out with binary logic.			Default: Min/Max:	$\begin{aligned} & 0 \\ & 0 / 3 \end{aligned}$	$\begin{aligned} & \hline 16 \text {-bit } \\ & \text { lint } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 1164, \\ & 1165, \\ & 1166, \\ & 1167 \end{aligned}$
			"Diam Preset1" 0 0 1	"Diam Preset0" 0 1 0 1	Selection Par 1164 [Diam Preset 0] Par 1165 [Diam Preset 1] Par $1166[$ Diam Preset 2] Par 1167 [Diam Preset 3]				
		$\begin{gathered} 1187 \\ \text { A } \end{gathered}$	[Winder Type] Winder/unwinder "Winder", $+24 \mathrm{~V}=$	ction. If the selectio nwinder".	is carried out via a digital input: $0 \mathrm{OV}=$	Default: Options:	$0=$ "Winder" $0=$ "Winder" $1=$ "Unwinder"	$\begin{array}{\|l\|} \hline \text { 16-bit } \\ \text { lint } \\ \hline \end{array}$	

1101 [Torq Prove Setup]
Lets you control specific torque proving functions through a communications device (rather than digital inputs).
A - Bit 0 "Lift Stop" - When set to " 1 ," initiates a current limit stop.

- Bit 1 "Float Micro" - When set to "1," activates the micro position function when the drive is running and Float when the drive is stopping.
- Bit 2 "Decel Fwd" - When set to "1,", initiates a deceleration forward travel limit condition.
- Bit 3 "End Stop Fwd" - When set to "1," initiates an end forward travel limit condition.
- Bit 4 "Decel Rev" - When set to "1," initiates a deceleration reverse travel limit condition.
- Bit 5 "End Stop Rev" - When set to "1", initiates an end reverse travel limit condition.
- Bit 6 "PHdwrOvrTrvl" - When set to "1", initiates a positive hardware over travel limit: coast to stop fault. - Bit 7"NHdwrOvFTrvl" - When set to "1," initiates a negative hardware over travel limit: coast to stop fault. Note: This parameter was added for firmware version 6.001.

Options									$\begin{aligned} & \text { 을 } \\ & \frac{3}{2} \\ & \hline \end{aligned}$								\%
Default	x	x	X	x	x	x	x	x	0	0	0	0	0	0	0		0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1		0

흧	은	운	Parameter Name \& Description See page 114 for symbol descriptions	Values		$\stackrel{\text { N }}{\stackrel{\circ}{2}}$	페 式 ¢
	를은은능	1113 A	[ZeroSpdFloatTime] Amount of time the drive is at or below the speed set in Par 1111 [Float Tolerance] before the brake is set. This parameter is not used when Par 1100 [Torq Prove Cfg] Bit 1 "Encoderless" is set to " 1 " (enabled). Note: This parameter was added for firmware version 6.001.	Default: Min/Max: Units:		Real	1100
		1114 A	[Brake Test Torq] Percent of torque applied to the motor before the brake is released when Par 1100 [Torq Prove Cfg], bit 7 "Test Brake" is set to " 1 " (enabled). Note: This parameter was added for firmware version 6.001.	Default: Min/Max: Units:	$\begin{aligned} & 50 \\ & 0 / 150 \\ & \% \end{aligned}$	Real	1100
APPLICATIONS		484 553 1218 1227 1236 1245 A	[Scale1 Input] [Scale2 Input] [Scale3 Input] [Scale4 Input] [Scale5 Input] [Scale6 Input] Parameter number from which the value is read and used as the input quantity to the Scale block. See the Scale Blocks block diagram on page 363 for more information.	Default: Min/Max:	$\begin{aligned} & 0 \\ & 0 / 1410 \end{aligned}$	$\begin{aligned} & \text { 16-bit } \\ & \text { Int } \end{aligned}$	
		485 554 1219 1228 1237 1246 A	[Scale1 Output] [Scale2 Output] [Scale3 Output] [Scale4 Output] [Scale5 Output] [Scale6 Output] Parameter number to which the value of the Scale block output is written. See the Scale Blocks block diagram on page 363 for more information.	Default: Min/Max:	$\begin{aligned} & 0 \\ & 0 / 1410 \end{aligned}$	$\begin{aligned} & \text { 16-bit } \\ & \text { Int } \end{aligned}$	
		486 555 1220 1229 1238 1247 A	[Scale1 Mul] [Scale2 Mul] [Scale3 Mul] [Scale4 Mul] [Scale5 Mul] [Scale6 Mul] Multiplier of the input quantity (after a possible limitation). Resolution: 5 digits. See the Scale Blocks block diagram on page 363 for more information.	Default: Min/Max:	$\begin{aligned} & 1.00 \\ & -/+10000.00 \end{aligned}$	Real	
		487 556 1221 1230 1239 1248 A	[Scale1 Div] [Scale2 Div] [Scale3 Div] [Scale4 Div] [Scale5 Div] [Scale6 Div] Divisor, through which it is possible to divide the input quantity already multiplied and limited. Resolution: 5 digits. See the Scale Blocks block diagram on page 363 for more information.	Default: Min/Max:	$\begin{aligned} & \hline 1.00 \\ & -/+10000.00 \end{aligned}$	Real	
		$\begin{aligned} & \hline 488 \\ & 557 \\ & 1222 \\ & 1231 \\ & 1240 \\ & 1249 \\ & \text { A } \\ & \hline \end{aligned}$	[Scale1 In Max] [Scale2 In Max] [Scale3 In Max] [Scale4 In Max] [Scale5 In Max] [Scale6 In Max] Maximum limit of the input quantity. Resolution: 5 digits. See the Scale Blocks block diagram on page 363 for more information.	Default: Min/Max:	$\begin{aligned} & 0.00 \\ & -2^{31} /+2^{31}-1 \end{aligned}$	Real	
		489 558 1223 1232 1241 1250 A	[Scale1 In Min] [Scale2 In Min] [Scale3 In Min] [Scale4 In Min] [Scale5 In Min] [Scale6 In Min] Minimum limit of the input quantity. Resolution: 5 digits. See the Scale Blocks block diagram on page 363 for more information.	Default: Min/Max:	$\begin{aligned} & 0.00 \\ & -2^{31} /+2^{31}-1 \end{aligned}$	Real	

	은	랄	Parameter Name \& Description See page 114 for symbol descriptions	Values			¢
		490 559 1224 1233 1242 1251 A	[Scale1 In Off] [Scale2 In Off] [Scale3 In Off] [Scale4 In Off] [Scale5 In 0ff] [Scale6 In Off] Offset to be added to the input quantity. Resolution: 5 digits. See the Scale Blocks block diagram on page 363 for more information.	Default: Min/Max:	$\begin{aligned} & 0.00 \\ & -2^{31} /+2^{31}-1 \end{aligned}$	Real	
		491 560 1225 1234 1243 1252 A	[Scale1 Out Off] [Scale2 Out Off] [Scale3 Out Off] [Scale4 Out Off] [Scale5 0ut 0ff] [Scale6 Out Off] Offset to be added to the output quantity. Resolution: 5 digits. See the Scale Blocks block diagram on page 363 for more information.	Default: Min/Max:	$\begin{aligned} & 0.00 \\ & -2^{31} /+2^{31}-1 \end{aligned}$	Real	
		492 561 1226 1235 1244 1253 A	[Scale1 In Abs] [Scale2 In Abs] [Scale3 In Abs] [Scale4 In Abs] [Scale5 In Abs] [Scale6 In Abs] Controls how the input value is processed. - "Off" = The input quantity is processed with its sign. - "On" = The input quantity is processed with a positive sign (absolute value). It is possible to have the polarity change with the signs of the [ScalexMul] or [ScalexDiv] parameters. See the Scale Blocks block diagram on page 363 for more information.	Default: Options:	$\begin{array}{ll} 0= & " O f f " \\ 0= & " O f f " \\ 1= & " O n^{\prime \prime} \end{array}$	$\begin{aligned} & \text { 16-bit } \\ & \text { Int } \end{aligned}$	

Utility File

$\stackrel{\otimes}{i x}$	을	$\dot{\sim}$	Parameter Name \& Description See page 114 for symbol descriptions	Values			"
$\frac{ㄹ ㅡ ㄹ ~}{5}$		346	[Torque Positive] Indicates whether the drive is operating with a positive torque reference. - 1 "Active" = The drive is operating with a positive torque reference. The motor is accelerating in the forward direction or decelerating in the negative direction and Par 20 [Ramp Delay] has timed out. - 0 "Not Active" = The drive is not operating with a positive torque reference. Note: This parameter can be assigned to a digital output.	Default: Min/Max:	Read Only $0 / 1$	$\begin{aligned} & \text { 16-bit } \\ & \text { Int } \end{aligned}$	20
		$\begin{array}{r} 347 \\ \text { A } \end{array}$	[Torque Negative] Indicates whether the drive is operating with a negative torque reference. - 1 "Active" = The drive is operating with negative torque reference. The motor is accelerating in the reverse direction or decelerating in the forward direction and Par 20 [Ramp Delay] has timed out. - 0 "Not Active" = The drive is not operating with negative torque reference. Note: This parameter can be assigned to a digital output and is used for four quadrant drives only.	Default: Min/Max:	Read Only $0 / 1$	$\begin{aligned} & \text { 16-bit } \\ & \text { Int } \end{aligned}$	20
		349	[CurrLimit Active] Indicates whether or not the drive is working within the set current limits. - 1 "Active" = The drive is currently in a current limited state. - 0 "Not Active" =The drive is not in a current limited state. Note: This parameter is assigned to digital output 4 (Par 148 [Digital Out4 Sel]) by default.	Default: Min/Max:	Read Only $0 / 1$	16-bit Int	
		372	[Spd Limit Active] Indicates whether the current speed reference value is limited by the defined minimum and maximum limit values. - 1 "Active" = The reference value is currently limited because the value entered is out of range of the limit values defined. - 0"Not Active" = The reference value is within the defined limit values. Note: This parameter can be assigned to a digital output.	Default: Min/Max:	Read Only $0 / 1$	16-bit Int	

 parameter may cause a hazard of personal injury and/or equipment damage.

1380 [Drive Alarm 1]
Alarm conditions that currently exist in the drive. For each bit, $1=$ condition true, and $0=$ condition false.
Bit 0"DiglnCflctA" - Digital input functions are in conflict.
Bit 1"DigInCflctB" - A digital Start input has been configured without a Stop input or other functions are in conflict.
Bit 2"DigInCflct"" - More than one physical input has been configured for the same input function.
Bit 3"BipolarCflct" - Parameter 1322 [Direction Mode] is set to "Bipolar" or "Reverse Dis" and one or more of the following digital input functions is configured: "Fwd/Reverse," "Run Forward," "Run Reverse," "Jog Forward" or "Jog Reverse."
Bit 4"Ref Cflct" - Multiple speed or position references are configured.
Bit 5 "Cntactrfflct" - Contactor input functions are in conflict.
Bit $6^{" F B}$ Cfg Cflct" - A speed feedback configuration error has occurred or is being provided by multiple sources.
Bit 7"Overvoltage" - There is an overvoltage on the armature circuit.
Bit 8"Over Temp" - The motor has exceeded its temperature rating [as signaled by the thermistor (PTC) or thermal switch connected to the drive terminals 78 and 79].
Bit 9"Aux Input" - An auxiliary input interlock is open or a voltage ($15 \ldots 30 \mathrm{~V}$) or reference signal is missing for the digital input set to 14 "Aux Fault" (only updates if Par 354 [Aux Inp Flt Cfg] is set to 1 "Alarm").
Bit 10 "Field Loss" - The field current is too low.
Bit 11"SpdFdbk Loss" - The drive is not receiving a speed feedback signal.
Bit $12^{" P}$ PwrUp Start" - Indicates that the drive is starting or has automatically resumed running at commanded speed after drive input power was restored.
Bit 13"Mtr Overload" - Indicates when the Motor Overload alarm level has been reached.
Bit 14"Fldcfg Cflct" - Indicates a field configuration conflict.
Bit 15"Spd Fdbk Err" - Indicates an encoder or resolver error.
Notes: See Chapter 4 -Troubleshooting on page 217 for more information on faults/alarms. The name of bit 11 was changed from "Encoder Loss" and bits 13 and 14 were added for firmware version 3.001. The name of bit 4 "AnalogCflct", bit 6 "Encoder Cflct", and bit 11 "Feedback Loss" were changed and bit 15 was added for firmware version 5.002.

1394 [Drive Alarm 2]
Alarm conditions that currently exist in the drive. For each bit, $1=$ condition true, and $0=$ condition false.
Bit 0"BrakeSlipped" - The torque prove function encountered a brake slip condition.
Bit 1 "rrqProvfflct" - The torque prove function is not properly configured.
Bit 2"TP Encls Cfg" - The torque prove function encountered an encoderless configuration conflict.
Bit 3"OpenSCR Trip" - An open SCR trip level has been reached.
Notes: See Chapter 4 -Troubleshooting on page 217 for more information on faults/alarms. This parameter was added for firmware version 6.001.

읓	은	$\stackrel{\circ}{2}$	Parameter Name \& Description See page 114 for symbol descriptions	Values		$\underset{\underset{\sim}{0}}{\stackrel{\rightharpoonup}{2}}$	¢
를		50 A	[UsrDsplyMult0] Numerator in the calculation for user-defined, drive speed display units. Note: This parameter is not used.	Default: Min/Max:	$\begin{aligned} & \hline 1 \\ & 1 / 1073741823 \end{aligned}$	$\begin{aligned} & \text { 32-bit } \\ & \text { Int } \end{aligned}$	
		51 A	[UsrDsplyDiv0] Denominator in the calculation for user-defined, drive speed display units. Note: This parameter is not used.	Default: Min/Max:	$\begin{aligned} & \hline 1 \\ & 1 / 1073741823 \end{aligned}$	$\begin{aligned} & \text { 32-bit } \\ & \text { Int } \end{aligned}$	
		53 A	[UsrValMult1] Numerator in the calculation for scaling the user-defined, drive speed display units. Note: This parameter is not used.	Default: Min/Max:	$\begin{aligned} & 1 \\ & 1 / 32767 \end{aligned}$	16-bit Int	
		54 A	[UsrValDiv1] Denominator in the calculation for scaling the user-defined, drive speed display units. Note: This parameter is not used.	Default: Min/Max:	$\begin{aligned} & 1 \\ & 1 / 32767 \end{aligned}$	16-bit Int	

은	은	$\stackrel{\circ}{2}$	Parameter Name \& Description See page 114 for symbol descriptions	Values			"
		503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 A	[UserDefined0] [UserDefined1] [UserDefined2] [UserDefined3] [UserDefined4] [UserDefined5] [UserDefined6] [UserDefined7] [UserDefined8] [UserDefined9] [UserDefined10] [UserDefined11] [UserDefined12] [UserDefined13] [UserDefined14] [UserDefined15] General use signed 16 bit variables used for data exchange. Note: Pars 503. . . 506 can be assigned to analog inputs. The values of Pars 503, 504 , and $507 \ldots 509$ can be assigned to an analog output.	Default: Min/Max:	$\begin{aligned} & 0 \\ & -32768 /+32767 \end{aligned}$	$\begin{aligned} & \text { 16-bit } \\ & \text { Int } \end{aligned}$	
$\begin{aligned} & \text { 를 } \\ & \hline \text { n } \end{aligned}$		519 A	[UsrDefBitWrdA] A bitmap of Pars 520 [UsrDefBitWrdA0] through 535 [UsrDefBitWrdA15]. With a parameter it is possible to read or write all of the bits inside a word. Example: Notes: The value of digital inputs $1 \ldots 12$ can be written to any of bits $0 \ldots 7$ ([UsrDefBitWrdA0] . . [UsrDefBitWrdA7]) of this parameter. For example, to assign digital input 1 to bit 0 of this parameter, select option 37 "UsrDefined0" in parameter 133 [Digital In1 Sel]. The value of bits $0 \ldots 7$ of this parameter can be written to digital outputs $1 \ldots 8$, sequentially. In other words, when parameters 145 [Digital Out1 Sel]. . 152 [Digital Out8 Sel] are assigned option 11 "UserDefinedA", bit 0 of this parameter is written to digital output 1 , bit 1 is written to digital output 2 , bit 2 is written to digital output 3, etc. Bits 14 and 15 of this parameter are written to relay outputs 1 and 2 , respectively, when parameters 1392 [Relay Out 1 Sel] and 629 [Relay Out 2 Sel] are assigned option 11 "UserDefinedA".	Default: Min/Max:	$\begin{aligned} & 0 \\ & 0 / 65535 \end{aligned}$	$\begin{aligned} & \text { 16-bit } \\ & \text { Int } \end{aligned}$	$\begin{aligned} & 520- \\ & 535 \end{aligned}$

	은	$\stackrel{\circ}{2}$	Parameter Name \& Description See page 114 for symbol descriptions	Values		$\underset{\underset{\sim}{0}}{\stackrel{\rightharpoonup}{2}}$	
		520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 A	[UsrDefBitWrdA0] [UsrDefBitWrdA1] [UsrDefBitWrdA2] [UsrDefBitWrdA3] [UsrDefBitWrdA4] [UsrDefBitWrdA5] [UsrDefBitWrdA6] [UsrDefBitWrdA7] [UsrDefBitWrdA8] [UsrDefBitWrdA9] [UsrDefBitWrdA10] [UsrDefBitWrdA11] [UsrDefBitWrdA12] [UsrDefBitWrdA13] [UsrDefBitWrdA14] [UsrDefBitWrdA15] Bit variables. The individual "User Defined" bits can be read or written to. It is possible to process a word with Par 519 [UsrDefBitWrdA] (see example). Note: You can read bits $0 . . .7$ of a digital input with Par 519 [UsrDefBitWrdA] and write all of the bits associated with [UsrDefBitWrdA] to a digital output.	Default: Min/Max:	$\begin{aligned} & 0 \\ & 0 / 1 \end{aligned}$	$\begin{aligned} & \hline \text { 16-bit } \\ & \text { Int } \end{aligned}$	519
$\begin{aligned} & \text { 를 } \\ & \hline 5 \end{aligned}$		$\begin{array}{r} 536 \\ A \end{array}$	[UsrDefBitWrdB] A bitmap of Pars 537 [UsrDefBitWrdB0] through 552 [UsrDefBitWrdB15]. With a parameter it is possible to read or write all of the bits inside a word. Example: Notes: The value of bits $0 \ldots 7$ of this parameter can be written to digital outputs $1 . . .8$, sequentially. In other words, when parameters 145 [Digital Out1 Sel]. . 152 [Digital Out8 Sel] are assigned option 12 "UserDefinedB", bit 0 of this parameter is written to digital output 1 , bit 1 is written to digital output 2 , bit 2 is written to digital output 3, etc. Bits 14 and 15 of this parameter are written to relay outputs 1 and 2 , respectively, when parameters 1392 [Relay Out 1 Sel] and 629 [Relay Out 2 Sel] are assigned option 12 "UserDefinedB"	Default: Min/Max:	$\begin{aligned} & 0 \\ & 0 / 65535 \end{aligned}$	$\begin{aligned} & \text { 16-bit } \\ & \text { Int } \end{aligned}$	$\begin{aligned} & 537- \\ & 552 \end{aligned}$

읓	을	운	Parameter Name \& Description See page 114 for symbol descriptions	Values		$\stackrel{\text { N }}{\stackrel{2}{2}}$	
를		537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 A	[UsrDefBitWrdB0] [UsrDefBitWrdB1] [UsrDefBitWrdB2] [UsrDefBitWrdB3] [UsrDefBitWrdB4] [UsrDefBitWrdB5] [UsrDefBitWrdB6] [UsrDefBitWrdB7] [UsrDefBitWrdB8] [UsrDefBitWrdB9] [UsrDefBitWrdB10] [UsrDefBitWrdB11] [UsrDefBitWrdB12] [UsrDefBitWrdB13] [UsrDefBitWrdB14] [UsrDefBitWrdB15] Bit variables. The individual "User Defined" bits can be read or written to. It is possible to process a word with Par 536 [UsrDefBitWrdB]. See the example in Par 536 [UsrDefBitWrdB]. Note: You can read bits $0 \ldots 7$ of a digital input with Par 536 [UsrDefBitWrdB] and write all of the bits associated with [UsrDefBitWrdB] to a digital output.	Default: Min/Max:	$\begin{aligned} & 0 \\ & 0 / 1 \end{aligned}$	$\begin{aligned} & \text { 16-bit } \\ & \text { Int } \end{aligned}$	536

Communications File

릋	은	̇	Parameter Name \& Description See page 114 for symbol descriptions												Values					N	
		$\begin{array}{r} 1377 \\ \text { A } \end{array}$	[Write M The status the write Reserved. Options Default Bit	ct] ite ac instea			DPI [orts. rite				net d On	work $y, 1=$ x	scur Wri 1			ing $x=$ $\stackrel{y}{2}$ $\stackrel{\text { N}}{2}$ $\overline{0}$ 1				1378
	글	1378	[Write Mas Enables/D only becon $0=\operatorname{Read}$ Options Default Bit					ss fo ycled = R x 11			ts. rese	or b 	of t 15 x	Po [Wr $\stackrel{2}{2}$ $\stackrel{\rightharpoonup}{2}$ $\overline{0}$ 1		is wr k Ac $\stackrel{m}{0}$ $\stackrel{\rightharpoonup}{0}$ $\overline{0}$ 1		this sitio 1	param s from	ter	1377
		1379	[Port Mas Bits 0... 5 controlling Options Default Bit	$\begin{aligned} & \hline \text { t] } \\ & \text { ate sta } \\ & \text { param } \\ & \hline \begin{array}{l} \text { 글 } \\ \text { a } \\ \text { ~ } \\ \hline 0 \\ \hline 15 \\ \hline \end{array} \end{aligned}$											curity $\stackrel{+}{2}$ $\stackrel{\rightharpoonup}{2}$ $\overline{0}$ 1	soft 1 3	are is $\stackrel{y}{2}$ $\stackrel{y}{0}$ $\overline{0}$ 1				

Input / Output File

읖	응	울	Parameter Name \& Description See page 114 for symbol descriptions	Values			¢
$\begin{aligned} & \frac{5}{2} \\ & \frac{5}{2} \\ & \frac{2}{2} \end{aligned}$		1045	[Anlg $\ln 1$ Cmp Eq] Provides an indication, after the amount of time specified in Par 1044 [Anlg In 1 Cmp Dly] has elapsed, when the value set in parameter 1043 [Anlg In1 ($m p$ Err] has been reached. - " 0 " $=$ The value of analog input 1 is above or below the value set in Par 1043 [Anlg In1 Cmp Err]. - " 1 " = The value of analog input 1 is within the range set in Par 1043 [Anlg In1 Cmp Err]. Notes: This parameter can be assigned to a digital output. See Analog-input Signal Comparison on page 281 for more information.	Default: Min/Max:	Read Only 0/1	$\begin{array}{\|l} \hline 16 \text {-bit } \\ \text { Int } \end{array}$	$\begin{aligned} & 1042, \\ & 1043, \\ & 1044 \end{aligned}$
		1404	[Analog $\ln 1$ Value] Value of the signal at analog input 1 . Units based on the value set in Par 71 [Anlg In1 Config].	Default: Min/Max: Units:	$\begin{aligned} & \text { Read Only } \\ & -1+20.00 \\ & \text { Vor mA } \\ & \hline \end{aligned}$	Real	71
		1405	[Analog In2 Value] Value of the signal at analog input 2 . Units based on the value set in Par 76 [Anlg In2 Config].	Default: Min/Max: Units:	Read Only - $/+20.00$ Vor mA	Real	76
		1406	[Analog In3 Value] Value of the signal at analog input 3 . Units based on the value set in Par 81 [Anlg In3 Config].	Default: Min/Max: Units:	$\begin{aligned} & \hline \text { Read Only } \\ & -1+20.00 \\ & \text { Vor mA } \\ & \hline \end{aligned}$	Real	81
		$\begin{aligned} & \hline 62 \\ & 63 \\ & 64 \\ & 65 \end{aligned}$	[Anlg Out1 Scale] [Anlg Out2 Scale] [Anlg Out3 Scale] [Anlg Out4 Scale] Scaling of the analog outputs.	Default: Min/Max:	$\begin{aligned} & \hline 1.00 \\ & -1+10.00 \end{aligned}$	Real	

읖	은	- ${ }_{\text {- }}$ Param	meter Name \& Description 114 for symbol descriptions	Values		"듗
		Option Definitions for [Digital Inx Sel]				
		Option	Description			
		Enable ${ }^{(1)(2)}$	Removing the enable input causes the motor to coast-to-stop without generating a fault.			
		Stop/CF(2)	Stops the drive if running or jogging or clears a fault if the drive is already stopped.			
		Start ${ }^{(2)}$	Issues a Start command, removal does not Stop the drive (3-wire control).Selects the operating direction of the drive $0=$ Forward, $1=$ Reverse			
		Fwd/ Reverse ${ }^{(2)}$	Selects the operating direction of the drive. $0=$ Forward, $1=$ Reverse			
		Run ${ }^{(2)}$	Issues a Start command, removal causes the drive to Stop (2-wire control).			
		Run Forward ${ }^{(2)}$	Issues a Run command in the Forward direction.			
		Run Reverse ${ }^{(2)}$	Issues a Run command in the Reverse direction.			
		Run Level ${ }^{(2)}$	Level sensitive Run command (no off-to-on transition required).			
		RunFwd Level ${ }^{(2)}$	Run Level command in the Forward direction.			
		RunRev Level ${ }^{(2)}$	Run Level command in the Reverse direction.			
		Jog ${ }^{(2)}$	Starts the drive and runs at the speed in Par 266 [Jog Speed], removal causes the drive to Stop.			
		Jog Forward ${ }^{(2)}$	Issues a Jog command in the Forward direction.			
		Jog Reverse ${ }^{(2)}$	Issues a Jog command in the Reverse direction.			
		Aux Fault	Asserting causes an Auxiliary Input fault (F2).			
		Clear Faults	Issues a Clear Faults command.			
		Auto/Manual	Selects between Automatic and Manual speed reference values.			
		Speed Sel 1-3	Selects one of eight speed references. Bit enumerations: $000=$ Par 44 [Speed Ref A], $001=$ Par 48 [Speed Ref B], $010=$ Par 155 [Preset Speed 2], $011=$ Par 156 [Preset Speed 3], $100=$ Par 157 [Preset Speed 4], $101=$ Par 158 [Preset Speed 5], $110=$ Par 159 [Preset Speed 6], $111=$ Par 160 [Preset Speed			
5 2 $\frac{5}{2}$ 2	․ㅡㄹ륻든	PI Enable	Enables/disables the PI block of the PID regulator (Par 769 [Enable PI]).			
		PI Hold	Enables/disables a hold on the PI output.			
		PI Reset	Asserting causes a reset of the Pl output.			
		Pl Invert	Asserting causes an inversion of the Pl output.			
		Local	Enables exclusive drive control via the I/0 Terminal Block only.			
		Acc2 \& Dec2	Switches between the Accel/Decel 1 and Accel/Decel 2 ramp rates.			
		Accel 2	Switches between the Accel 1 and Accel 2 ramp rates.			
		Decel 2	Switches between the Decel 1 and Decel 2 ramp rates.			
		MOP Inc	Asserting causes the MOP reference to increment at the rate set in Par 22 [MOP Accel Time].			
		MOP Dec	Asserting causes the MOP reference to decrement at the rate set in Par 30 [MOP Decel Time].			
		Fast Stop	Causes the drive to Stop at the rate set in Par 38 [Fast Stop Time].			
		Contactor	Indicates the status of the main contactor/DB contactor. Must be assigned and asserted to run drive when Par 1391 [ContactorControl] = "Contactor" or "Contactor+DB".			
		MOP Reset	Asserting resets the MOP reference to zero.			
		TorqueReduce	Turns on /off Torque Reduction using the reduced current limit set in Par 13 [Torq Red CurLim].			
		Force MinFld	When asserted, the field current is set to the value specified in Par 498 [Force Min Field]. Important: See Attention statement on page 196 for this option. Not used for permanent magnet motor applications.			
		Freeze Ramp	Holds the speed ramp at the present value (Par 373 [Freeze Ramp]).			
		UsrDefinedAO7	Writes the value of the digital input to Pars 520 [UsrDefBitWrdA0] - 527 [UsrDefBitWrdA7].			
		Droop Enable	Enables/disables the Droop function (699 [Enable Droop]).			
		PD Enable	Enables/disables the PD block of the PID regulator (Par 770 [Enable PD]).			
		PI Cent vs0-1	In combination, the digital inputs set to "PI Central vs0" and "PI Central vs1", through binary selection, determine which of the four possible output values is used as the initial level of the integral component (corresponding to the initial diameter) of the PI block. See Par 780 [PI Central vs0] for binary selection values.			
		Diam Calc	When asserted initiates the diameter calculation (Par 794 [Diameter Calc]).			
		Digital input option definitions continued on the following page. 1 A digital input ($1 \ldots 8$ only) must be configured for "Enable". 2 For digital inputs $9 \ldots 12$, this option is not available (displays as "Reserved").				

으플	은	$\begin{array}{l\|l} \dot{\perp} & \begin{array}{l} \text { Parameter Name \& Description } \\ \text { 己 } \end{array} \\ \hline \end{array}$		Values	毞	
		Option Definitions for［Digital Inx Sel］，Continued				
		Option	Description			
		Diam Reset	Sets the diameter starting value to the value in Par 1168 ［Diam Preset Sel］．			
		DiamCalc Dis	Enables／disables the diameter calculation（Par 1161 ［Diameter Calc Dis］）．			
		Torq Wind En	Enables／disables the Center wind function（Par 1209 ［Torque Winder En］）．			
		Speed Match	When asserted，issues the coil＇launch phase＇command for automatic switching（Par 1195 ［Speed Match］）．			
		Diam I／DEn	Enables／disables the ability of the diameter calculation to increase for an unwider or decrease for a winder（Par 1205 ［Diam Inc Dec En］）．			
		Wind／Unwind	Sets the value of Par 1187 ［Winder Type］to＂0＂Winder or＂1＂Unwinder．			
		$\begin{aligned} & \text { Diam Preset0- } \\ & 1 \end{aligned}$	Selects the value of Par 1164 ［Diam Preset 0］， 1165 ［Diam Preset 1］，Par 1166 ［Diam Preset 2］，or Par 1167 ［Diam Preset 3］See Par 1168 ［Diam Preset Sel］．			
		Taper Enable	Enables／disables the Taper function（Par 1176 ［Taper Enable］）．			
		Spd DemandEn	Enables／disables the speed reference calculation（winder operation），（Par 1215 ［Speed Demand En］）．			
		Winder Side	Selection of the winding／unwinding side（ $0=$ up， $1=$ down）．			
		PI－PD Enable	Selection between PI and PD（winder operation），（Par 1201 ［Winder Side］）．			
		Jog TW En	Enables／disables the Torque Winder jog function（Par 1256 ［Jog TW Enable］）．			
		Invert Flt	Must be used when the digital input is wired to the status of an inverting fault device（fuse，circuit breaker，etc．）．Removing the input causes an ＂Inverting Fault＂（F37）．			
5		Flt MicroPsn	Dual function when Torque Prove mode is enabled．When the drive is operating within the float tolerance zone，the input will hold the drive in the ＂float＂function．The float function is defined as holding off the setting of the brake while the drive holds zero speed．When the input is active and the drive is operating outside the float tolerance zone，the drive will operate at a percentage（set in Par 1112 ［MicroPsnScalePct］）of the commanded reference．Operation is also affected by the value of Par 1100 ［Torq Prove Cfg］，bit 2 ＂Micro Psn．＂			
앙	彦	Fwd EndLimit	Assigns a digital input，that when asserted，triggers a＂forward end limit＂function that results in the drive executing a＂Fast Stop＂command．This condition is latched so that，while active，starting in the same direction only provides a zero speed reference．Latching also lets the load travel past the end limit（digital input opens）when stopping．Starting in the opposite direction will use the normal speed reference and the condition will unlatch only after this digital input opens and the load moves past the forward end limit．This function is usually used with a limit switch near the point at which the drive stops．			
		Fwd DecLimit	Assigns a digital input，that when asserted，triggers a＂forward decel limit＂function that results in forcing the speed reference to Preset Speed 1 （Par 154）．The forced reference remains in effect until the direction is changed．This function is usually used with a limit switch and initiates the slowing down process prior to encountering the end limit．			
		Rev EndLimit	Assigns a digital input，that when asserted，triggers a＂reverse end limit＂function that results in the drive executing a＂Fast Stop＂command．This condition is latched so that so that，while active，starting in the same direction will only provides a zero speed reference．Latching also lets the load travel past the end limit（digital input opens）when stopping．Starting in the opposite direction will use the normal speed reference and the condition will unlatch only after this digital input opens and the load moves past the reverse end limit．This function is usually used with a limit switch near the point at which the drive stops．			
		Rev DecLimit	Assigns a digital input，that when asserted，triggers a＂reverse decel limit＂function that results in forcing the speed reference to Preset Speed 1 （Par 154）．The forced reference remains in effect until the direction is changed．This function is usually used with a limit switch and initiates the slowing down process prior to encountering the end limit．			
		Fwd Ovr Trvl	Assigns a digital input，that when asserted，triggers a＂forward over－travel＂function which results in an immediate fault（and zero torque）．After resetting the fault，the drive will only restart in the opposite direction．The fault is prevented from reoccurring until the digital input becomes unasserted．This function is usually used with a limit switch in a position beyond the end limit，as an extra safety limit to prevent torque from damaging the machine in an over－travel situation．			
		Rev Ovr Trvl	Assigns a digital input，that when asserted，triggers a＂reverse over－travel＂function which results in an immediate fault（and zero torque）．After resetting the fault，the drive will only restart in the opposite direction．The fault is prevented from reoccurring until the digital input becomes unasserted．This function is usually used with a limit switch in a position beyond the end limit，as an extra safety limit to prevent torque from damaging the machine in an over－travel situation．			
		Lift Stop	Assigns a digital input，that when asserted triggers a＂lift stop＂function which results in a current limit stop（ 0 sec ）．This function is enabled by setting Par 1100 ［Torq Prove Cfg］，bit 8 ＂Lift Stop Bk＂（＝1）．			

Chapter 3 Programming and Parameters

Parameter Cross
Reference - by
Name

Name	No.	Group	Page
AC Line Freq	588	Drive Data	127
AC Line Voltage	466	Drive Data	127
Acc Dec Filter	1212	Winder Functions	168
Accel Mask	596	Masks \& Owners	189
Accel Owner	605	Masks \& Owners	189
Accel Status	1188	Winder Functions	166
Accel Time 1	660	Ramp Rates	154
Accel Time 2	24	Ramp Rates	153
Act Spd Filter	923	Speed Feedback	140
Act Spd Reg BW	435	Speed Regulator	150
Act Ten Ref Pct	1194	Winder Functions	167
Actual Comp	1213	Winder Functions	168
Actual Speed	924	Speed Meters	124
Actuator Delay	1266	Stop Modes	155
Adaptive IGain1	189	Adaptv Regulator	157
Adaptive I Gain2	191	Adaptv Regulator	157
Adaptive I Gain3	193	Adaptv Regulator	157
Adaptive Joint 1	186	Adaptv Regulator	156
Adaptive Joint 2	187	Adaptv Regulator	157
Adaptive P Gain1	188	Adaptv Regulator	157
Adaptive P Gain2	190	Adaptv Regulator	157
Adaptive P Gain3	192	Adaptv Regulator	157
Adaptive Ref	183	Adaptv Regulator	156
Adaptive Reg Typ	182	Adaptv Regulator	156
Adaptive Spd 1	184	Adaptv Regulator	156
Adaptive Spd 2	185	Adaptv Regulator	156
Adaptive Spd En	181	Adaptv Regulator	156
Alpha Test	166	Test Generator	143
Analog In1 Value	1404	Analog Inputs	194
Analog In2 Value	1405	Analog Inputs	194
Analog In3 Value	1406	Analog Inputs	194
Anlg In 1 Filter	792	Analog Inputs	193
Anlg $\ln 1$ Cmp	1042	Analog Inputs	193

Name	No.	Group	Page
Anlg In1 Cmp Dly	1044	Analog Inputs	193
Anlg In1 Cmp Eq	1045	Analog Inputs	194
Anlg In1 Cmp Err	1043	Analog Inputs	193
Anlg ln1 Config	71	Analog Inputs	192
Anlg In1 Offset	74	Analog Inputs	193
Anlg In1 Scale	72	Analog Inputs	192
Anlg $\ln 1 \mathrm{Sel}$	70	Analog Inputs	192
Anlg ln1 Target	295	Analog Inputs	193
Anlg ln1 Tune	259	Analog Inputs	193
Anlg In2 Config	76	Analog Inputs	192
Anlg In2 Filter	801	Analog Inputs	193
Anlg In2 0 ffset	79	Analog Inputs	193
Anlg In2 Scale	77	Analog Inputs	192
Anlg $\ln 2 \mathrm{Sel}$	75	Analog Inputs	192
Anlg ln2 Target	296	Analog Inputs	193
Anlg In2 Tune	260	Analog Inputs	193
Anlg ln3 Config	81	Analog Inputs	192
Anlg In3 Filter	802	Analog Inputs	193
Anlg $\ln 30$ Offset	84	Analog Inputs	193
Anlg In3 Scale	82	Analog Inputs	192
Anlg $\ln 3 \mathrm{Sel}$	80	Analog Inputs	192
Anlg In3 Target	297	Analog Inputs	193
Anlg In3 Tune	261	Analog Inputs	193
Anlg Out1 Scale	62	Analog Outputs	194
Anlg Out1 Sel	66	Analog Outputs	195
Anlg Out2 Scale	63	Analog Outputs	194
Anlg Out2 Sel	67	Analog Outputs	195
Anlg Out3 Scale	64	Analog Outputs	194
Anlg Out3 Sel	68	Analog Outputs	195
Anlg Out4 Scale	65	Analog Outputs	194
Anlg Out4 Sel	69	Analog Outputs	195
Anlg Tach Gain	562	Speed Feedback	139
Anlg1 Tune Scale	73	Analog Inputs	192
Anlg2 Tune Scale	78	Analog Inputs	192
Anlg3 Tune Scale	83	Analog Inputs	192
Arm Current	200	Current Meters	125
Arm Current Pct	199	Current Meters	125
Arm Inductance	454	Autotune	140
Arm Resistance	453	Autotune	140
Arm Test Angle	167	Test Generator	143
Arm Volt Ki	494	Field Config	131
Arm Volt Ki Base	496	Field Config	131
Arm Volt Kp	493	Field Config	131
Arm Volt Kp Base	495	Field Config	131
At Speed	394	Diagnostics	177
At Speed Delay	105	Speed Regulator	147
At Speed Error	104	Speed Regulator	147
At Zero Speed	395	Diagnostics	177
Autotune Cur Lim	1048	Auto Tune	142
Aux Inp Flt Cfg	354	Alarms	182

Name	No.	Group	Page
Base Omega	1163	Diameter Calc	164
Brake Test Torq	1114	Torque Prove	172
Brk Alarm Travel	1109	Torque Prove	171
Brk Release Time	1107	Torque Prove	171
Brk Set Time	1108	Torque Prove	171
Brk Slip Count	1110	Torque Prove	171
Clear Fault Que	263	Faults	181
Close Loop Comp	1208	Winder Functions	167
Closed Loop En	1214	Winder Functions	168
Closing Speed	1262	Stop Modes	155
Constant J Comp	1172	Winder Functions	165
ContactorControl	1391	Digital Inputs	199
Cur Lim Neg Out	11	Current Meters	125
Cur Lim Pos Out	10	Current Meters	125
Current Lim Neg	9	Torq Attributes	133
Current Lim Pos	8	Torq Attributes	133
Current Limit	7	Torq Attributes	133
Current Rate Lim	12	Torq Attributes	133
Current Reg In	41	Current Meters	125
CurrLimit Active	349	Diagnostics	175
CurrReg Autotune	452	Autotune	140
Dancer Constant	798	Init Diam Calc	163
Data In A1	610	Datalinks	190
Data In A2	611	Datalinks	190
Data In B1	612	Datalinks	190
Data $\ln \mathrm{B} 2$	613	Datalinks	190
Data $\ln \mathrm{C} 1$	614	Datalinks	190
Data $\ln \mathrm{C} 2$	615	Datalinks	190
Data In D1	616	Datalinks	190
Data In D2	617	Datalinks	190
Data In SelData	1320	Datalinks	190
Data In Val Sel	1319	Datalinks	190
Data Out A1	618	Datalinks	190
Data Out A2	619	Datalinks	190
Data Out B1	620	Datalinks	190
Data Out B2	621	Datalinks	190
Data Out C1	622	Datalinks	190
Data Out C2	623	Datalinks	190
Data Out D1	624	Datalinks	190
Data Out D2	625	Datalinks	190
Decel Mask	631	Masks \& Owners	190
Decel Owner	609	Masks \& Owners	189
Decel Status	1189	Winder Functions	166
Decel Time 1	662	Ramp Rates	154
Decel Time 2	32	Ramp Rates	153
Diam Calc Dis	1161	Diameter Calc	163
Diam Inc Dec En	1205	Diameter Calc	165

Name	No.	Group	Page
Diam Init Filter	1206	Diameter Calc	165
Diam Preset 0	1164	Diameter Calc	164
Diam Preset 1	1165	Diameter Calc	164
Diam Preset 2	1166	Diameter Calc	164
Diam Preset 3	1167	Diameter Calc	164
Diam Preset Sel	1168	Diameter Calc	164
Diam Stdy Delay	1207	Diameter Calc	165
Diam Threshold	1158	Diameter Calc	163
Diameter Calc	794	Init Diam Calc	162
Diameter Calc St	800	Init Diam Calc	163
Diameter Filter	1162	Diameter Calc	164
Diameter Reached	1159	Diameter Calc	163
Diameter Reset	1157	Diameter Calc	163
Dig In Status	564	Digital Inputs	199
Dig In Term 1	565	Digital Inputs	199
Dig In Term 10	574	Digital Inputs	199
Dig In Term 11	575	Digital Inputs	199
Dig In Term 12	576	Digital Inputs	$\underline{199}$
Dig In Term 2	566	Digital Inputs	199
Dig In Term 3	567	Digital Inputs	199
Dig In Term 4	568	Digital Inputs	199
Dig In Term 5	569	Digital Inputs	199
Dig In Term 6	570	Digital Inputs	199
Dig In Term 7	571	Digital Inputs	199
Dig In Term 8	572	Digital Inputs	199
Dig In Term 9	573	Digital Inputs	199
Dig Out Status	581	Digital Outputs	202
Digital In1 Sel	133	Digital Inputs	196
Digital In10 Sel	142	Digital Inputs	196
Digital In11 Sel	143	Digital Inputs	196
Digital In12 Sel	144	Digital Inputs	196
Digital In2 Sel	134	Digital Inputs	196
Digital In3 Sel	135	Digital Inputs	196
Digital In4 Sel	136	Digital Inputs	196
Digital In5 Sel	137	Digital Inputs	196
Digital In6 Sel	138	Digital Inputs	196
Digital In7 Sel	139	Digital Inputs	196
Digital In8 Sel	140	Digital Inputs	$\underline{196}$
Digital In9 Sel	141	Digital Inputs	196
Digital Out1 Sel	145	Digital Outputs	200
Digital Out2 Sel	146	Digital Outputs	200
Digital Out3 Sel	147	Digital Outputs	$\underline{200}$
Digital Out4 Sel	148	Digital Outputs	200
Digital 0ut5 Sel	149	Digital Outputs	$\underline{200}$
Digital 0ut6 Sel	150	Digital Outputs	$\underline{200}$
Digital Out7 Sel	151	Digital Outputs	$\underline{200}$
Digital Out8 Sel	152	Digital Outputs	$\underline{200}$
Direction Mask	594	Masks \& Owners	189
Direction Mode	1322	Reference Config	174
Direction 0wner	603	Masks \& Owners	189

Name	No.	Group	Page
DncrPosSpd	795	Init Diam Calc	162
DPI Baud Rate	589	Comm Control	188
DPI Fdbk Select	1321	Comm Control	188
DPI P1 Select	1323	DPI Inputs	203
DPI P2 Select	1324	DPI Inputs	$\underline{203}$
DPI P3 Select	1325	DPI Inputs	203
DPI P4 Select	1326	DPI Inputs	203
DPI P5 Select	1327	DPI Inputs	$\underline{203}$
DPI Port Sel	590	Comm Control	188
DPI Port Value	1343	Comm Control	188
Drive Alarm 1	1380	Alarms	184
Drive Alarm 2	1394	Alarms	184
Drive Checksum	332	Drive Data	126
Drive Logic Rslt	1328	Diagnostics	179
Drive Size	465	Drive Data	$\underline{127}$
Drive Status 1	381	Diagnostics	176
Drive Status 2	382	Diagnostics	177
Drive Type	300	Drive Data	126
Drive Type Sel	201	Motor Data	128
Droop Filter	697	Load Limits	154
Droop Limit	700	Load Limits	155
Droop 0ut	1006	Speed Meters	124
Droop Out Pct	1007	Speed Meters	124
Droop Percent	696	Load Limits	154
Drv Fld Brdg Cur	374	Motor Data	$\underline{129}$
Dynamic Friction	1175	Winder Functions	165
Elapsed Lifetime	235	Drive Data	126
Enable Droop	699	Load Limits	155
Enable PD	770	PD Control	160
Enable PI	769	PI Control	158
Enable PI PD	1258	PID Control	162
Encoder Config	170	Speed Feedback	135
Encoder Counts	1022	Speed Feedback	140
Encoder Err Chk	652	Speed Feedback	$\underline{139}$
Encoder Out Sel	1021	Speed Feedback	140
Encoder PPR	169	Speed Feedback	135
Encoder Speed	420	Speed Meters	124
Fast Stop Status	1190	Winder Functions	166
Fast Stop Time	38	Stop Modes	155
Fault 1 Code	1351	Faults	181
Fault 1 Time	1361	Faults	182
Fault 10 Code	1360	Faults	181
Fault 10 Time	1370	Faults	182
Fault 2 Code	1352	Faults	181
Fault 2 Time	1362	Faults	182
Fault 3 Code	1353	Faults	181
Fault 3 Time	1363	Faults	182
Fault 4 Code	1354	Faults	181

Name	No.	Group	Page
Fault 4 Time	1364	Faults	182
Fault 5 Code	1355	Faults	181
Fault 5 Time	1365	Faults	182
Fault 6 Code	1356	Faults	181
Fault 6 Time	1366	Faults	182
Fault 7 Code	1357	Faults	181
Fault 7 Time	1367	Faults	182
Fault 8 Code	1358	Faults	181
Fault 8 Time	1368	Faults	182
Fault 9 Code	1359	Faults	181
Fault 9 Time	1369	Faults	182
Fault Arm Amps	1371	Faults	182
Fault Clear	1347	Faults	181
Fault Clr Mask	597	Masks \& Owners	189
Fault Clr Mode	1348	Faults	181
Fault Clr Owner	606	Masks \& Owners	189
Fault Field Amps	1373	Diagnostics	182
Fault Speed	1372	Diagnostics	182
Fault Voltage	1374	Diagnostics	182
FaultCode	57	Drive Data	126
Fdbk Device Type	414	Speed Feedback	135
Fdbk Option ID	422	Speed Feedback	135
Feed Fwd PID	758	PID Control	160
Feedback Offset	563	Speed Feedback	139
Field Current	351	Current Meters	126
Field Curve Out	476	Current Meters	126
Field Econ Delay	1407	Field Config	133
Field Economy En	499	Field Config	132
Field Mode Sel	469	Field Config	131
Field Reg Enable	497	Field Config	131
Filt TorqCur Pct	928	Current Meters	126
Final Diameter	1178	Winder Functions	166
Float Tolerance	1111	Torque Prove	171
Fld Const 40 Pct	916	Field Config	132
Fld Const 70 Pct	917	Field Config	132
Fld Const 90 Pct	918	Field Config	132
Fld Current Pct	234	Current Meters	126
FId Reg Ki	92	Field Config	130
Fld Reg Ki Base	98	Field Config	130
FId Reg Kp	91	Field Config	130
Fld Reg Kp Base	97	Field Config	130
Fld Test Angle	168	Test Generator	143
FId Weaken Ratio	456	Field Config	130
FIdLoss Flt Cfg	473	Alarms	183
FIdLoss Flt Dly	475	Alarms	183
Flux Divide	462	Field Config	130
Flux Filter BW	463	Field Config	130
Flux Ref Pct	500	Current Meters	$\underline{126}$
Flying Start En	388	Speed Regulator	149

Chapter 3

Name	No.	Group	Page
Force Min Field	498	Field Config	132
Freeze Ramp	373	Ramp Rates	153
Friction	1015	Autotune	141
Gear Box Ratio	797	Init Diam Calc	162
I Reg Error	587	Autotune	140
Inertia	1014	Autotune	141
Inertia C Filter	1012	Autotune	140
Inertia Comp Out	232	Current Meters	126
InertiaCompCnst	1191	Winder Functions	167
InertiaCompVar	1192	Winder Functions	167
Initial Diameter	1177	Winder Functions	166
Int Acc Calc En	1183	Winder Functions	166
Inversion In 1	1276	Digital Inputs	199
Inversion In 10	1388	Digital Inputs	199
Inversion In 11	1389	Digital Inputs	199
Inversion In 12	1390	Digital Inputs	199
Inversion $\ln 2$	1277	Digital Inputs	199
Inversion In 3	1278	Digital Inputs	199
Inversion In 4	1279	Digital Inputs	199
Inversion $\ln 5$	1280	Digital Inputs	199
Inversion $\ln 6$	1281	Digital Inputs	199
Inversion $\ln 7$	1282	Digital Inputs	199
Inversion $\ln 8$	1283	Digital Inputs	199
Inversion In 9	1387	Digital Inputs	199
Inversion Out 1	1267	Digital Outputs	$\underline{202}$
Inversion Out 2	1268	Digital Outputs	$\underline{202}$
Inversion Out 3	1269	Digital Outputs	$\underline{202}$
Inversion Out 4	1270	Digital Outputs	$\underline{202}$
Inversion Out 5	1271	Digital Outputs	$\underline{202}$
Inversion Out 6	1272	Digital Outputs	$\underline{202}$
Inversion Out 7	1273	Digital Outputs	$\underline{202}$
Inversion Out 8	1274	Digital Outputs	202
Inversion Relay1	1393	Digital Outputs	$\underline{203}$
Inversion Relay2	1275	Digital Outputs	$\underline{202}$
Jog Mask	593	Masks \& Owners	189
Jog Owner	602	Masks \& Owners	189
Jog Off Delay	1409	Discrete Speeds	$\underline{146}$
Jog Ramp Time	1410	Ramp Rates	$\underline{154}$
Jog Speed	266	Discrete Speeds	$\underline{145}$
Jog TW Enable	1256	Winder Functions	168
Jog TW Speed	1255	Winder Functions	168
Language	302	Drive Memory	174
Last Stop Source	1402	Diagnostics	180
Line Accel Pct	1184	Winder Functions	166

Name	No.	Group	Page
Line Decel Pct	1185	Winder Functions	166
Line FastStp Pct	1186	Winder Functions	166
Line Spd Gain	1156	Diameter Calc	163
Line Spd Source	1204	Diameter Calc	165
Line Spd Thresh	1155	Diameter Calc	163
Line Speed Pct	1160	Diameter Calc	163
Load Comp	698	Load Limits	154
Local Mask	599	Masks \& Owners	189
Local Owner	608	Masks \& Owners	189
Lock Speed Integ	348	Speed Regulator	149
Logic Mask	591	Masks \& Owners Security	$\begin{aligned} & \frac{188}{190} \\ & \hline \end{aligned}$
Logic Mask Act	1376	Security	190
Man Ref Preload	210	HIM Ref Config	174
Materl Width Pct	1173	Winder Functions	165
Max Deviation	796	Init Diam Calc	162
Max Diameter	1153	Diameter Calc	163
Max Feedback Spd	162	Motor Data	128
Max Fld Flux Pct	467	Field Config	130
Max Ref Speed	45	Motor Data	$\underline{128}$
Max Speed Fwd	3	Limits	145
Max Speed Rev	4	Limits	145
Maximum Speed	2	Limits	145
MicroPsnScalePct	1112	Torque Prove	171
Min Fld Curr Pct	468	Field Config	131
Min Speed Fwd	5	Limits	145
Min Speed Rev	6	Limits	145
Minimum Diameter	799	Init Diam Calc/ Diameter Calc	163
Minimum Speed	1	Limits	145
MOP Accel Time	22	Ramp Rates	153
MOP Dec Active	397	Diagnostics	178
MOP Decel Time	30	Ramp Rates	153
MOP Inc Active	396	Diagnostics	177
MOP Mask	598	Masks \& Owners	$\underline{189}$
MOP Owner	607	Masks \& Owners	$\underline{189}$
MOP Ref Config	249	Reference Config	174
MOP Select	1375	Reference Config	174
Motor Trq Ref	17	Current Meters	125
MtrOvrld Factor	333	Motor Data	129
MtrOvrld Flt Cfg	479	Alarms	183
Mtr0vrld Speed	334	Motor Data	129
MtrOvrld Status	1290	Diagnostics	178
MtrOvrld Type	376	Motor Data	153
Nom Mtr Arm Amps	179	Motor Data	128
Nom Mtr Fld Amps	280	Motor Data	128
Offs Accel Time	1198	Winder Functions	167

Name	No.	Group	Page
Opening Delay	1263	Stop Modes	155
OpenSCR Flt Cfg	216	Test Generator	144
OpenSCR Threshld	217	Test Generator	144
OpenSCR Trip Lvl	218	Test Generator	144
OpenSCR WarnLvl	215	Test Generator	144
Out Volt Level	921	Field Config	133
Output Power	1052	Drive Data	127
Output Voltage	233	Drive Data	126
OverCurrent Thr	584	Alarms	183
Overspeed Val	585	Alarms	184
OverTemp Flt Cfg	365	Alarms	182
OverVolt Flt Cfg	203	Alarms	182
Param Access Lvl	211	Drive Memory	174
PD Deriv Filter	767	PD Control	159
PD Deriv Gain 1	766	PD Control	159
PD Deriv Gain 2	789	PD Control	160
PD Deriv Gain 3	791	PD Control	160
PD Output PID	421	PD Control	159
PD Prop Gain 1	768	PD Control	160
PD Prop Gain 2	788	PD Control	160
PD Prop Gain 3	790	PD Control	160
PI Central v sel	779	PI Control	159
PI Central v1	776	PI Control	158
PI Central v2	777	PI Control	158
PI Central v3	778	PI Control	158
PI Central vs0	780	PI Control	159
PI Central vs1	781	PI Control	159
Pl Init Intgl Gn	734	PI Control	158
PI Init Prop Gn	793	PI Control	159
Pl integr freeze	783	PI Control	159
Pl Integral Gain	764	PI Control	158
PI Lower Limit	785	PI Control	159
PI Output	771	PI Control	158
PI Prop Gain PID	765	PI Control	158
PI Steady Thr	695	PI Control	158
PI Upper Limit	784	PI Control	159
PID Accel Time	1046	PID Control	162
PID Clamp	757	PID Control	160
PID Decel Time	1047	PID Control	162
PID Error	759	PID Control	160
PID Error Gain	1254	PID Control	162
PID Feedback	763	PID Control	161
PID Output	774	PID Control	161
PID Output Scale	773	PID Control	161
PID Output Sign	772	PID Control	161
PID Setpoint 0	760	PID Control	160
PID Setpoint 1	761	PID Control	160
PID Setpoint Sel	762	PID Control	160
PID Source	786	PID Control	162
PID Source Gain	787	PID Control	162

Name	No.	Group	Page
PID Steady Delay	731	PI Control	158
PID Target	782	PID Control	161
Port Mask Act	1379	Security	191
Powerup Delay	1345	Restart Modes	156
Preset Speed 1	154	Discrete Speeds	145
Preset Speed 2	155	Discrete Speeds	145
Preset Speed 3	156	Discrete Speeds	145
Preset Speed 4	157	Discrete Speeds	145
Preset Speed 5	158	Discrete Speeds	145
Preset Speed 6	159	Discrete Speeds	145
Preset Speed 7	160	Discrete Speeds	145
Ramp Delay	20	Ramp Rates	153
Ramp In	110	Speed Meters	123
Ramp In Pct	111	Speed Meters	123
Ramp In Zero En	1265	Stop Modes	155
Ramp 0ut	113	Speed Meters	123
Ramp Out Pct	114	Speed Meters	123
Ramp Select 0	403	Diagnostics	178
Ramp Select 1	404	Diagnostics	178
Ramp Type Select	18	Ramp Rates	152
Rated Motor Volt	175	Motor Data	128
Real FF PID	418	PID Control	160
Ref Line Speed	1286	Winder Functions	169
Ref Spd Source	1284	Winder Functions	169
Ref Speed Gain	1285	Winder Functions	169
Ref Zero Level	106	Speed Regulator	147
Reference Mask	595	Masks \& Owners	189
Reference Owner	604	Masks \& Owners	189
Relay Out 1 Sel	1392	Digital Outputs	$\underline{203}$
Relay Out 2 Sel	629	Digital Outputs	$\underline{202}$
Reset Defaults	258	Drive Memory	174
Reset Fld Curve	920	Field Config	132
Reslvr Cable Bal	431	Speed Feedback	138
Reslvr Error Cnt	432	Diagnostics	178
Reslvr Position	427	Speed Feedback	138
Reslvr Spd Ratio	424	Speed Feedback	136
Reslvr Type Sel	423	Speed Feedback	136
Resolver Config	425	Speed Feedback	137
Resolver Pos Sel	429	Speed Feedback	138
Resolver Spd Sel	430	Speed Feedback	138
Resolver Speed	428	Speed Meters	124
Resolver Status	426	Speed Feedback	138
Roll Diameter	1154	Diameter Calc	163
S Curve Accel 1	665	Ramp Rates	154
S Curve Accel 2	667	Ramp Rates	154
S Curve Decel 1	666	Ramp Rates	154
S Curve Decel 2	668	Ramp Rates	154
S Curve Time	19	Ramp Rates	152

Name	No.	Group	Page
SAR Volts Scale	464	Motor Data	129
Save HIM Ref	209	HIM Ref Config	174
Scale1 Div	487	Scale Blocks	172
Scale1 In Abs	492	Scale Blocks	173
Scale1 In Max	488	Scale Blocks	172
Scale1 In Min	489	Scale Blocks	172
Scale1 In 0ff	490	Scale Blocks	173
Scale1 Input	484	Scale Blocks	172
Scale1 Mul	486	Scale Blocks	172
Scale1 Out Off	491	Scale Blocks	73
Scale1 Output	485	Scale Blocks	172
Scale2 Div	556	Scale Blocks	172
Scale2 In Abs	561	Scale Blocks	173
Scale2 In Max	557	Scale Blocks	172
Scale2 In Min	558	Scale Blocks	72
Scale2 In 0ff	559	Scale Blocks	173
Scale2 Input	553	Scale Blocks	172
Scale2 Mul	555	Scale Blocks	172
Scale2 Out Off	560	Scale Blocks	173
Scale2 Output	554	Scale Blocks	172
Scale3 Div	1221	Scale Blocks	172
Scale3 In Abs	1226	Scale Blocks	173
Scale3 In Max	1222	Scale Blocks	172
Scale3 In Min	1223	Scale Blocks	172
Scale3 In 0ff	1224	Scale Blocks	173
Scale3 Input	1218	Scale Blocks	172
Scale3 Mul	1220	Scale Blocks	172
Scale3 Out Off	1225	Scale Blocks	173
Scale3 Output	1219	Scale Blocks	172
Scale4 Div	1230	Scale Blocks	172
Scale4 In Abs	1235	Scale Blocks	173
Scale4 In Max	1231	Scale Blocks	172
Scale4 In Min	1232	Scale Blocks	172
Scale4 In 0ff	1233	Scale Blocks	173
Scale4 Input	1227	Scale Blocks	172
Scale4 Mul	1229	Scale Blocks	172
Scale4 Out Off	1234	Scale Blocks	173
Scale4 Output	1228	Scale Blocks	172
Scale5 Div	1239	Scale Blocks	172
Scale5 In Abs	1244	Scale Blocks	173
Scale5 In Max	1240	Scale Blocks	172
Scale5 In Min	1241	Scale Blocks	172
Scale5 In 0ff	1242	Scale Blocks	173
Scale5 Input	1237	Scale Blocks	172
Scale5 Mul	1238	Scale Blocks	172
Scale5 0ut 0ff	1243	Scale Blocks	173
Scale5 Output	1236	Scale Blocks	172
Scale6 Div	1248	Scale Blocks	172
Scale6 In Abs	1253	Scale Blocks	173
Scale6 In Max	1249	Scale Blocks	172

Name	No.	Group	Page
Scale6 In Min	1250	Scale Blocks	172
Scale6 In Off	1251	Scale Blocks	173
Scale6 Input	1246	Scale Blocks	172
Scale6 Mul	1247	Scale Blocks	172
Scale6 Out Off	1252	Scale Blocks	173
Scale6 Output	1245	Scale Blocks	172
SCR Diag Status	213	Test Generator	143
SCR Diag Test En	214	Test Generator	144
Selected TorqRef	14	Current Meters	154
Set Fld Curve	919	Field Config	132
SLAT Dwell Time	16	Control Config	152
SLAT Err Stpt	15	Control Config	152
Software Version	331	Configuration	126
Spd Band Intgrtr	1106	Torque Prove	171
Spd 0 Trip Delay	627	Stop Modes	155
Spd Draw Out Pct	1019	Speed Meters	125
Spd FB Filt BW	915	Speed Feedback	140
Spd FB Filt Gain	914	Speed Feedback	140
Spd FB Loss Lvl	455	Speed Feedback	138
Spd Fdbk Control	457	Speed Feedback	139
Spd Fdbk State	651	Diagnostics	178
Spd Reg Err	1010	Speed Meters	125
Spd Reg Err Pct	1011	Speed Meters	125
Spd Reg Fdbk	1008	Speed Meters	124
Spd Reg Fdbk Pct	1009	Speed Meters	124
Spd Reg P Filter	444	Speed Regulator	150
Spd Fdbk Invert	461	Speed Feedback	139
Spd Feedback	122	Speed Meters	124
Spd Feedback Pct	121	Speed Meters	124
Spd Limit Active	372	Diagnostics	175
Spd Loss Flt Cfg	478	Alarms	183
Spd Match Acc	1196	Winder Functions	167
Spd Match Compl	1203	Winder Functions	167
Spd Match Dec	1197	Winder Functions	167
Spd Match Gain	1200	Winder Functions	167
Spd Match Torque	1216	Winder Functions	168
Spd Ref Out Pct	384	Speed Meters	124
Spd Ref Sel Sts	1330	Diagnostics	180
Spd Ref Zero En	124	Speed Regulator	148
Spd Reg Autotune	1027	Autotune	141
Spd Reg BW	434	Speed Regulator	149
Spd Reg Damping	436	Speed Regulator	$\underline{150}$
Spd Reg Ki	88	Speed Regulator	146
Spd Reg Ki Base	94	Autotune	140
Spd Reg Ki Outpt	100	Speed Regulator	147
Spd Reg Kp	87	Speed Regulator	146

Chapter 3

Name	No.	Group	Page
Spd Reg Kp Base	93	Autotune	140
Spd Reg Kp Outpt	99	Speed Regulator	146
Spd Reg Neg Lim	96	Speed Regulator	146
Spd Reg Out Pct	236	Speed Regulator	124
Spd Reg Pos Lim	95	Speed Regulator	146
Spd Select 0	400	Diagnostics	178
Spd Select 1	401	Diagnostics	178
Spd Select 2	402	Diagnostics	178
Spd Trq Mode Sel	241	Control Config	149
Spd Tune Inertia	1030	Autotune	141
Spd Up Gain Pct	445	Speed Regulator	150
Spd Zero I En	123	Speed Regulator	148
Spd Zero P En	125	Speed Regulator	148
SpdFuncSelect	1016	Speed Regulator	151
SpdReg AntiBckup	643	Speed Regulator	151
SpdReg BW Bypass	448	Speed Regulator	150
Spd0ut FiltBW	239	Speed Regulator	149
Spd0ut FiltGain	238	Speed Regulator	149
SpdReg FB Bypass	458	Speed Feedback	139
SpdReg Ki Bypass	460	Speed Regulator	151
SpdReg Ki Pct	1035	Autotune	141
SpdReg Kp Bypass	459	Speed Regulator	151
SpdReg Kp Pct	1034	Autotune	141
SpdReg NegLm0ut	90	Current Meters	125
SpdReg PosLm0ut	89	Current Meters	125
SpdTune Friction	1031	Autotune	141
Speed Demand En	1215	Winder Functions	168
Speed Dev Band	1105	Torque Prove	171
Speed Draw Out	1018	Speed Meters	125
Speed Match	1195	Winder Functions	167
Speed Ramp En	245	Ramp Rates	153
Speed Ratio	1017	Speed References	146
Speed Ref A	44	Speed Meters	123
Speed Ref A Pct	47	Speed Meters	123
Speed Ref B	48	Speed Meters	123
Speed Ref B Pct	49	Speed Meters	123
Speed Ref Out	385	Speed Meters	124
Speed Ref Source	1329	Diagnostics	179
Speed Reg En	242	Speed Regulator	149
Speed Reg In	118	Speed Meters	124
Speed Reg In Pct	117	Speed Meters	123
Speed Thresh Neg	102	Speed Regulator	147
Speed Thresh Pos	101	Speed Regulator	147
Speed Threshold	393	Diagnostics	177
Speed Tune Dir	1029	Autotune	141
Speed Tune Ki	1033	Autotune	141
Speed Tune Kp	1032	Autotune	141
Speed Up Base	446	Speed Regulator	150

Name	No.	Group	Page
Speed Up Filter	447	Speed Regulator	150
Speed Zero Delay	108	Speed Regulator	148
Speed Zero Level	107	Speed Regulator	148
Spd Zero P Gain	126	Speed Regulator	149
Start At Powerup	1344	Restart Modes	156
Start Inhibits	1403	Diagnostics	181
Start Mask	592	Masks \& Owners	188
Start Owner	601	Masks \& Owners	189
Static F Zero	1287	Winder Functions	169
Static Friction	1174	Winder Functions	165
Status1 at Fault	1349	Faults	181
Status2 at Fault	1350	Faults	181
Stop Owner	600	Masks \& Owners	189
Tachometer Speed	1408	Speed Meters	125
Taper Enable	1176	Winder Functions	166
TaskLoad 1 ms	1384	Diagnostics	180
TaskLoad 2 ms	1385	Diagnostics	180
TaskLoad 8 ms	1386	Diagnostics	180
TB Manual Ref	267	Discrete Speeds	146
Tension Reduct	1179	Winder Functions	166
Tension Ref	1180	Winder Functions	166
Tension Scale	1181	Winder Functions	166
TestPoint Data	1382	Diagnostics	180
TestPoint Sel	1381	Diagnostics	180
Threshold Delay	103	Speed Regulator	$\underline{147}$
Time AccDec Min	1182	Winder Functions	166
Torq Cur Filter	926	Torq Attributes	134
Torq Current Pct	1193	Winder Functions	167
Torq Limit Slew	1104	Torque Prove	171
Torq Limit Type	715	Load Limits	155
Torq Prove Cfg	1100	Torque Prove	170
Torq Prove Setup	1101	Torque Prove	170
Torq Prove Sts	1103	Torque Prove	171
Torq Red CurLim	13	Load Limits	154
Torque Const	1013	Autotune	141
Torque Negative	347	Diagnostics	175
Torque Positive	346	Diagnostics	175
Torque Reduction	342	Torq Attributes	134
Torque Ref	39	Torq Attributes	133
Torque Winder En	1209	Winder Functions	167
Total Inertia	433	Speed Regulator	149
Trim Ramp	42	Speed Reference	146
Trim Ramp Pct	378	Speed Reference	146

Name	No.	Group	Page
Trim Speed	43	Speed Reference	146
Trim Speed Pct	379	Speed Reference	146
Trim Torque	40	Torq Attributes	133
TrqTpr Enable	750	Torq Attributes	134
TrqTpr Lim0	751	Torq Attributes	134
TrqTpr Lim1	752	Torq Attributes	134
TrqTpr Lim2	753	Torq Attributes	134
TrqTpr Lim3	754	Torq Attributes	134
TrqTpr Lim4	755	Torq Attributes	134
TrqTpr Spd	756	Torq Attributes	134
TstGen Amplitude	60	Test Generator	142
TstGen Frequency	59	Test Generator	142
TstGen Offset	61	Test Generator	142
TstGen Output	58	Test Generator	142
UnderVIt Flt Dly	470	Alarms	183
UnderVolt Thresh	481	Alarms	183
UserDefined0	503	User Defined	186
UserDefined1	504	User Defined	$\underline{186}$
UserDefined10	513	User Defined	186
UserDefined11	514	User Defined	186
UserDefined12	515	User Defined	186
UserDefined13	516	User Defined	186
UserDefined14	517	User Defined	186
UserDefined15	518	User Defined	186
UserDefined2	505	User Defined	186
UserDefined3	506	User Defined	186
UserDefined4	507	User Defined	186
UserDefined5	508	User Defined	186
UserDefined6	509	User Defined	$\underline{186}$
UserDefined7	510	User Defined	$\underline{186}$
UserDefined8	511	User Defined	186
UserDefined9	512	User Defined	186
UsrDefBitWrdA	519	User Defined	$\underline{186}$
UsrDefBitWrdA0	520	User Defined	187
UsrDefBitWrdA1	521	User Defined	187
UsrDefBitWrdA10	530	User Defined	187
UsrDefBitWrdA11	531	User Defined	187
UsrDefBitWrdA12	532	User Defined	187
UsrDefBitWrdA13	533	User Defined	187
UsrDefBitWrdA14	534	User Defined	187
UsrDefBitWrdA15	535	User Defined	187
UsrDefBitWrdA2	522	User Defined	187
UsrDefBitWrdA3	523	User Defined	187
UsrDefBitWrdA4	524	User Defined	187
UsrDefBitWrdA5	525	User Defined	187
UsrDefBitWrdA6	526	User Defined	187
UsrDefBitWrdA7	527	User Defined	187
UsrDefBitWrdA8	528	User Defined	187
UsrDefBitWrdA9	529	User Defined	187
UsrDefBitWrdB	536	User Defined	187

Name	No.	Group	Page
UsrDefBitWrdB0	537	User Defined	188
UsrDefBitWrdB1	538	User Defined	188
UsrDefBitWrdB10	547	User Defined	188
UsrDefbitWrdB11	548	User Defined	188
UsrDefBitWrdB12	549	User Defined	188
UsrDefbitWrdB13	550	User Defined	188
Us'DefBitWrdB14	551	User Defined	188
UsrDefbitWrdB15	552	User Defined	188
UsrDefBitWrdB2	539	User Defined	188
UsrDefBitWrdB3	540	User Defined	188
UsrDefBitWrdB4	541	User Defined	188
UsrDefBitWrdB5	542	User Defined	188
UsrDefBitWrdB6	543	User Defined	188
UsrDefBitWrdB7	544	User Defined	188
UsrDefBitWrdB8	545	User Defined	188
UsrDefBitWrdB9	546	User Defined	188
UsrDsplyDivo	51	User Defined	185
UsiDsplyMult0	50	User Defined	185
UsrValDiv1	54	User Defined	185
UsrValMult1	53	User Defined	185
Variable J Comp	1171	Winder Functions	165
W Gain	1202	Winder Functions	167
W Offset	1199	Winder Functions	167
W Reference	1217	Winder Functions	168
W Target	1210	Winder Functions	168
Winder Side	1201	Winder Functions	167
Winder Type	1187	Diameter Calc	164
Write Mask Act	1377	Security	191
Write Mask Cfg	1378	Security	191
Zero Ramp Input	345	Ramp Rates	153
Zero Ramp Output	344	Ramp Rates	153
Zero Torque	353	Torq Attributes	134
ZeroSpdFloatTime	1113	Torque Prove	172

Chapter 3 Programming and Parameters

Parameter Cross Reference - by Number

No.	Parameter Name	Group	Page
1	Minimum Speed	Limits	145
2	Maximum Speed	Limits	145
3	Max Speed Fwd	Limits	145
4	Max Speed Rev	Limits	145
5	Min Speed Fwd	Limits	145
6	Min Speed Rev	Limits	145
7	Current Limit	Torq Attributes	133
8	Current Lim Pos	Torq Attributes	133
9	Current Lim Neg	Torq Attributes	133
10	Cur Lim Pos Out	Current Meters	125
11	Cur Lim Neg Out	Current Meters	125
12	Current Rate Lim	Torq Attributes	133
13	Torq Red CurLim	Load Limits	154
14	Selected TorqRef	Current Meters	125
15	SLAT Err Stpt	Control Config	152
16	SLAT Dwell Time	Control Config	152
17	Motor Trq Ref	Current Meters	125
18	Ramp Type Select	Ramp Rates	152
19	S Curve Time	Ramp Rates	152
20	Ramp Delay	Ramp Rates	153
22	MOP Accel Time	Ramp Rates	153
24	Accel Time 2	Ramp Rates	153
30	MOP Decel Time	Ramp Rates	153
32	Decel Time 2	Ramp Rates	153
38	Fast Stop Time	Stop Modes	155
39	Torque Ref	Torq Attributes	133
40	Trim Torque	Torq Attributes	133
41	Current Reg In	Current Meters	125
42	Trim Ramp	Speed Reference	146
43	Trim Speed	Speed Reference	146
44	Speed Ref A	Speed Meters	123
45	Max Ref Speed	Motor Data	128
47	Speed Ref A Pct	Speed Meters	123
48	Speed Ref B	Speed Meters	123
49	Speed Ref B Pct	Speed Meters	123
50	UsrDsplyMult0	User Defined	185
51	UsiDsplyDivo	User Defined	185
53	UsrValMult1	User Defined	185
54	UsrValDiv1	User Defined	185
57	FaultCode	Drive Data	126
58	TstGen Output	Test Generator	142
59	TstGen Frequency	Test Generator	142
60	TstGen Amplitude	Test Generator	142
61	TstGen Offset	Test Generator	142
62	Anlg Out1 Scale	Analog Outputs	194
63	Anlg Out2 Scale	Analog Outputs	194

No.	Parameter Name	Group	Page
64	Anlg Out3 Scale	Analog Outputs	194
65	Anlg Out4 Scale	Analog Outputs	194
66	Anlg Out1 Sel	Analog Outputs	195
67	Anlg Out2 Sel	Analog Outputs	195
68	Anlg Out3 Sel	Analog Outputs	195
69	Anlg Out4 Sel	Analog Outputs	195
70	Anlg In1 Sel	Analog Inputs	192
71	Anlg In1 Config	Analog Inputs	192
72	Anlg In1 Scale	Analog Inputs	192
73	Anlg1 Tune Scale	Analog Inputs	192
74	Anlg $\ln 10$ ffset	Analog Inputs	193
75	Anlg In2 Sel	Analog Inputs	192
76	Anlg In2 Config	Analog Inputs	192
77	Anlg In2 Scale	Analog Inputs	192
78	Anlg2 Tune Scale	Analog Inputs	192
79	Anlg In2 Offset	Analog Inputs	193
80	Anlg In3 Sel	Analog Inputs	192
81	Anlg In3 Config	Analog Inputs	192
82	Anlg In3 Scale	Analog Inputs	192
83	Anlg3 Tune Scale	Analog Inputs	192
84	Anlg In3 Offset	Analog Inputs	193
87	Spd Reg Kp	Speed Regulator	146
88	Spd Reg Ki	Speed Regulator	146
89	SpdReg PosLmOut	Current Meters	125
90	SpdReg NegLmOut	Current Meters	125
91	Fld Reg Kp	Field Config	130
92	Fld Reg Ki	Field Config	130
93	Spd Reg Kp Base	Autotune	140
94	Spd Reg Ki Base	Autotune	140
95	Spd Reg Pos Lim	Speed Regulator	146
96	Spd Reg Neg Lim	Speed Regulator	146
97	FId Reg Kp Base	Field Config	130
98	Fld Reg Ki Base	Field Config	130
99	Spd Reg Kp Outpt	Speed Regulator	146
100	Spd Reg Ki Outpt	Speed Regulator	147
101	Speed Thresh Pos	Speed Regulator	147
102	Speed Thresh Neg	Speed Regulator	147
103	Threshold Delay	Speed Regulator	147
104	At Speed Error	Speed Regulator	147
105	At Speed Delay	Speed Regulator	147
106	Ref Zero Level	Speed Regulator	147
107	Speed Zero Level	Speed Regulator	148
108	Speed Zero Delay	Speed Regulator	148
110	Ramp In	Speed Meters	123
111	Ramp In Pct	Speed Meters	123
113	Ramp Out	Speed Meters	123
114	Ramp Out Pct	Speed Meters	123
117	Speed Reg In Pct	Speed Meters	123
118	Speed Reg In	Speed Meters	124
121	Spd Feedback Pct	Speed Meters	124

No.	Parameter Name	Group	Page
122	Spd Feedback	Speed Meters	124
123	Spd Zero I En	Speed Regulator	148
124	Spd Ref Zero En	Speed Regulator	148
125	Spd Zero P En	Speed Regulator	148
126	Spd Zero P Gain	Speed Regulator	149
133	Digital In1 Sel	Digital Inputs	196
134	Digital In2 Sel	Digital Inputs	196
135	Digital In3 Sel	Digital Inputs	196
136	Digital In4 Sel	Digital Inputs	196
137	Digital In5 Sel	Digital Inputs	196
138	Digital In6 Sel	Digital Inputs	196
139	Digital In7 Sel	Digital Inputs	196
140	Digital In8 Sel	Digital Inputs	196
141	Digital In9 Sel	Digital Inputs	196
142	Digital In10 Sel	Digital Inputs	196
143	Digital In11 Sel	Digital Inputs	196
144	Digital In12 Sel	Digital Inputs	196
145	Digital Out1 Sel	Digital Outputs	200
146	Digital Out2 Sel	Digital Outputs	200
147	Digital Out3 Sel	Digital Outputs	200
148	Digital Out4 Sel	Digital Outputs	$\underline{200}$
149	Digital Out5 Sel	Digital Outputs	200
150	Digital Out6 Sel	Digital Outputs	200
151	Digital Out7 Sel	Digital Outputs	200
152	Digital Out8 Sel	Digital Outputs	$\underline{200}$
154	Preset Speed 1	Discrete Speeds	145
155	Preset Speed 2	Discrete Speeds	145
156	Preset Speed 3	Discrete Speeds	145
157	Preset Speed 4	Discrete Speeds	145
158	Preset Speed 5	Discrete Speeds	145
159	Preset Speed 6	Discrete Speeds	145
160	Preset Speed 7	Discrete Speeds	145
162	Max Feedback Spd	Motor Data	128
166	Alpha Test	Test Generator	143
167	Arm Text Angle	Test Generator	143
168	Fld Test Angle	Test Generator	143
169	Encoder PPR	Speed Feedback	135
170	Encoder Config	Speed Feedback	135
175	Rated Motor Volt	Motor Data	128
179	Nom Mtr Arm Amps	Motor Data	128
181	Adaptive Spd En	Adaptv Regulator	156
182	Adaptive Reg Typ	Adaptv Regulator	156
183	Adaptive Ref	Adaptv Regulator	156
184	Adaptive Spd 1	Adaptv Regulator	156
185	Adaptive Spd 2	Adaptv Regulator	156

No.	Parameter Name	Group	Page
186	Adaptive Joint 1	Adaptv Regulator	156
187	Adaptive Joint 2	Adaptv Regulator	157
188	Adaptive P Gain1	Adaptv Regulator	157
189	Adaptive I Gain1	Adaptv Regulator	157
190	Adaptive P Gain2	Adaptv Regulator	157
191	Adaptive I Gain2	Adaptv Regulator	157
192	Adaptive P Gain3	Adaptv Regulator	157
193	Adaptive I Gain3	Adaptv Regulator	157
199	Arm Current Pct	Current Meters	125
200	Arm Current	Current Meters	125
201	Drive Type Sel	Motor Data	28
203	OverVolt Flt Cfg	Alarms	182
209	Save HIM Ref	HIM Ref Config	174
210	Man Ref Preload	HIM Ref Config	174
211	Param Access Lvl	Drive Memory	174
213	SCR Diag Test En	Test Generator	143
214	SCR Diag Status	Test Generator	144
215	OpenSCR WarnLvl	Test Generator	144
216	OpenSCR Flt Cfg	Test Generator	144
217	OpenSCR Threshld	Test Generator	144
218	OpenSCR Trip LvI	Test Generator	144
232	Inertia Comp Out	Current Meters	126
233	Output Voltage	Drive Data	126
234	Fld Current Pct	Current Meters	126
235	Elapsed Lifetime	Drive Data	126
236	Spd Reg Out Pct	Speed Regulator	124
238	Spd0ut FiltGain	Speed Regulator	149
239	SpdOut FiltBW	Speed Regulator	149
241	Spd Trq Mode Sel	Control Config	152
242	Speed Reg En	Speed Regulator	149
245	Speed Ramp En	Ramp Rates	153
249	MOP Ref Config	Reference Config	174
258	Reset Defaults	Drive Memory	174
259	Anlg $\ln 1$ Tune	Analog Inputs	193
260	Anlg ln2 Tune	Analog Inputs	193
261	Anlg In3 Tune	Analog Inputs	193
263	Clear Fault Que	Faults	181
266	Jog Speed	Discrete Speeds	145
267	TB Manual Ref	Discrete Speeds	146
280	Nom Mtr Fld Amps	Motor Data	$\underline{128}$
295	Anlg $\ln 1$ Target	Analog Inputs	193
296	Anlg $\ln 2$ Target	Analog Inputs	193
297	Anlg $\ln 3$ Target	Analog Inputs	193
300	Drive Type	Drive Data	126

No.	Parameter Name	Group	Page
302	Language	Drive Memory	174
331	Software Version	Configuration	126
332	Drive Checksum	Drive Data	126
333	MtrOvrld Factor	Motor Data	129
334	Mtr0vrld Speed	Motor Data	129
342	Torque Reduction	Torq Attributes	134
344	Zero Ramp Output	Ramp Rates	153
345	Zero Ramp Input	Ramp Rates	153
346	Torque Positive	Diagnostics	175
347	Torque Negative	Diagnostics	175
348	Lock Speed Integ	Speed Regulator	149
349	CurrLimit Active	Diagnostics	175
351	Field Current	Current Meters	126
353	Zero Torque	Torq Attributes	134
354	Aux Inp Flt Cfg	Alarms	182
365	OverTemp Flt Cfg	Alarms	182
372	Spd Limit Active	Diagnostics	175
373	Freeze Ramp	Ramp Rates	153
374	Drv Fld Brdg Cur	Motor Data	129
376	MtrOvrld Type	Motor Data	129
378	Trim Ramp Pct	Speed Reference	146
379	Trim Speed Pct	Speed Reference	146
381	Drive Status 1	Diagnostics	176
382	Drive Status 2	Diagnostics	177
384	Spd Ref Out Pct	Speed Meters	124
385	Speed Ref Out	Speed Meters	124
388	Flying Start En	Speed Regulator	149
393	Speed Threshold	Diagnostics	177
394	At Speed	Diagnostics	177
395	At Zero Speed	Diagnostics	177
396	MOP Inc Active	Diagnostics	177
397	MOP Dec Active	Diagnostics	178
400	Spd Select 0	Diagnostics	178
401	Spd Select 1	Diagnostics	178
402	Spd Select 2	Diagnostics	178
403	Ramp Select 0	Diagnostics	178
404	Ramp Select 1	Diagnostics	178
414	Fdbk Device Type	Speed Feedback	135
418	Real FF PID	PID Control	160
420	Encoder Speed	Speed Meters	124
421	PD Output PID	PD Control	159
422	Fdbk Option ID	Speed Feedback	135
423	Reslvr Type Sel	Speed Feedback	136
424	Reslvr Spd Ratio	Speed Feedback	136
425	Resolver Config	Speed Feedback	137
426	Resolver Status	Speed Feedback	138
427	Reslvr Position	Speed Feedback	138
428	Resolver Speed	Speed Meters	124
429	Resolver Pos Sel	Speed Feedback	138
430	Resolver Spd Sel	Speed Feedback	138

No.	Parameter Name	Group	Page
431	Reslvr Cable Bal	Speed Feedback	138
432	Reslvr Error Cnt	Diagnostics	178
433	Total Inertia	Speed Regulator	149
434	Spd Reg BW	Speed Regulator	149
435	Act Spd Reg BW	Speed Regulator	150
436	Spd Reg Damping	Speed Regulator	150
444	Spd Reg P Filter	Speed Regulator	150
445	Spd Up Gain Pct	Speed Regulator	150
446	Speed Up Base	Speed Regulator	150
447	Speed Up Filter	Speed Regulator	150
448	SpdReg BW Bypass	Speed Regulator	150
452	CurrReg Autotune	Autotune	140
453	Arm Resistance	Autotune	140
454	Arm Inductance	Autotune	140
455	Spd FB Loss Lvl	Speed Feedback	138
456	Fld Weaken Ratio	Field Config	130
457	Spd Fdbk Control	Speed Feedback	139
458	SpdReg FB Bypass	Speed Feedback	139
459	SpdReg Kp Bypass	Speed Regulator	150
460	SpdReg Ki Bypass	Speed Regulator	151
461	Spd Fdbk Invert	Speed Feedback	139
462	Flux Divide	Field Config	130
463	Flux Filter BW	Field Config	130
464	SAR Volts Scale	Motor Data	129
465	Drive Size	Drive Data	127
466	AC Line Voltage	Drive Data	127
467	Max Fld Flux Pct	Field Config	130
468	Min Fld Curr Pct	Field Config	131
469	Field Mode Sel	Field Config	131
470	UnderVIt Flt Dly	Alarms	183
473	FIdLoss Flt Cfg	Alarms	183
475	FldLoss Flt Dly	Alarms	183
476	Field Curve Out	Current Meters	126
478	Spd Loss Flt Cfg	Alarms	183
479	MtrOvrld Flt Cfg	Alarms	183
481	UnderVolt Thresh	Alarms	183
484	Scale1 Input	Scale Blocks	172
485	Scale1 Output	Scale Blocks	172
486	Scale1 Mul	Scale Blocks	172
487	Scale1 Div	Scale Blocks	172
488	Scale1 In Max	Scale Blocks	172
489	Scale1 In Min	Scale Blocks	172
490	Scale1 In 0ff	Scale Blocks	173
491	Scale1 0ut Off	Scale Blocks	173
492	Scale1 In Abs	Scale Blocks	173
493	Arm Volt Kp	Field Config	131
494	Arm Volt Ki	Field Config	131
495	Arm Volt Kp Base	Field Config	131
496	Arm Volt Ki Base	Field Config	131
497	Field Reg Enable	Field Config	131

Chapter 3

No.	Parameter Name	Group	Page
498	Force Min Field	Field Config	132
499	Field Economy En	Field Config	132
500	Flux Ref Pct	Current Meters	126
503	UserDefined0	User Defined	186
504	UserDefined1	User Defined	186
505	UserDefined2	User Defined	186
506	UserDefined3	User Defined	186
507	UserDefined4	User Defined	186
508	UserDefined5	User Defined	186
509	UserDefined6	User Defined	186
510	UserDefined7	User Defined	186
511	UserDefined8	User Defined	186
512	UserDefined9	User Defined	186
513	UserDefined10	User Defined	186
514	UserDefined11	User Defined	186
515	UserDefined12	User Defined	186
516	UserDefined13	User Defined	186
517	UserDefined14	User Defined	186
518	UserDefined15	User Defined	186
519	UsrDefBitWrdA	User Defined	186
520	UsrDefBitWrdA0	User Defined	187
521	UsrDefBitWrdA1	User Defined	187
522	UsrDefBitWrdA2	User Defined	187
523	UsrDefBitWrdA3	User Defined	187
524	UsrDefBitWrdA4	User Defined	187
525	UsrDefBitWrdA5	User Defined	187
526	UsrDefBitWrdA6	User Defined	187
527	UsrDefBitWrdA7	User Defined	187
528	UsrDefBitWrdA8	User Defined	187
529	UsrDefBitWrdA9	User Defined	187
530	UsrDefBitWrdA10	User Defined	187
531	UsrDefBitWrdA11	User Defined	187
532	UsrDefBitWrdA12	User Defined	187
533	UsrDefBitWrdA13	User Defined	187
534	UsrDefBitWrdA14	User Defined	187
535	UsrDefBitWrdA15	User Defined	187
536	UsrDefBitWrdB	User Defined	187
537	UsrDefBitWrdB0	User Defined	188
538	UsrDefBitWrdB1	User Defined	188
539	UsrDefBitWrdB2	User Defined	188
540	UsrDefBitWrdB3	User Defined	188
541	UsrDefBitWrdB4	User Defined	188
542	UsrDefBitWrdB5	User Defined	188
543	UsrDefBitWrdB6	User Defined	188
544	UsrDefBitWrdB7	User Defined	188
545	UsrDefBitWrdB8	User Defined	188
546	UsrDefBitWrdB9	User Defined	188
547	UsrDefBitWrdB10	User Defined	188
548	UsrDefBitWrdB11	User Defined	188
549	UsrDefBitWrdB12	User Defined	188

No.	Parameter Name	Group	Page
550	UsrDefBitWrdB13	User Defined	188
551	UsrDefBitWrdB14	User Defined	188
552	UsrDefBitWrdB15	User Defined	188
553	Scale2 Input	Scale Blocks	172
554	Scale2 Output	Scale Blocks	172
555	Scale2 Mul	Scale Blocks	172
556	Scale2 Div	Scale Blocks	172
557	Scale2 In Max	Scale Blocks	172
558	Scale2 In Min	Scale Blocks	172
559	Scale2 In Off	Scale Blocks	173
560	Scale2 0ut Off	Scale Blocks	173
561	Scale2 In Abs	Scale Blocks	173
562	Anlg Tach Gain	Speed Feedback	139
563	Feedback Offset	Speed Feedback	139
564	Dig In Status	Digital Inputs	199
565	Dig In Term 1	Digital Inputs	199
566	Dig In Term 2	Digital Inputs	199
567	Dig In Term 3	Digital Inputs	$\underline{199}$
568	Dig In Term 4	Digital Inputs	199
569	Dig In Term 5	Digital Inputs	199
570	Dig In Term 6	Digital Inputs	199
571	Dig In Term 7	Digital Inputs	199
572	Dig In Term 8	Digital Inputs	199
573	Dig In Term 9	Digital Inputs	199
574	Dig In Term 10	Digital Inputs	199
575	Dig In Term 11	Digital Inputs	199
576	Dig In Term 12	Digital Inputs	199
581	Dig Out Status	Digital Outputs	$\underline{202}$
584	OverCurrent Thr	Alarms	183
585	Overspeed Val	Alarms	184
587	I Reg Error	Autotune	140
588	ACLine Freq	Drive Data	127
589	DPI Baud Rate	Comm Control	188
590	DPI Port Sel	Comm Control	188
591	Logic Mask	Masks \& Owners Security	$\begin{aligned} & 188 \\ & \hline 190 \\ & \hline \end{aligned}$
592	Start Mask	Masks \& Owners	188
593	Jog Mask	Masks \& Owners	189
594	Direction Mask	Masks \& Owners	189
595	Reference Mask	Masks \& Owners	189
596	Accel Mask	Masks \& Owners	$\underline{189}$
597	Fault Clr Mask	Masks \& Owners	189
598	MOP Mask	Masks \& Owners	189
599	Local Mask	Masks \& Owners	189
600	Stop Owner	Masks \& Owners	189
601	Start 0wner	Masks \& Owners	189
602	Jog 0wner	Masks \& Owners	189
603	Direction Owner	Masks \& Owners	189
604	Reference 0wner	Masks \& Owners	$\underline{189}$
605	Accel Owner	Masks \& Owners	189

No.	Parameter Name	Group	Page
606	Fault Clr Owner	Masks \& Owners	$\underline{189}$
607	MOP Owner	Masks \& Owners	189
608	Local Owner	Masks \& Owners	189
609	Decel Owner	Masks \& Owners	189
610	Data In A1	Datalinks	190
611	Data In A2	Datalinks	190
612	Data \ln B1	Datalinks	190
613	Data $\ln \mathrm{B} 2$	Datalinks	190
614	Data In C1	Datalinks	190
615	Data In C2	Datalinks	0
616	Data In D1	Datalinks	190
617	Data In D2	Datalinks	190
618	Data 0ut A1	Datalinks	190
619	Data Out A2	Datalinks	190
620	Data Out B1	Datalinks	0
621	Data Out B2	Datalinks	190
622	Data Out C1	Datalinks	190
623	Data Out C2	Datalinks	190
624	Data 0ut D1	Datalinks	190
625	Data Out D2	Datalinks	190
627	Spd 0 Trip Delay	Stop Modes	155
629	Relay Out 2 Sel	Digital Outputs	202
631	Decel Mask	Masks \& Owners	190
643	SpdReg AntiBckup	Speed Regulator	151
651	Spd Fdbk State	Diagnostics	178
652	Encoder Err Chk	Speed Feedback	139
660	Accel Time 1	Ramp Rates	154
662	Decel Time 1	Ramp Rates	154
665	S Curve Accel 1	Ramp Rates	154
666	S Curve Decel 1	Ramp Rates	154
667	S Curve Accel 2	Ramp Rates	154
668	S Curve Decel 2	Ramp Rates	154
695	PI Steady Thr	PI Control	158
696	Droop Percent	Load Limits	154
697	Droop Filter	Load Limits	154
698	Load Comp	Load Limits	154
699	Enable Droop	Load Limits	155
700	Droop Limit	Load Limits	155
715	Torq Limit Type	Load Limits	155
731	PID Steady Delay	PI Control	158
734	PI Init Intgl Gn	PI Control	158
750	TrqTpr Enable	Torq Attributes	134
751	TrqTpr Lim0	Torq Attributes	134
752	TrqTpr Lim1	Torq Attributes	134
753	TrqTpr Lim2	Torq Attributes	134
754	TrqTpr Lim3	Torq Attributes	134
755	TrqTpr Lim4	Torq Attributes	134
756	TrqTpr Spd	Torq Attributes	134
757	PID Clamp	PID Control	160
758	Feed Fwd PID	PID Control	160

No.	Parameter Name	Group	Page
759	PID Error	PID Control	160
760	PID Setpoint 0	PID Control	160
761	PID Setpoint 1	PID Control	160
762	PID Setpoint Sel	PID Control	160
763	PID Feedback	PID Control	161
764	PI Integral Gain	PI Control	158
765	PI Prop Gain PID	PI Control	158
766	PD Deriv Gain 1	PD Control	159
767	PD Deriv Filter	PD Control	159
768	PD Prop Gain 1	PD Control	160
769	Enable PI	PI Control	158
770	Enable PD	PD Control	160
771	PI Output	PI Control	158
772	PID Output Sign	PID Control	161
773	PID Output Scale	PID Control	161
774	PID Output	PID Control	161
776	PI Central v1	PI Control	158
777	PI Central v2	PI Control	158
778	PI Central v3	PI Control	158
779	PI Central v sel	PI Control	159
780	PI Central vs0	PI Control	159
781	PI Central vs1	PI Control	159
782	PID Target	PID Control	161
783	Pl integr freeze	PI Control	159
784	PI Upper Limit	PI Control	159
785	PI Lower Limit	PI Control	159
786	PID Source	PID Control	162
787	PID Source Gain	PID Control	162
788	PD Prop Gain 2	PD Control	160
789	PD Deriv Gain 2	PD Control	160
790	PD Prop Gain 3	PD Control	160
791	PD Deriv Gain 3	PD Control	160
792	Anlg In 1 Filter	Analog Inputs	193
793	PI Init Prop Gn	PI Control	159
794	Diameter Calc	Init Diam Calc	162
795	DncrPosSpd	Init Diam Calc	162
796	Max Deviation	Init Diam Calc	162
797	Gear Box Ratio	Init Diam Calc	162
798	Dancer Constant	Init Diam Calc	163
799	Minimum Diameter	Init Diam Calc Diameter Calc	163
800	Diameter Calc St	Init Diam Calc	163
801	Anlg In2 Filter	Analog Inputs	193
802	Anlg ln3 Filter	Analog Inputs	193
914	Spd FB Filt Gain	Speed Feedback	140
915	Spd FB Filt BW	Speed Feedback	140
916	Fld Const 40 Pct	Field Config	132
917	Fld Const 70 Pct	Field Config	132
918	Fld Const 90 Pct	Field Config	132
919	Set Fld Curve	Field Config	132

No.	Parameter Name	Group	Page
1112	MicroPsnScalePct	Torque Prove	171
1113	ZeroSpdFloatTime	Torque Prove	172
1114	Brake Test Torq	Torque Prove	172
1153	Max Diameter	Diameter Calc	163
1154	Roll Diameter	Diameter Calc	163
1155	Line Spd Thresh	Diameter Calc	163
1156	Line Spd Gain	Diameter Calc	163
1157	Diameter Reset	Diameter Calc	163
1158	Diam Threshold	Diameter Calc	163
1159	Diameter Reached	Diameter Calc	163
1160	Line Speed Pct	Diameter Calc	163
1161	Diam Calc Dis	Diameter Calc	163
1162	Diameter Filter	Diameter Calc	164
1163	Base Omega	Diameter Calc	164
1164	Diam Preset 0	Diameter Calc	164
1165	Diam Preset 1	Diameter Calc	164
1166	Diam Preset 2	Diameter Calc	164
1167	Diam Preset 3	Diameter Calc	164
1168	Diam Preset Sel	Diameter Calc	164
1171	Variable J Comp	Winder Functions	165
1172	Constant J Comp	Winder Functions	165
1173	Materl Width Pct	Winder Functions	165
1174	Static Friction	Winder Functions	165
1175	Dynamic Friction	Winder Functions	165
1176	Taper Enable	Winder Functions	166
1177	Initial Diameter	Winder Functions	166
1178	Final Diameter	Winder Functions	166
1179	Tension Reduct	Winder Functions	166
1180	Tension Ref	Winder Functions	166
1181	Tension Scale	Winder Functions	166
1182	Time AccDec Min	Winder Functions	166
1183	Int Acc Calc En	Winder Functions	166
1184	Line Accel Pct	Winder Functions	166
1185	Line Decel Pct	Winder Functions	166
1186	Line FastStp Pct	Winder Functions	166
1187	Winder Type	Diameter Calc	164
1188	Accel Status	Winder Functions	166

Chapter 3

No.	Parameter Name	Group	Page
1189	Decel Status	Winder Functions	$\underline{166}$
1190	Fast Stop Status	Diagnostics	166
1191	InertiaCompCnst	Winder Functions	167
1192	InertiaCompVar	Winder Functions	167
1193	Torq Current Pct	Winder Functions	167
1194	Act Ten Ref Pct	Winder Functions	167
1195	Speed Match	Winder Functions	167
1196	Spd Match Acc	Winder Functions	167
1197	Spd Match Dec	Winder Functions	167
1198	Offs Accel Time	Winder Functions	167
1199	W Offset	Winder Functions	167
1200	Spd Match Gain	Winder Functions	167
1201	Winder Side	Winder Functions	167
1202	W Gain	Winder Functions	167
1203	Spd Match Compl	Winder Functions	167
1204	Line Spd Source	Diameter Calc	165
1205	Diam Inc Dec En	Diameter Calc	165
1206	Diam Init Filter	Diameter Calc	165
1207	Diam Stdy Delay	Diameter Calc	165
1208	Close Loop Comp	Winder Functions	167
1209	Torque Winder En	Winder Functions	167
1210	W Target	Winder Functions	168
1212	Acc Dec Filter	Winder Functions	168
1213	Actual Comp	Winder Functions	168
1214	Closed Loop En	Winder Functions	168
1215	Speed Demand En	Winder Functions	168
1216	Spd Match Torque	Winder Functions	168
1217	W Reference	Winder Functions	168
1218	Scale3 Input	Scale Blocks	172
1219	Scale3 Output	Scale Blocks	172
1220	Scale3 Mul	Scale Blocks	172
1221	Scale3 Div	Scale Blocks	172

No.	Parameter Name	Group	Page
1222	Scale3 In Max	Scale Blocks	172
1223	Scale3 In Min	Scale Blocks	172
1224	Scale3 In Off	Scale Blocks	173
1225	Scale3 Out 0ff	Scale Blocks	173
1226	Scale3 In Abs	Scale Blocks	173
1227	Scale4 Input	Scale Blocks	172
1228	Scale4 Output	Scale Blocks	172
1229	Scale4 Mul	Scale Blocks	172
1230	Scale4 Div	Scale Blocks	172
1231	Scale4 In Max	Scale Blocks	172
1232	Scale4 In Min	Scale Blocks	172
1233	Scale4 In Off	Scale Blocks	173
1234	Scale4 0ut Off	Scale Blocks	173
1235	Scale4 In Abs	Scale Blocks	173
1236	Scale5 0utput	Scale Blocks	172
1237	Scale5 Input	Scale Blocks	172
1238	Scale5 Mul	Scale Blocks	172
1239	Scale5 Div	Scale Blocks	172
1240	Scale5 In Max	Scale Blocks	172
1241	Scale5 In Min	Scale Blocks	172
1242	Scale5 In 0ff	Scale Blocks	173
1243	Scale5 0ut 0ff	Scale Blocks	173
1244	Scale5 In Abs	Scale Blocks	173
1245	Scale6 Output	Scale Blocks	172
1246	Scale6 Input	Scale Blocks	172
1247	Scale6 Mul	Scale Blocks	172
1248	Scale6 Div	Scale Blocks	172
1249	Scale6 In Max	Scale Blocks	172
1250	Scale6 In Min	Scale Blocks	172
1251	Scale6 In 0ff	Scale Blocks	173
1252	Scale6 Out Off	Scale Blocks	173
1253	Scale6 In Abs	Scale Blocks	173
1254	PID Error Gain	PID Control	162
1255	Jog TW Speed	Winder Functions	168
1256	Jog TW Enable	Winder Functions	168
1258	Enable PI PD	PID Control	162
1262	Closing Speed	Stop Modes	155
1263	Opening Delay	Stop Modes	155
1265	Ramp In Zero En	Stop Modes	155
1266	Actuator Delay	Stop Modes	155
1267	Inversion Out 1	Digital Outputs	$\underline{202}$
1268	Inversion Out 2	Digital Outputs	$\underline{202}$
1269	Inversion Out 3	Digital Outputs	202
1270	Inversion Out 4	Digital Outputs	202
1271	Inversion 0ut 5	Digital Outputs	202
1272	Inversion Out 6	Digital Outputs	202
1273	Inversion Out 7	Digital Outputs	$\underline{202}$
1274	Inversion Out 8	Digital Outputs	$\underline{202}$

No.	Parameter Name	Group	Page
1275	Inversion Relay2	Digital Outputs	202
1276	Inversion In 1	Digital Inputs	199
1277	Inversion In 2	Digital Inputs	199
1278	Inversion In 3	Digital Inputs	199
1279	Inversion $\ln 4$	Digital Inputs	199
1280	Inversion $\ln 5$	Digital Inputs	199
1281	Inversion $\ln 6$	Digital Inputs	199
1282	Inversion $\ln 7$	Digital Inputs	199
1283	Inversion In 8	Digital Inputs	199
1284	Ref Spd Source	Winder Functions	169
1285	Ref Speed Gain	Winder Functions	169
1286	Ref Line Speed	Winder Functions	169
1287	Static F Zero	Winder Functions	169
1290	Mtr0vrld Status	Diagnostics	178
1319	Data In Val Sel	Datalinks	190
1320	Data In SelData	Datalinks	190
1321	DPI Fdbk Select	Comm Control	188
1322	Direction Mode	Reference Config	$\underline{174}$
1323	DPIP1 Select	DPI Inputs	$\underline{203}$
1324	DPI P2 Select	DPI Inputs	203
1325	DPI P3 Select	DPI Inputs	$\underline{203}$
1326	DPI P4 Select	DPI Inputs	$\underline{203}$
1327	DPI P5 Select	DPI Inputs	203
1328	Drive Logic Rsit	Diagnostics	179
1329	Speed Ref Source	Diagnostics	179
1330	Spd Ref Sel Sts	Diagnostics	$\underline{180}$
1343	DPI Port Value	Comm Control	188
1344	Start At Powerup	Restart Modes	156
1345	Powerup Delay	Restart Modes	156
1347	Fault Clear	Faults	181
1348	Fault Clr Mode	Faults	181
1349	Status1 at Fault	Faults	181
1350	Status2 at Fault	Faults	181
1351	Fault 1 Code	Faults	181
1352	Fault 2 Code	Faults	181
1353	Fault 3 Code	Faults	181
1354	Fault 4 Code	Faults	181
1355	Fault 5 Code	Faults	181
1356	Fault 6 Code	Faults	181
1357	Fault 7 Code	Faults	181
1358	Fault 8 Code	Faults	181
1359	Fault 9 Code	Faults	181
1360	Fault 10 Code	Faults	181
1361	Fault 1 Time	Faults	182
1362	Fault 2 Time	Faults	182
1363	Fault 3 Time	Faults	182
1364	Fault 4 Time	Faults	182

No.	Parameter Name	Group	Page
1365	Fault 5 Time	Faults	182
1366	Fault 6 Time	Faults	182
1367	Fault 7 Time	Faults	182
1368	Fault 8 Time	Faults	182
1369	Fault 9 Time	Faults	182
1370	Fault 10 Time	Faults	182
1371	Fault Arm Amps	Faults	182
1372	Fault Speed	Diagnostics	182
1373	Fault Field Amps	Diagnostics	182
1374	Fault Voltage	Diagnostics	182
1375	MOP Select	Reference Config	174
1376	Logic Mask Act	Security	190
1377	Write Mask Act	Security	191
1378	Write Mask Cfg	Security	191
1379	Port Mask Act	Security	191
1380	Drive Alarm 1	Alarms	184
1381	TestPoint Sel	Diagnostics	180
1382	TestPoint Data	Diagnostics	180
1384	TaskLoad 1 ms	Diagnostics	180
1385	TaskLoad 2 ms	Diagnostics	180
1386	TaskLoad 8 ms	Diagnostics	180
1387	Inversion In 9	Digital Inputs	199
1388	Inversion In 10	Digital Inputs	199
1389	Inversion In 11	Digital Inputs	199
1390	Inversion In 12	Digital Inputs	199
1391	ContactorControl	Digital Inputs	199
1392	Relay Out 1 Sel	Digital Outputs	$\underline{203}$
1393	Inversion Relay1	Digital Outputs	203
1394	Drive Alarm 2	Alarms	184
1402	Last Stop Source	Diagnostics	180
1403	Start Inhibits	Diagnostics	181
1404	Analog ln1 Value	Analog Inputs	194
1405	Analog $\ln 2$ Value	Analog Inputs	194
1406	Analog $\ln 3$ Value	Analog Inputs	194
1407	Field Econ Delay	Field Config	133
1408	Tachometer Speed	Speed Meters	$\underline{125}$
1409	Jog Off Delay	Discrete Speeds	146
1410	Jog Ramp Time	Ramp Rates	154

Notes:

Troubleshooting

Topic	Page
Faults and Alarms	$\underline{217}$
Drive Status	$\underline{218}$
Manually Clearing Faults	$\underline{219}$
Fault Descriptions	$\underline{220}$
How to Clear an Alarm	$\underline{226}$
Alarm Descriptions	$\underline{226}$
Common Drive Symptoms and Corrective Actions	$\underline{229}$
Testpoint Codes and Functions	$\underline{\underline{231}}$

This chapter provides information to guide you in troubleshooting the PowerFlex DC drive. Included is a listing and description of drive faults (with possible solutions, when applicable) and alarms.

Faults and Alarms

A fault is a condition that always stops the drive and prevents it from starting until the fault condition is corrected. There are two fault types.

Type	Description	$\|$This type of fault allows you to configure a parameter to determine how the drive responds to the error condition. - When the parameter is configured for a fault, the following events occur. a. The drive stops b. The error condition is displayed on the HIM or signalled via a programmed digital output c. The drive is not allowed to start until the fault condition is corrected - When the parameter is configured for an alarm, the following events occur. a. The error condition is displayed on the HIM or signalled via a programmed digital output b. The drive continues to run and/or be allowed to start. - When the parameter is configured for ignore or disable, the drive does not recognize the error condition. In this case, the error condition does not display on the HIM or is not signalled via a programmed digital output.
2	User Configuable	

An alarm indicates a drive error condition that does not stop the drive, but can prevent it from starting. There are two types of alarms.

Type	Description	
1	User Configurable	This type of alarm indicates a drive error condition but does not stop the drive from starting or running. However, if this type of alarm is left uncorrected, a fault condition can eventually occur.
2	Non-Configurable	This type of alarm is always enabled and prevents the drive from starting until the alarm condition is corrected.

The condition or state of your drive is constantly monitored. Any changes are indicated through the status indicators and/or the HIM (if present).

Figure 65 - Drive Status Indicators

\#	Name	Color	State	Description
1	STS (Status)	Green	Flashing	Drive ready, but not running and no faults are present.
			Steady	Drive running, no faults are present.
		Yellow	Flashing, Drive Stopped	A condition exists that is preventing the drive from starting. Check parameter 1403 [Start Inhibits] and 1380 [Drive Alarm 1].
			Flashing, Drive Running	An intermittent type 1 alarm condition is occurring. Check parameter 1380 [Drive Alarm 1]. See Fault Descriptions on page 220 and/or Alarm Descriptions on page 226.
			Steady, Drive Running	A continuous type 1 alarm condition exists. Check parameter 1380 [Drive Alarm 1]. See Fault Descriptions on page 220 and/or Alarm Descriptions on page 226 .
		Red	Flashing	A fault has occurred. Check [Fault x Code] or view the Fault Queue on the HIM. See Fault Descriptions on page 220.
			Steady	A non-resettable, non-configurable fault has occurred. Check [Fault x Code] or view the Fault Queue on the HIM. See Fault Descriptions on page 220.
2	PORT	See the Communication Adapter User Manual.		Status of DPI port internal communication (if present).
	MOD			Status of communication module (when installed).
	NET A			Status of network (if connected).
	NET B			Status of secondary network (if connected).

HIM Indicators

The LCD HIM also provides visual notification of a fault or alarm condition.

Condition	Display
The drive is indicating a fault. The LCD HIM immediately reports the fault condition by displaying the following: - "Faulted" appears in the status line - Fault number - Fault name - Time that has passed since the fault occurred Press "Esc" to regain HIM control.	F \rightarrow Faulted $\quad \mid$ Auto - Fault - F 5 Arm OverVoltage Time Since Fault 0000:23:52
The drive is indicating an alarm. The LCD HIM immediately reports the alarm condition by displaying the following: - Alarm name - Alarm bell graphic	F $\rightarrow \mid$ DigInCflctA \mid.iti\|Auto \mid 0.0 rpm Main Menu: Diagnostics Parameter Device Select

Manually Clearing Faults

Step	Key
1. Press "Esc" to acknowledge the fault. The fault information is removed so that you can use	
the HIM.	
2. Address the condition that caused the fault.	
The cause must be corrected before the fault can be cleared.	
3. After corrective action has been taken, clear the fault by one of these methods.	
- Press "top"	
- Cycle drive power	
- Set parameter 1347 [Fault Clear] to 1 "Clear Faults"	
. "Clear Faults" on the HIM Diagnostic menu	

Fault Descriptions

Table 41 - Fault Types, Descriptions, and Actions

Fault Name	Number	Type ${ }^{(1)}$	Description/Possible Cause	Action
AC Undervoltage	4	2	There is an undervoltage on the power circuit (can only occur while the drive is active, i.e., running or jogging). Possible causes include:	
			- Par 481 [UnderVolt Thresh] is set incorrectly (possibly set to 400 V when the drive is rated for 230 V input power).	Set Par 481 [UnderVolt Thresh] correctly and then reset the drive via Par 1347 [Fault Clear].
			- The incoming voltage to the power terminals (U/V/W) of the drive is too low due to: - The AC input voltage is too low or one phase is missing. - There are poor cable connections (for example terminals on contactor, choke, filter, is not properly connected).	- Verify AC input power level. - Check all connections.
			- The line fuses have tripped. - The AC input voltage dips or there is a high disturbance in the supply voltage.	1. Remove power from the drive. 2. Eliminate $A C$ input voltage dips and/or disturbances. 3. Replace any blown fuses.
			- A fuse or fuses on the overvoltage clipping board has blown (frame D drives only).	Check the fuses on the overvoltage clipping board and replace as necessary.
			Note: This fault also occurs if the control board is separately powered and started without AC input voltage.	
Arm Overvoltage	5	1	There is an overvoltage on the armature circuit (125% of Par 175). Possible causes include:	
			- Par 175 [Rated Motor Volt] is set too low.	Set Par 175 [Rated Motor Volt] correctly.
			- The drive is not configured to use field weakening, but the motor can only reach the set speed when the drive is in field weakening mode.	Check the value of Par 469 [Field Mode Sel] and set accordingly.
			Note: Configure with Par 203 [OverVolt Flt Cfg].	
Auxiliary Input	2	1	An auxiliary input interlock is open or a voltage (15...30V) or reference signal is missing for the digital input set to 14 "Aux Fault". Note: Configure with Par 354 [Aux Inp Flt Cfg].	Check remote wiring.
Drive Overload	64	2	The rated drive current (Par 465 [Drive Size]) was exceeded by 150% for 1 minute.	Reduce the drive current limits.
Dsp Error	132	2	A non-resettable software error exists on the control board.	Cycle power to the drive. If the problem persists, replace the control board.
EEPROM Error	100	2	One of the following has occurred: - Parameter values could not be saved. - The control board was replaced and DIP switch S15 is set incorrectly for the drive size. - You have upgraded from one major firmware revision to another (for example, v2.xxx to v3.xxx). Note: When this fault occurs, all parameters are reset to the default value.	1. If the control board is new, verify that DIP switch $S 15$ is set correctly. See DIP Switch S15 Settings on page $\underline{7}$. 2. Reset the fault. 3. If this fault occurs again, cycle power to the drive. 4. If the problem persists, replace the control board.
Encoder Error	92	2	An error was detected with the Encoder signal while it was configured for use by the drive.	1. Verify the encoder wiring. 2. Verify the encoder configuration in Par 652 [Encoder Err Chk] and the setting of DIP switches S20 and S21 (See DIP Switch and Jumper Settings on page 75). 3. Verify the encoder power supply.
Fld Current Loss	6	1	The field current is too low (less than 50\% of Par 468). Possible causes include:	
			- The field current regulator is not enabled.	Enable the field current regulator via Par 497 [Field Reg Enable].
			- The conductors in the field circuit have been interrupted.	Check the motor field wiring. Measure the resistance of the motor and verify that it matches motor nameplate data.
			- The field fuses are currently open.	Check the field fuses and replace as necessary.
			Note: Configure with Par 473 [FIdLoss Flt Cfg].	
Fwd End Limit	95	2	An end limit for the forward direction has been reached. When the end limit is reached, the assigned contacts open and a drive current-limit stop occurs.	This fault is always enabled when assigned to a digital input (see Pars 133. . . 144). If digital limits (hardware signals) are in use, verify that the digital inputs are connected to normally closed contacts.
Fwd Over Travel	97	2	A forward direction over travel signal has occurred, causing the drive to coast to a stop.	This fault is always enabled when assigned to a digital input (see Pars 133. . . 144).
Hardware Fault	130	2	A non-resettable hardware error has occurred.	Cycle power to the drive. If the problem persists, replace the control board.

Fault Name	Number	Type ${ }^{(1)}$	Description/Possible Cause	Action
Heatsink OvrTemp	8	2	The heatsink temperature is too high Possible causes include:	
			- The surrounding air temperature is too high.	Lower the surrounding air temperature.
			- The drive cooling fans have failed (drives > 110 A).	Check the fan fuses and fans. - If the fan fuses have failed, replace the fuses. (The fans are protected by the fuses in the power supply circuit and are contained on the switching power supply circuit board in frame A and B drives only. See Control Power Circuit Protection Fuses on page 252.) - If the fans have failed, replace the fans.
			- The heatsink is dirty.	Clean the heatsink.
Interrupt Error	131	2	A non-resettable software error has occurred in the main application.	Report this error to Rockwell Automation Technical Support.
Inverting Fault	37	2	A digital input (Pars 133...144) configured as 64 "Invert Flt" has been removed.	Check the status of the inverting fault device that is connected to the digital input.
Main Contactor	10	2	One of the following has occurred: - The Main and/or Dynamic Brake (DB) contactor failed to open or close in the proper amount of time (960 ms). - A digital input and/or relay output 1 is incorrectly wired and/or configured. - Wiring to a digital input configured for contactor has opened.	- Check all contactor wiring and drive jumpers. Repair or replace the contactor or contactors if the problem persist. - Check the digital input and/or relay output 1 (terminals 35 and 36) wiring and configuration using Pars 1391 [ContactorControl], 1392 [Relay Out 1 Sel] and [Digital Inx Sel]. See Contactors on page 30 for more information.
Motor Overload	7	1	The selected motor overload current level (set in Par 179 [Nom Mtr Arm Amps]) has been exceeded. The limits are based on the value of Par 376 [MtrOvrld Type]. 0 "StandardDuty" is 150% for 60 sec . or 200% for 3 sec .1 "HeavyDuty" is 200% for 1 minute (250% for 30 sec).	Reduce the motor load, current limits, and/or ramp times.
			Note: Configurable with Par 479 [Mtr0vrld Flt Cfg].	
Motor Over Temp	16	1	The motor has exceeded its temperature rating (as signaled by the thermistor that is connected to the drive terminals 78 and 79). Possible causes include:	
			- The motor does not have a thermistor and there is no resistor between terminals 78 and 79 on the drive.	See Thermistors and Thermal Switches on page 62 for configuration information.
			- The cable between the thermistor connection on the motor and terminals 78 and 79 on the drive has been broken.	Check and repair any damage to or loss of connection of the thermistor cables between the motor and drive.
			- Possible causes for motor overheating can also include one of the conditions that are listed here: - The load cycle is too extreme. - The surrounding air temperature at the site of the motor is too high. - The external fan motor has failed. - The motor does not have an external fan and the load is too large at low speeds. - The cooling effect of the internal fan on the motor shaft is too low for the load cycle.	Reduce the load. Reduce the surrounding air temperature. Replace the motor fan. Reduce the load cycle or fit the motor with an external fan. Reduce the load cycle or fit the motor with an external fan.
			Note: Configure with Par 365 [0verTemp Flt Cfg].	
No Fault	0	-	When present in the fault queue in the drive only, this fault indicates that there are currently no faults in the drive.	Informational only.
		2	When displayed on the HIM, this fault can indicate one of the following issues: - The SA-SB terminal on a frame B or C drive is incorrectly configured. - There is a possible problem with the control power.	For frame B or C drives only, verify that terminal $S A-S B$ is properly configured for the control circuit input power input voltage used. See Control Circuit Input Power on page 65.
Open SCR	90	1	An open SCR fault condition has been detected. This fault can only occur when Par 213 [SCR Diag Test En], bit 0 "OpenSCR Tst" is set ($=1$) and Par 216 [OpenSCR Flt Cfg] is set to "Fault" (2). The SCR (or SCR pair) that caused the fault are shown in Par 214 [SCR Diag Status].	- Verify that the correct values are set in Pars 217 [Open SCR Threshld] and 218 [OpenSCR Trip Lvl]. - Replace the failed SCR devices.

Fault Name	Number	Type ${ }^{(1)}$	Description/Possible Cause	Action
Overcurrent	13	1	An overcurrent has occurred in the motor circuit. Possible causes include:	
			- There is a short-circuit or ground fault at the output of the drive.	Verify that the armature circuit wiring is correct.
			- The current regulator was not properly fine-tuned.	See Tune the Current Regulator on page 100.
			- The value of Par 584 [0verCurrent Thr] is too low.	Increase the value of Par 584 [0verCurrent Thr] accordingly.
Overspeed	25	2	The encoder or tachometer feedback indicated a speed that is more than the value of Par 585 [Overspeed Val].	Remove the excessive load or overhauling conditions or increase the value of Par 585 [Overspeed Val].
			Note: Configurable with Par 585 [0verspeed Val].	
Params Defaulted	48	2	User parameters have been reset to their default values.	Informational only.
Port 1... 5 Adapter	71... 75	2	The communication card has a fault.	Check the DPI device event queue and fault information for the device.
Port 1... 5 DPI Loss	81... 85	2	The DPI port stopped communicating.	1. Check the HIM connection. 2. If adapter was not intentionally disconnected, check the wiring to the port. Replace the wiring, port expander, adapters, control board, or complete drive as required. 3. If an adapter was intentionally disconnected and the bit for that adapter in Par 591 [Logic Mask] is set to "1", this fault occurs. To disable this fault, set the appropriate bit in [Logic Mask] for the adapter to "0."
Power Failure	3	2	Possible causes include:	
			IMPORTANT Remove power from the drive fuses.	before removing the $\mathrm{I} / 0$ terminal blocks and/or
			There is a fault in the 24 V control board supply - the voltage is below the permitted value. In most cases, the cause of this fault is a problem with the external I/0 wiring.	- Pull the plug-in I/O terminal blocks out of the control circuit board and reset the drive via 1347 [Fault Clear]. If there are no other faults, check the I/0 wiring for a short-circuit including the cable shielding. - Check fuses F1 and F2 on the switching power supply circuit board (frame A size drives only have one fuse - F1). Replace as necessary.* - Check varistor fuses F1, F2, and F3 on the pulse transformer or Transient Noise Filter circuit boards for Frame C size drives. Replace as necessary.* - If this fault occurs again, an internal fault can be present. Contact your Rockwell Automation sales office. *Note: See Control Power Circuit Protection Fuses on page 252 for fuse size information.
			The incoming voltage to the control power terminals (U2, V2) is too low due to: - The AC input voltage is too low - There are poor cable connections. - The fuse or fuses on the switching power supply circuit board have blown.	- Verify AC input power level. - Check all connections. - Check and replace the fuse or fuses if necessary.
Resolver Error	93	2	An error was detected with the resolver signal while it was configured for use by the drive.	1. Verify the resolver wiring. 2. Verify the resolver configuration in Pars 423 [Reslvr Type Sel], 424 [Reslvr Spd Ratio], and 425 [Resolver Config]. 3. Verify the resolver power supply.
Rev End Limit	96	2	An end limit for the reverse direction has been reached. When the end limit is reached, the contacts open and a drive current-limit stop occurs.	This fault is always enabled when assigned to a digital input (see Pars 133...144). If digital limits (hardware signals) are in use, verify that the digital inputs are connected to normally closed contacts.
Rev Over Travel	98	2	A reverse direction over travel signal has occurred, causing the drive to coast to a stop.	This fault is always enabled when assigned to a digital input (see Pars 133...144).
Shorted SCR	89	2	A shorted SCR fault condition has been detected. This fault can only occur when Par 213 [SCR Diag Test En], bit 1 "OpenSCR Tst" is set (=1). The SCR (or SCR pair) that caused the fault are shown in Par 214 [SCR Diag Status].	Replace failed SCR device or devices.

Fault Name	Number	Type ${ }^{(1)}$	Description/Possible Cause	Action
Spd Fdbk Loss	91	1	The speed feedback device is indicating a value that is less than 5\% of Par 162 [Max Feedback Spd]. However, the measured armature voltage is greater than the value of Par 455 [Spd FB Loss Lvl].	
			Possible causes include:	
			- The conductors of the feedback signal have been interrupted.	Current from one or more of the feedback device wires is not reaching the drive. Check the feedback device wiring.
			- One or several encoder/resolver channels are missing (conductor interruption, no power supply).	Check the encoder/resolver connections and power supply.
			- The motor voltage is incorrect.	1. Verify that Par 175 [Rated Motor Volt] is set correctly 2. Tune the motor.
			- The ramp rate is too fast for the connected load.	1. Reduce the load. 2. Reduce the ramp rate.
			- Field Weakening is set incorrectly.	Verify that the value of Par 456 [FId Weaken Ratio] is set properly.
			The encoder or resolver configuration is incorrect.	1. For encoder feedback, verify the setting of DIP switch S20 (see page 76) and Par 652 [Encoder Err Chk]. 2. Verify that the connected encoder provides the input and output voltage as determined by DIP switch S21 (see page 76). 3. For resolver feedback, verify that Par 426 [Resolver Status] is not indicating any errors.
			Note: This fault condition can be configured to produce an alarm with Par 478 [Spd Loss Flt Cfg].	
STune Aborted	62	2	The speed regulator auto tuning procedure was stopped manually.	Informational only.
STune CurLimit	59	2	One of the following has occurred:	
			- The value of Par 1048 [Autotune Cur Lim] for auto tuning the speed regulator is set too high.	Decrease the value of Par 1048 [Autotune Cur Lim] and repeat the auto tune procedure.
			- Par 107 [Speed Zero Level] and/or 108 [Speed Zero Delay] is set too high.	Set Pars 107 and 108 to their default values when performing the Speed Loop Autotuning function.
STune FrictionLo	60	2	The friction value that is attained during the auto tuning procedure is zero or lower than the control precision limit.	Decrease the value of Par 1048 [Autotune Cur Lim] and repeat the auto tune procedure.
STune LoadHi	58	2	One of the following has occurred:	
			- The loading torque value is too high at zero speed to complete the speed regulator auto tuning procedure.	Decrease the load torque, where applicable, and repeat the auto tune procedure.
			- Par 107 [Speed Zero Level] and/or 108 [Speed Zero Delay] is set too high.	Set Pars 107 and 108 to their default values when performing the Speed Loop Autotuning function.
STune Overspeed	56	2	The measured motor speed is too high during the speed regulator auto tuning procedure.	Decrease the value of Par 1048 [Autotune Cur Lim] and repeat the auto tune procedure.
STune Stalled	57	2	The drive stalled during the speed regulator auto tuning procedure.	Increase the value of Par 1048 [Autotune Cur Lim] and repeat the auto tune procedure.
STune Timeout	61	2	The speed regulator auto tuning procedure did not complete within the available time or the current regulator auto tuning procedure did not complete within 15 minutes.	Verify the value of Par 1048 [Autotune Cur Lim]. If the value of Par 1048 is set too low, the test cannot finish. The autotune procedure can only finish when the motor has enough time to reach a maximum speed of 33% of the lowest of one of these parameters: - Par 45 [Max Ref Speed] - Par 3 [Max Speed Fwd] - Par 4 [Max Speed Rev] Set the value of these parameters appropriately and repeat the auto tuning procedure.
Sustained Curr	70	2	One of the following has occurred: - The motor CEMF is too high or the line voltage is too low - A current bridge change command has not completed within 1 second	- Check the line voltage and frequency. - Check the motor brushes and connections. - Check the main and DB contactor connections if present. - Verify that there are no overhauling loads present.

Fault Name	Number	Type ${ }^{(1)}$	Description/Possible Cause	Action
TorgPrv Spd Band	94	2	The difference between the commanded speed and the encoder/resolver speed has exceeded the level set in Par 1105 [Speed Dev Band] for a time period greater than that value specified in Par 1106 [Spd Band Intgrtr]. This fault is only enabled when Par 1100 [Torq Prove Cfg], bit 0 "TP Enable" is set and causes the drive to coast to a stop. Possible causes include:	
			- Speed loop tuning is not correct.	Increase Par 434 [Spd Reg BW] or Par 433 [Total Inertia]. If these values are set too high, the speed regulator becomes unstable.
			- The drive is operating under a current limit.	Raise the current limit set in Par $\underline{\underline{Z}}$ [Current Limit]. If this value is set too high, a motor overload can occur.
			- Drive acceleration/deceleration rates are too fast.	Reduce the acceleration/deceleration rates.
			- The brake is not releasing.	Check brake wiring and operation.
			- The motor field is not reaching the rated value.	Check that the motor field is wired and configured correctly.
			The drive is undersized.	Reduce the load.
Travel Lim Cflct	99	2	Travel limits are in conflict. Both the forward and reverse travel limits indicate that they are simultaneously active, causing a drive current-limit stop.	- If digital limits (hardware signals) are in use, verify that the following forward and reverse digital input pairs are not both off simultaneously: fwd/rev decel travel limit digital inputs and fwd/rev end stop travel limit digital inputs (see Pars 133 . . 144). The travel limit digital inputs are meant to be connected to normally closed switch contacts, so the digital input status reads an off ($0=$ False) bit status when the machine is on limit and the switch contact opens. A possible cause for this condition is loss of common power to both the forward and reverse travel limit switches. - If software travel limits are in use, check the state of the fwd/rev travel limit bits in Par 1101 [Torq Prov Setup]. These bits are on (1) when the machine is on limit. Bit 2 "Decel Fwd" and bit 4 "Decel Rev" must not be on simultaneously. Similarly, Bit 3 "End Stop Fwd" and bit 5 "End Stop Rev" must not be on simultaneously.

(1) See page 217 for a description of fault types.

Table 42 - Fault Cross Reference by Number

No. ${ }^{(1)}$	Fault	No. ${ }^{(1)}$	Fault
$\underline{2}$	Auxiliary Input	81...85	Port 1 DPI Loss
$\underline{3}$	Power Failure		Port 2 DPI Loss
$\underline{4}$	AC Undervoltage		Port 3 DPI Loss
$\underline{5}$	Arm Overvoltage		Port 4 DPI Loss
$\underline{6}$	Fld Current Loss		Port 5 DPI Loss
$\underline{7}$	Motor Overload	89	Shorted SCR
$\underline{8}$	Heatsink OvrTemp	$\underline{90}$	Open SCR
10	Main Contactor	91	Speed Fdbk Loss
$\underline{13}$	Overcurrent	$\underline{92}$	Encoder Error
16	Motor Over Temp	$\underline{93}$	Resolver Error
$\underline{25}$	Overspeed	94	TorqPrv Spd Band
$\underline{37}$	Inverting Fault	$\underline{95}$	Fwd End Limit
$\underline{48}$	Params Defaulted	$\underline{96}$	Rev End Limit
$\underline{56}$	STune Overspeed	$\underline{97}$	Fwd Over Travel
$\underline{57}$	STune Stalled	$\underline{98}$	Rev Over Travel
58	STune LoadHi	$\underline{99}$	Travel Lim Cflct
59	STune CurLimit	100	EEPROM Error
60	STune FrictionLo	130	Hardware Fault
61	STune Timeout	131	Interrupt Error
62	STune Aborted	132	Dsp Error
$\underline{64}$	Drive Overload		
$\underline{70}$	Sustained Curr		
71... 75	Port 1 Adaptor		
	Port 2 Adaptor		
	Port 3 Adaptor		
	Port 4 Adaptor		
	Port 5 Adaptor		

(1)Faults that are not listed are reserved for future use.

How to Clear an Alarm

Alarm Descriptions

Alarms are automatically cleared when the condition that caused the alarm is no longer present．

The status of the alarms can be viewed in $\underline{1380}$［Drive Alarm 1］．
Table 43 －Alarm Descriptions and Actions

Alarm	Type	Description							
Arm Overvoltage	1	There is a possible overvoltage on the armature circuit or Par 175 ［Rated Motor Volt］is set too low for the application．See the＂Arm Overvoltage＂fault description on page 220 for more information．							
Auxiliary Input	1	An auxiliary input interlock is open or a voltage（15．．．30V）or reference signal is missing for the digital input set to 14 ＂Aux Fault＂．See the＂Auxiliary Input＂fault description on page 220 for more information．							
Bipolarfflct	2	Par 1322 ［Direction Mode］is set to＂Bipolar＂or＂Reverse Dis＂and one or more of these digital input functions is configured：＂Fwd／Reverse，＂＂Run Forward，＂＂Run Reverse，＂＂Jog Forward，＂ ＂Jog Reverse，＂＂Rev Dec Limit，＂or＂Rev End Limit．＂							
BrakeSlipped	1	The encoder movement has exceeded the level in Par 1110 ［Brk Slip Count］after the brake was set and the brake slip maneuver is controlling the drive（drive is active）． Cycle power to the drive to reset．							
	2	The encoder movement has exceeded the level in Par 1110 ［Brk Slip Count］after the brake was set and the brake slip maneuver is finished（drive is stopped）． Cycle power to the drive to reset．							
CntactrCflct	2	Contactor input functions are in conflict： －When Par 1391 ［ContactorControl］is set to＂None＂，both relay outputs（Pars 1392 ［Relay Out 1 Sel］and 629 ［Relay Out 2 Sel］and all digital inputs（［Digital Inx Sel］）cannot be set to＂Contactor＂or＂ContactorDB＂． －With［ContactorControl］set to＂AC Cntcr＂or＂DC Cntcr＂，one relay output and one digital input must be set to＂Contactor＂．No relay or digital output can be defined as ＂ContactorDB＂． －With［ContactorControl］set to＂AC Cntcr＋DB＂or＂DC Cntcr＋DB＂，both relay outputs and one digital input must be set to＂Contactor＂，＂ContactorDB＂and＂Contactor＂，respectively． Any relay output can be configured as contactor or DB control and any digital input as contactor status．Therefore，to avoid possible conflicts，take care to program the parameter selections so that they match the relay output and／or digital input terminal block wiring correctly．							
DiglnCflctA	2	Digital input functions are in conflict．Combinations that are marked with a＂．．1．＂causes an alarm．							
			Acc2／Dec2	Accel 2	Decel 2	Jog 1／2	Jog Fwd	Jog Rev	Fwd／Rev
		Acc2／Dec2		羘．	．				
		Accel 2	品						
		Decel 2	虫						
		Jog 1／2					素	．${ }^{\text {a }}$	
		Jog Fwd				．${ }^{\text {\＃}}$			事
		Jog Rev				． 亳			事
		Fwd／Rev					央	挐	

Alarm	Type	Description									
DiglnCflctB	2	One of these digital input conflicts exists： －A digital Start input has been configured without a Stop input －None of the digital inputs are configured for＂Enable＂ －Other digital input functions are in conflict．Combinations that conflict are marked with a ＂出．＂and causes an alarm．									
			Start	Stop－	Run	Run Fwd	Run Rev	Jog	Jog Fwd	Jog Rev	$\begin{aligned} & \text { Fwd/ } \\ & \text { Rev } \end{aligned}$
		Start			＋	¢	4．		＋1．	立	
		Stop－CF									
		Run	．it．			．iti	．iil．		．in．	it．	
		Run Fwd	．ity．		iti．			．ịi．			．
		Run Rev	．		．			．			\％
		Jog 1／2				． H	．．．．．				
		Jog Fwd	．		．i．						
		Jog Rev	产		耍						
		Fwd／Rev				㕩	㕩				
DiglnCflctC	2	Multiple physical input has been configured to the same input function．Multiple configurations are not allowed for the following input functions．									
FB Cfg Cflct	2	One of the following has occurred： －Par 414 ［Fdbk Device Type］does not equal 3 ＂Armature＂and Par 478 ［Spd Loss Flt Cfg］is set to＂Alarm＂while Par 458 ［SpdReg FB Bypass］is set to＂Disabled＂． －Par 414 ［Fdbk Device Type］is set to 4 ＂Resolver＂and Pars 429 ［Resolver Pos Sel］， 430 ［Resolver Spd Sel］，$\underline{786}$［PID Source］， 1204 ［Line Spd Source］，or 1284 ［Ref Spd Source］are selecting a resolver signal． －Par 414 ［Fdbk Device Type］is set to 1 ＂Encoder＂and Pars 786，1021，1204，or 1284 are selecting an encoder signal．									
FldCfg Cflct	2	The selected operating mode of the field controller is in conflict with another setting in the drive or a permanent magnet motor is incorrectly configured．This alarm displays under the following conditions： －Par 469 ［Field Mode Sel］＝＂Field Weaken＂or＂External＂and Par 414 ［Fdbk Device Type］ ＝＂Armature＂ －Par 469 ［Field Mode Sel］＝＂Field Weaken＂or＂External＂and Par 478 ［Spd Loss Flt Cfg］＝ ＂Alarm＂ －Par 469 ［Field Mode Sel］＝＂Field Weaken＂or＂Base Speed＂and Par 497 ［Field Reg En］＝ ＂Disabled＂ －Par 469 ［Field Mode Sel］＝＂Base Speed＂and Par 498 ［Force Min Field］＝＂Enabled＂ －Par 469 ［Field Mode Sel］＝＂Base Speed＂and Par $133 \ldots 144$［Digital Inx Sel］＝＂Force Min Fld＂									
Fld Current Loss	1	The field current is too low．See the＂Fld Current Loss＂fault description on page 220 for more information．									
Motor Overload	1	The selected motor overload current level has been exceeded．See the＂Motor Overload＂fault description on page 221 for more information．									
Motor Over Temp	1	The motor has exceeded its temperature rating（as signaled by the thermistor that is connected to the drive terminals 78 and 79）．See the＂Motor Over Temp＂fault description on page 221 for more information．									
Ref Cflct	2	1．Multiple drive reference inputs，listed here，are set to the same value： －Pars $7 \underline{0}, 7 \underline{5}$ and 80 ［Anlg $\ln x$ Sel］ －Pars 1323．．． 1327 ［DPI Px Select］ －Par 1021 ［Encoder Out Sel］ －Par 430 ［Resolver Spd Sel］ See Figure 87 on page 311 or Speed Reference Selection on page 349 for a graphical representation of the possible reference selections for the drive． 2．Both Pars 429 ［Resolver Pos Sel］and 430 ［Resolver Spd Sel］are non－zero． 3．Multiple of the following parameters contains the same value： 786 ［PID Source］， 1204 ［Line Spd Source］，and 1284 ［Ref Spd Source］．									
Spd Fdbk Err	1	With Par 478 ［Spd Loss Flt Cfg］set to 1 ＂Alarm＂an error condition that is associated with the selected speed feedback device（analog tachometer，encoder，or resolver）was detected．									

Alarm	Type	Description
Spd Fdbk Loss	1	Par 478 [Spd Loss Flt Cfg] set to 1 "Alarm." The speed feedback device is indicating a value that is less than 5\% of Par 162 [Max Feedback Spd]. However, the measured armature voltage is greater than the value of Par 455 [Spd FB Loss Lvl]. See the "Spd Fdbk Loss" fault description on page 223 for more information.
Start At PowerUp	1	Par 1344 [Start At Powerup] is enabled. The drive can start at any time after drive power-up and the time that is specified in Par 1345 [Powerup Delay] has elapsed.
Torq Prov Cflct	2	Par 1100 [Torq Prove Cfg] is enabled (bit $0=1$) and any of the following conditions/conflicts have been occurred: - You are operating a non-regenerative drive - negative current is required for the TorqProve feature - Par 1322 [Direction Mode] set to 1 "Rev Disable" - Par 414 [Fdbk Device Type] is set to 3 "Armature Voltage" - Par 414 [Fdbk Device Type] is set to 2 "DC Tach" and Par 1100 [Torq Prove Cfg] bit 1 "Encoderless" = 0 - Par 458 [SpdReg FB Bypass] $=1$ "Enabled" - Par 457 [Spd Fdbk Control] = 0 "Disabled" - A digital input is configured as "Lift Stop" and Par 1100 [Torq Prove Cfg] bit 0 "TP Enable" $=0$ - Par 166 [Alpha Test] is set to 1 " 0 n" - Par 58 [TstGen Output] is not set to 0 "NotConnected" - Par 467 [Max Fld Curr Pct] is not set to 100% - Par 498 [Force Min Field] is set to 0 "Enabled" - Par 245 [Speed Ramp En] is set to 0 "Disabled" - Par $\underline{241}$ [Spd Trq Mode Sel] is not set to 1 "Speed Regulator" - There is no relay output that is defined as 31 "TP Brake Cmd" The following conditions are annunciated on the HIM status line as "TP Encls Cfg" and set Par 1394 [Drive Alarm 2], bit 2 "TP Encls Cfg" = 1: - Par 414 [Fdbk Device Type] is set to 1 "Encoder" or 4 "Resolver" and Par 1100 [Torq Prove Cfg] bit 1 "Encoderless" $=0$ - Par 1100 [Torq Prove Cfg], bit 5 "BrkSlipEncls" $=0$ or bit 6"BrkSlipStart" $=1$ and bit 1 "Encoderless" = 0
TP Encls Config	2	The drive has been configured to enable Encoderless TorqProve, but an application conflict exists. You must read and understand the "Attention" on page $\underline{294}$ relating to the use of TorqProve with no encoder before you can continue.

Common Drive Symptoms and Corrective Actions

The following tables contain descriptions of common drive symptoms and the possible solutions to correct the problem.

If the drive is experiencing this problem	See page
Drive does not start	$\underline{229}$
Drive starts but motor does not turn and no armature current	$\underline{230}$
The motor does not reach commanded speed	$\underline{230}$
The motor is turning in the wrong direction	$\underline{230}$
The motor reaches maximum speed immediately	$\underline{231}$

Drive does not start

Drive Symptom	Action
An external "Start" command was issued, but the drive does not start.	- Verify that no faults or alarms are displayed. If a fault or alarm is displayed, follow the corrective action provided (see Fault Descriptions on page 220 or Alarm Descriptions on page 226). - The external wiring to the programmed Start terminal block connection is missing. - Verify that +24 V DC is present at terminal block connection. - Verify that 24V Supply Common is connected between terminals 18 and 16. - Verify that the configuration for Pars 133... 144 [Digital Inx Sel] matches the switch wiring.
The drive is not in a "Ready" state, is not "Enabled" or a "Stop" is asserted.	Check the Enable and Stop inputs. Verify that the wiring is correct (see I/0 Wiring Examples on page $8 \underline{3}$).
External AC input or DC output contactor, if used, has not closed.	If using an AC Input contactor: - Verify that the drive is "Ready", then verify that the required coil voltage is present at terminals 35 and 36 (Relay Output 1). If the coil voltage is present at terminals 35 or 36, then verify that proper voltage is at the AC Input contactor coil. - Inspect the contactor for mechanical problems. - Verify that Par 1391 [ContactorControl] is set properly. - Verify that the contactor and/or auxiliary contact is properly wired to a digital input on the drive and that the appropriate digital input selection parameter ($133 \ldots 144$ [Digital Inx Sel]) is set to 31 "Contactor". - Verify that parameter 1392 [Relay Out 1 Sel] is set to 25 "Contactor". If using an external DC Output contactor: - Verify that the drive is "Ready", then verify that the required coil voltage is present at terminals 35 and 36 (Relay Output 1). If the coil voltage is present at terminals 35 or 36 , then verify that the proper voltage is at the DC Output contactor coil. - Inspect the contactor for mechanical problems. - Verify that parameter 1391 [ContactorControl] is set properly. - Verify that the contactor and/or auxiliary contact is properly wired to a digital input on the drive and that the appropriate digital input selection parameter ($133 \ldots 144$ [Digital Inx Sel]) is set to 31 "Contactor". - Verify that parameter 1392 [Relay Out 1 Sel] is set to 25 "Contactor".
The external DB resistor contactor, if used, has not closed.	- Verify that the drive is "Ready", then verify that the required coil voltage is present at terminals 75 and 76 (Relay Output 2). If the coil voltage is present at terminals 75 or 76 , then verify that proper voltage is at the DB contactor coil. - Inspect contactor for mechanical problems. - Verify that parameter 1391 [ContactorControl] is set properly. - Verify that the auxiliary contacts for the $A C$ Input or DC Output contactor and DB contactor are properly wired in series to a digital input on the drive. - Verify that the appropriate digital input selection parameter ($133 \ldots 144$ [Digital Inx Sel]) is set to 31 "Contactor". - Verify that parameter 629 [Relay Out 2 Sel] is set to 24 "ContactorDB".
The drive starts from the HIM but does not start from the terminal block.	Check masks for Terminal Block control (see parameters 591 [Logic Mask] and 592 [Start Mask]).

Drive starts but motor does not turn and no armature current

Drive Symptom	Action
The drive starts but there is no armature current and the motor does not respond to a speed signal.	- Verify the wiring to the analog input or inputs that are selected for speed reference (see I/O Wiring Examples on page 83). - Verify the settings of switch 59 and Par 71 [Anlg $\ln 1$ Config]; or $S 10$ and Par 76 [Anlg In2 Config]; or S11 and Par 81 [Anlg In3 Config] (see DIP Switch and Jumper Settings on page 75). - Verify the speed selection digital input or inputs and the respective input terminal voltage, if used. - Verify the analog input voltage that is displayed in parameters 1404 [Analog In1 Value], 1405 [Analog In2 Value] or 1406 [Analog In3 Value].
The drive starts and armature current is present but the motor does not turn.	- The Load may be too great for the motor and drive. - Remove the load from the motor and test for motor rotation. If the motor rotates, use an in-line current meter or DC clamp on meter to measure the armature current. The measured armature current must match the armature current feedback value that is displayed in parameters 200 [Arm Current] and 199 [Arm Current Pct]. Increase the value of parameter 7 [Current Limit], 8 [Current Lim Pos], or 9 [Current Lim Neg]. - Verify that the measured motor field current, using an in-line current meter or DC clamp on meter, equals the feedback value that is displayed in parameter 351 [Field Current]. - Verify that the motor nameplate value equals the value that is displayed in parameter 280 [Nom Mtr Field Amps]. - Measure the DC voltage that is supplied to the motor field. Verify that the value of parameter 374 [Drv Fld Brdg Cur] equals the setting of DIP Switch S14. - If the motor does not rotate with the load removed, check the motor. - Verify that parameter 353 [Zero Torque] is not enabled.

The motor does not reach commanded speed

Drive Symptom	Action
The drive starts and the motor turns but does reach the commanded speed.	The load may be too great for the motor and drive. - Remove the load from the motor and test for the correct commanded speed. If the motor reaches the commanded speed, use an in-line current meter or DC clamp on meter to measure the armature current. The measured armature current must match the armature current feedback value that is displayed in parameters 200 [Arm Current] and 199 [Arm Current Pct]. Increase the value of parameter 7 [Current Limit], 8 [Current Lim Pos] or 9 [Current Lim Neg]. - Verify that the measured motor field current, using an in-line current meter or DC clamp on meter, equals the feedback value that is displayed in parameter 351 [Field Current]. If the motor does not achieve commanded speed, continue with following tests: - Check the speed parameter limits: parameters 2 [Maximum Speed], 3 [Max Speed Fwd], 4 [Max Speed Rev] and 122 [Spd Feedback]. - Check the analog voltage input and speed reference values: parameters 1404 [Analog In1 Value], 1405 [Analog In2 Value], 44 [Speed Ref A], 48 [Speed Ref B] - Check the setting of switch S9 and parameter 71 [Anlg $\ln 1$ Config], S10 and 76 [Anlg $\ln 2$ Config] or S11 and 81 [Anlg In3 Config]. - Tune the analog inputs using parameters 259... 261 [Anlg Inx Tune] with the potentiometer set at max. - The encoder pulse per revolution (PPR) parameter (169 [Encoder PPR]) value is too high. - The DC Tach Scaling is incorrect or the jumpers are not properly set. Check parameter 562 [Anlg Tach Gain] and check the setting of the DC Analog Tachometer DIP Switch S4 (see Figure 56 on page 77).

The motor is turning in the wrong direction

Drive Symptom	Action
The motor is rotating in the wrong direction.	When a speed feedback device is not installed, the motor is incorrectly wired. $-\quad$ Change the armature or field connections to the drive.
	When a speed feedback device is not installed, the polarity of the analog speed reference signal is incorrect for the required direction.
	The two encoder connections must be reversed (A with A-Not or B with B-Not) when these two conditions are true. - The motor is turning in the wrong direction - The speed feedback is correct
	When an analog tachometer is installed and the following two conditions are true, the tachometer leads must be reversed. - The motor is turning in the wrong direction - The speed feedback is correct

The motor reaches maximum speed immediately

Drive Symptom	Action
The motor accelerates to maximum speed and cannot be controlled.	Check the analog input voltage and speed reference values: - Parameters 1404 [Analog In1 Valuee], 1405 [Analog In2 Value], 44 [Speed Ref A] and 48 [Speed Ref B] - Check the setting of switch S9 and parameter 71 [Anlg In1 Config], S10 and 76 [Anlg In2 Config] or S11 and 81 [Anlg In3 Config].
	The feedback device, encoder, resolver, or DC analog tachometer is not connected/configured, incorrectly connected or has failed. - Change parameter 414 [Fdbk Device Type] to 3 "Armature" to test the encoder or DC analog tachometer feedback.

The motor speed cannot be controlled and the drive does not stop

Drive Symptom
The drive armature voltage feedback terminals are connected to The polarity of the armature voltage feedback connections may be incorrect:
the motor, but exhibits these conditions simultaneously:

- Starts but the motor speed cannot be controlled
- Does not stop when a stop command is issued

1. By using a voltmeter, measure the drive armature output voltage at terminals C and D , with the positive lead connected to terminal C.
2. Check the polarity of the armature voltage feedback parameter 233 . The value of parameter 233 must be the same as the polarity of the armature output voltage at terminals C and D .
3. If the polarity of parameter 233 does not match the value that the voltmeter measured, swap the leads at terminals A 1 and A 2 on the armature voltage feedback terminal block.

Testpoint Codes and Functions

Select a testpoint with Par 1381 [TestPoint Sel]. Values can be viewed with Par 1382 [TestPoint Data].

No. ${ }^{(1)}$	Description	Values		
		Minimum	Maximum	Default
566	Rx count	0	65535	0
567	Tx count			
568	BusLoss count			
569	Port 1 Timeout			
570	Port 2 Timeout			
571	Port 3 Timeout			
572	Port 4 Timeout			
573	Port 5 Timeout			
574	Port 6 Timeout			
575	Internal gain of P188 (x100)			
576	Internal gain of P189 (x100)			
577	Internal gain of P190 (x100)			
578	Internal gain of P191 (x100)			
579	Internal gain of P192 (x100)			
580	Internal gain of P193 (x100)			
581	Max DSP execution time (20 MHz counts)	0	833 (41.65 $\mu \mathrm{s})$	464 (23.2 $\mu \mathrm{s}$)

(1) Enter in [TestPoint Sel].

Notes:

Supplemental Drive Information

Topic	Page
Certifications and Specifications	$\underline{234}$
IP20 NEMA / UL Type Open Watts Loss	$\underline{234}$
Communication Configurations	$\underline{237}$
Drive Power Circuit Protection	$\underline{239}$
Control Power Circuit Protection Fuses	$\underline{252}$
AC Input Line Reactors and AC Input Contactors	$\underline{\underline{259}}$
Isolation Transformers	$\underline{261}$
Dynamic Brake Resistor Kits and DC Output Contactors	$\underline{262}$
DC Contactor Crimp Lug Kit Specifications	$\underline{264}$
Alternate EMC Filters	$\underline{267}$
Terminal Adapter Kits for Frame D Drives	

Certifications and Specifications

IP20 NEMA / UL Type Open Watts Loss

Please see the PowerFlex Digital DC Drive Technical Data, publication 20P-TD001, for certification and specification information.

The watts loss data that is shown in Table 44 is based on the rated current of the drive.

Table 44 - Frame A Drives Watts Loss and Fan Capacity

Drive Current Rating Code ${ }^{(1)}$		Total Watts Loss	Total Value for Fan (none or 1)		
At 230VAC	At 460VAC		AC Input Voltage	Rated Current (A)	Max. Air Flow Noise Level
7P0	4P1	131	(no fan)		
9P0	6P0				
012	010				
020	014				
-	019				
029	027	186			
038	035	254	(Internal power supply)		
055	045				$37 \mathrm{~dB}(\mathrm{~A})$
-	052				
073	073	408			
093	086	476			
110	-				45 (B)
-	100	553			
-	129				

(1) See the Standard Drive Catalog Number Explanation on page 15, positions $8 \ldots 10$, for the Hp , armature amp, and field amp ratings that correspond to each drive current rating code listed in this table.

Table 45 - Frame B Drives Watts Loss and Fan Capacity

Drive			Total Value for All Fans (2)	
$\begin{aligned} & \text { Current Rating } \\ & \text { Code }{ }^{(1)} \end{aligned}$	AC Input Voltage	$\begin{gathered} \text { Total Watts } \\ \text { Loss } \end{gathered}$	$\begin{array}{l}\text { AC Input } \\ \text { Voltage }\end{array}$ Rated Current	Max Air Flow Noise Level
146	230	781	(Internal power supply)	$340 \mathrm{~m}^{3} / \mathrm{h}$ $48 \mathrm{~dB}(\mathrm{~A})$
180				
218		939		
265		1038		
360				$720 \mathrm{~m}^{3} / \mathrm{h}$
434		1693		$53 \mathrm{~dB}(\mathrm{~A})$
167	460	781		$\begin{aligned} & 340 \mathrm{~m}^{3} / \mathrm{h} \\ & 48 \mathrm{~dB}(\mathrm{~A}) \end{aligned}$
207		939		
250		1038		
330		1248		
412		1693		$\begin{gathered} 720 \mathrm{~m}^{3} / \mathrm{h} \\ 53 \mathrm{~dB}(\mathrm{~A}) \end{gathered}$
067	575	400		$\begin{gathered} 340 \mathrm{~m}^{3} / \mathrm{h} \\ 48 \mathrm{~dB}(\mathrm{~A}) \end{gathered}$
101		553		
135		700		
270		1038		
405		1693		$\begin{aligned} & 720 \mathrm{~m}^{3} / \mathrm{h} \\ & 53 \mathrm{~dB}(\mathrm{~A}) \end{aligned}$

[^4]Table 46 - Frame C Drives Watts Loss and Fan Capacity

Drive			Total Value for All Fans (3) ${ }^{(2)}$		
$\begin{aligned} & \text { Current Rating } \\ & \text { Code }^{(1)} \end{aligned}$	AC Input Voltage	Total Watts Loss	AC Input Voltage	Rated Current (A)	Max Air Flow Noise Level
521	230	2143	230	- 0.75	$1050 \mathrm{~m}^{3} / \mathrm{h}$ $62.5 \mathrm{~dB}(\mathrm{~A})$
700		2700			
495	460	2143			
667		2590			
540	575	2300			
675		2620			
452	690	1700			
565		2300			

(1) See the Standard Drive Catalog Number Explanation on page 15, positions $8 \ldots 10$, for the Hp, armature amp, and field amp ratings that correspond to each drive current rating code listed in this table.
(2) Fans on frames C drives require an external $230 \mathrm{VAC}, 50 / 60 \mathrm{~Hz}$ power supply, which is connected to terminals U 3 and V 3.

Table 47 - Frame D Drives Watts Loss and Series A Fan Capacity

Drive			Total Values for Fan ${ }^{(2)}$		
Current Rating Code ${ }^{(1)}$	AC Input Voltage	Total Watts Loss	AC Input Voltage	Rated Current (A)	Max Air Flow Noise Level
875		2694	230	2.4A@50Hz and 3.3A@60Hz	$\begin{gathered} 2400 \mathrm{~m}^{3} / \mathrm{h} \\ 80 \mathrm{~dB}(\mathrm{~A}) \end{gathered}$
1 KO		3284			
830	480	3200			
996R		3568			
1K1		4189			
1K3		5229			
1K4		5117			
810	575	3122			
1 KO		3819			
1K2		4679			
1K3		4879			
1K6		5720			
678	690	3174			
791		3582			
904		4028			
1 KO		4064			
1K1		4509			
1K2		5368			
1K4		5543			
1K5		5886			

(1) See the Standard Drive Catalog Number Explanation on page 15, positions $8 \ldots 10$, for the Hp , armature amp, and field amp ratings that correspond to each drive current rating code listed in this table.
(2) Fans on frames D drives require an external $230 \mathrm{VAC}, 50 / 60 \mathrm{~Hz}$ power supply, which is connected to terminals U 3 and V 3 .

Table 48 - Frame D Drives Watts Loss and Series B Fan Capacity

Drive			Total Values for Fan ${ }^{(2)}$		
Current Rating Code ${ }^{(1)}$	AC Input Voltage	Total Watts Loss	AC Input Voltage	Rated Current (A)	Max. Air Flow Noise Level
875	230	2694	Three-phase 400 V AC 50 Hz Or 460 V AC 60 Hz	$\begin{gathered} 1.15 \mathrm{~A} @ 50 \mathrm{~Hz} \text { and } \\ 1.4 \mathrm{~A} @ 60 \mathrm{~Hz} \end{gathered}$	$\begin{gathered} 2,400 \mathrm{~m}^{3} / \mathrm{h} @ 400 \mathrm{VAC} 50 \mathrm{~Hz} \\ 2,800 \mathrm{~m}^{3} / \mathrm{h} @ 460 \mathrm{VAC} 60 \mathrm{~Hz} \\ 83 \mathrm{~dB}(\mathrm{~A}) @ 400 \mathrm{VAC} 50 \mathrm{~Hz} \\ 2,000 \mathrm{~m}^{3} / \mathrm{h} \\ 86 \mathrm{~dB}(\mathrm{~A}) @ 460 \mathrm{VAC} 60 \mathrm{~Hz} \\ 2,000 \mathrm{~m}^{3} / \mathrm{h} \end{gathered}$
1K0		3284			
830	480	3200			
996		3568			
1K1		4189			
1K3		5229			
1K4		5117			
810	575	3122			
1 KO		3819			
1K2		4679			
1K3		4879			
1K6		5720			
678	690	3174			
791		3582			
904		4028			
1K0		4064			
1K1		4509			
1K2		5368			
1K4		5543			
1K5		5886			

(1) See the Standard Drive Catalog Number Explanation on page 15, positions $8 \ldots 10$, for the Hp , armature amp, and field amp ratings that correspond to each drive current rating code listed in this table.
(2) Fans on frames D drives require an external three-phase $400 / 460 \mathrm{~V} \mathrm{AC}, 50 / 60 \mathrm{~Hz}$ power supply, which is connected to terminals U 3 , V3, and W3.

Table 49 - Frame D Drives Watts Loss and Series C Fan Capacity

Drive			Total Values for Fan ${ }^{(2)}$		
Current Rating Code ${ }^{(1)}$	AC Input Voltage	Total Watts Loss	AC Input Voltage	Rated Current (A)	Max. Air Flow Noise Level
875	230	2694	Three-phase 400 V AC 50 Hz Or 460 V AC 60 Hz	$\begin{aligned} & 1.25 \mathrm{~A} @ 50 \mathrm{~Hz} \text { and } \\ & 1.55 \mathrm{~A} @ 60 \mathrm{~Hz} \end{aligned}$	$2,900 \mathrm{~m}^{3} / \mathrm{h} @ 400 \mathrm{VAC} 50 \mathrm{~Hz}$ $3,400 \mathrm{~m}^{3} / \mathrm{h} @ 460 \mathrm{VAC} 60 \mathrm{~Hz}$ $84 \mathrm{~dB}(\mathrm{~A}) @ 400 \mathrm{VAC} 50 \mathrm{~Hz}$ $90 \mathrm{~dB}(\mathrm{~A}) @ 460 \mathrm{VAC} 60 \mathrm{~Hz}$
1 KO		3284			
830	480	3200			
996		3568			
1K1		4189			
1K3		5229			
1K4		5117			
810	575	3122			
1K0		3819			
1K2		4679			
1K3		4879			
1K6		5720			
678	690	3174			
791		3582			
904		4028			
1K0		4064			
1K1		4509			
1K2		5368			
1K4		5543			
1K5		5886			

(1) See the Standard Drive Catalog Number Explanation on page 15, positions $8 \ldots 10$, for the Hp , armature amp, and field amp ratings that correspond to each drive current rating code listed in this table.
(2) Fans on frames D drives require an external three-phase $400 / 460 \mathrm{~V} \mathrm{AC}, 50 / 60 \mathrm{~Hz}$ power supply, which is connected to terminals U3, V3, and W3.

Communication Configurations

Typical Programmable-Controller Configurations

IMPORTANT If block transfers are programmed to write information continuously to the drive, care must be taken to format the block transfer properly. If attribute 10 is selected for the block transfer, values are written only to RAM and are not saved in the drive. This method is the preferred attribute for continuous transfers. If attribute 9 is selected, each program scan completes a write to the drives non-volatile memory (EEprom). Because the EEprom has a fixed number of allowed writes, continuous block transfers can quickly damage the EEprom. Do Not assign attribute 9 to continuous block transfers. See the appropriate User Manual for your communication adapter for additional details.

Logic Command/Status Words

See parameter 1328 [Drive Logic Rslt] for more information.
Figure 66 - Logic Command Word

Logic Bits														Command	Description
15	14	13	12	11	10	9	8	6	5	4	32	1	0		
													x	Stop ${ }^{(1)}$	$\begin{aligned} & 0=\text { Not Stop } \\ & 1=\text { Stop } \end{aligned}$
												X		Start ${ }^{(1)(2)}$	$\begin{aligned} & 0=\text { Not Start } \\ & 1=\text { Start } \end{aligned}$
											x			Jog	$\begin{aligned} & 0=\text { Not Jog } \\ & 1=\text { Jog } \end{aligned}$
											X			Clear Faults	$\begin{aligned} & 0=\text { Not Clear Faults } \\ & 1=\text { Clear Faults } \end{aligned}$
									X	X				Direction	$\begin{aligned} & 00=\text { No Command } \\ & 01=\text { Forward Command } \\ & 10=\text { Reverse Command } \\ & 11=\text { Hold Present Direction } \end{aligned}$
								X						Local Control	$\begin{aligned} & 0=\text { No Local Control } \\ & 1=\text { Local Control } \end{aligned}$
							x							MOP Increment	$0=$ Not Increment $1=$ Increment
						X	X							Accel Rate	$\begin{aligned} & 00=\text { No Command } \\ & 01=\text { Use Accel Time } 1 \\ & 10=\text { Use Accel Time } 2 \\ & 11=\text { Use Present Time } \end{aligned}$
				X	X									Decel Rate	$\begin{aligned} & 00=\text { No Command } \\ & 01=\text { Use Decel Time } 1 \\ & 10=\text { Use Decel Time } 2 \\ & 11=\text { Use Present Time } \end{aligned}$
	X	X	X											Reference Select ${ }^{(3)}$	$\begin{aligned} & 000=\text { No Command } \\ & 001=\text { Ref. } 1(\text { Spd Ref A) } \\ & 010=\text { Ref. } 2(\text { Spd Ref B) } \\ & 011=\text { Ref. } 3(\text { Preset Spd 3) } \\ & 100=\text { Ref. } 4(\text { Preset Spd } 4) \\ & 101=\text { Ref. } 5(\text { Preset Spd 5) } \\ & 110=\text { Ref. } 6(\text { Preset Spd 6) } \\ & 111=\text { Ref. } 7(\text { Preset Spd } 7) \end{aligned}$
X														MOP Decrement	$0=$ Not Decrement 1 = Decrement

(1) A " $0=$ Not Stop" condition (logic 0) must first be present before a " $1=$ Start" condition starts the drive. The Start command acts as a momentary Start command. A " 1 " starts the drive, but returning to " 0 " does not stop the drive.
(2) This Start does not function when a digital input (parameters 133...144) is programmed for 2-Wire Control (option 5 "Run", 6 "Run Forward" or 7 "Run Reverse").
(3) This Reference Select does not function when a digital input (parameters 133...144) is programmed for "Speed Sel 1, 2 or 3" (option 17, 18 or 19). Note that Reference Selection is "Exclusive Ownership". See [Reference Owner] on page 189.

Figure 67 - Logic Status Word

Logic Bits													Status	Description
15	14	13	12	11	10	98	87	6	5	43	2	10		
												X	Ready	$\begin{aligned} & 0=\text { Not Ready } \\ & 1=\text { Ready } \end{aligned}$
												x	Active	$\begin{aligned} & 0=\text { Not Active } \\ & 1=\text { Active } \end{aligned}$
											x		Command Direction	$\begin{aligned} & 0=\text { Reverse } \\ & 1=\text { Forward } \end{aligned}$
										X			Actual Direction	$\begin{aligned} & 0=\text { Reverse } \\ & 1=\text { Forward } \end{aligned}$
										X			Accel	$\begin{aligned} & 0=\text { Not Accelerating } \\ & 1=\text { Accelerating } \\ & \hline \end{aligned}$
									x				Decel	$\begin{aligned} & 0=\text { Not Decelerating } \\ & 1=\text { Decelerating } \\ & \hline \end{aligned}$
								x					Alarm	$\begin{aligned} & 0=\text { No Alarm } \\ & 1=\text { Alarm } \end{aligned}$
							x						Fault	$\begin{aligned} & 0=\text { No Fault } \\ & 1=\text { Fault } \end{aligned}$
							X						At Speed	$\begin{aligned} & 0=\text { Not At Reference } \\ & 1=\text { At Reference } \end{aligned}$
				X	X	X							Local Control ${ }^{(1)}$	$\begin{aligned} & 000=\text { Port 0 (TB) } \\ & 001=\text { Port } 1 \\ & 010=\text { Port } 2 \\ & 011=\text { Port } 3 \\ & 100=\text { Port } 4 \\ & 101=\text { Port } 5 \\ & 110=\text { Reserved } \\ & 111=\text { No Local } \end{aligned}$
X	X	X	X										Reference Source	$0000=$ Spd Ref A Auto $0001=$ Spd Ref B Auto $0010=$ Preset Spd 2 Auto $0011=$ Preset Spd 3 Auto $0100=$ Preset Spd 4 Auto $0101=$ Preset Spd 5 Auto $0110=$ Preset Spd 6 Auto $0111=$ Preset Spd 7 Auto $1000=$ Term Blk Manual $1001=$ DPI 1 Manual $1010=$ DPI 2 Manual $1011=$ DPI 3 Manual $1100=$ DPI 4 Manual $1101=$ DPI 5 Manual $1110=$ Reserved $1111=$ Jog Ref

(1) See Masks \& Owners on page 188 for further information.

Drive Power Circuit Protection

The tables on the following pages provide the fuses that are required for protecting the armature and field circuits of the drive. Externally mounted fuses (as indicated in Figure 68) must be sourced separately when installing the drive. Internally mounted fuses (as indicated in Figure 68 and Figure 71 on page 245) are provided with the drive.

See page 245 for frames C and D fuse information.

Frame A and B Fuse Information

Figure 68 - Frame A and B Fuse Table Designations

Frame A and B AC Input Line Fuses

AC input line fuses are externally mounted for frame A and B drives and must be sourced separately. See Fuse Code FS1 in Figure 68 on page 239.

Table 50-230V AC Input Drives

	Drive Current Rating Code	$\begin{aligned} & \mathrm{DC} \\ & \mathrm{Amps} \end{aligned}$	AC Line Amps	Bussmann		Mersen	
				Ferrule FWP Type	North American FWP Type	Ferrule A70QS Type	$\begin{aligned} & \hline \text { North American } \\ & \text { A7OP / A7OQS Type } \end{aligned}$
A	7P0	7	5.7	FWP-10A14F	FWP-10B	A700S10-14F	A70P10-4
	9P0	9	7.4	FWP-15A14F	FWP-15B	A700S16-14F	A70P15-4
	012	12	9.8	FWP-20A14F	FWP-20B	A700S20-14F	A70P20-4
	020	20	16	FWP-25A14F	FWP-25B	A700S25-14F	A70P25-4
	029	29	24	FWP-40A22F	FWP-40B	A700S40-22F	A700S40-4
	038	38	31	FWP-63A22F	FWP-60B	A700563-22F	A700S60-4
	055	55	45	FWP-80A22F	FWP-80B	A700S80-22F	A700S80-4
	073	73	60	-	FWP-100A	-	A70QS100-4K
	093	93	76	-	FWP-150A	-	A70QS150-4K
	110	110	90	-	FWP-175A	-	A700S175-4K
B	146	146	119	-	FWP-250A	-	A70QS250-4
	180	180	147	-	FWP-300A	-	A700S300-4
	218	218	178	-	FWP-350A	-	A700S350-4
	265	265	217	-	FWP-400A	-	A700S400-4
	360	360	294	-	FWP-600A	-	A70QS600-4K
	434	434	355	-	FWP-600A	-	A7005600-4

Table 51-460V AC Input Drives

$\begin{aligned} & \text { : } \\ & \text { En } \\ & \text { 要 } \end{aligned}$	Drive Current Rating Code	$\begin{aligned} & \hline \mathbf{D C} \\ & \text { Amps } \end{aligned}$	$\begin{aligned} & \text { ACLine } \\ & \text { Amps } \end{aligned}$	Bussmann		Mersen	
				Ferrule FWP Type	North American FWP Type	Ferrule A70QS Type	$\begin{aligned} & \text { North American } \\ & \text { A7OP / A70QS Type } \end{aligned}$
A	4P1	4.1	3.3	FWP-10A14F	FWP-10B	A700S10-14F	A70P10-4
	6P0	6	4.9	FWP-10A14F	FWP-10B	A700S10-14F	A70P10-4
	010	10	8.2	FWP-20A14F	FWP-20B	A700S20-14F	A70P25-4
	014	14	11.4	FWP-25A14F	FWP-25B	A700S25-14F	A70P25-4
	019	19	15.5	FWP-25A14F	FWP-25B	A700S25-14F	A70P25-4
	027	27	22.1	FWP-40A22F	FWP-40B	A700S40-22F	A70QS40-4
	035	35	28.6	FWP-63A22F	FWP-60B	A700S63-22F	A70QS60-4
	045	45	36.8	FWP-80A22F	FWP-80B	A700S80-22F	A70QS80-4
	052	52	42.5	FWP-80A22F	FWP-80B	A700580-22F	A700S80-4
	073	73	59.6	-	FWP-100A	-	A70QS $100-4 \mathrm{~K}$
	086	86	70.3	-	FWP-150A	-	A70QS150-4K
	100	100	81.7	-	FWP-175A	-	A700S175-4K
	129	129	105.4	-	FWP-175A	-	A700S175-4K
B	167	167	136.4	-	FWP-300A	-	A700S300-4
	207	207	169.1	-	FWP-350A	-	A700S350-4
	250	250	204.3	-	FWP-400A	-	A700S400-4
	330	330	269.6	-	FWP-600A	-	A700S600-4K
	412	412	336.6	-	FWP-600A	-	A700S600-4

Table 52-575V AC Input Drives

Frame	Drive Current Rating Code	DC Amps	AC Line Amps	Bussmann North American FWP Type	Mersen North American A70QS Type
B	067	67.5	55.1	FWP-100A	A700S100-4
	101	101.3	82.7	FWP-175A	A700S175-4K
	135	135	110.3	FWP-225A	A700S225-4
	270	270	220.6	FWP-450A	A700S450-4
	405	405	330.9	FWP-600A	A700S600-4K

Frame A and B Armature DC Output Fuses

Armature DC output fuses are externally mounted for frame A and B drives and must be sourced separately. These fuses are required on four quadrant drives only, but highly recommended on two quadrant drives. See Fuse Code FS2 in Figure 68 on page 239.

Table 53-230V AC Input Drives

	Drive Current Rating Code	$\begin{aligned} & \hline \begin{array}{l} \text { DC } \\ \text { Amps } \end{array} \\ & \hline \end{aligned}$	ACLine Amps	Bussmann		Mersen	
				Ferrule FWP Type	North American FWP Type	Ferrule A70QS Type	North American A70P / A70QS Type
A	7P0	7	5.7	FWP-15A14F	FWP-15B	A700S16-14F	A70P15-4
	9P0	9	7.4	FWP-20A14F	FWP-20B	A700S20-14F	A70P20-4
	012	12	9.8	FWP-25A14F	FWP-25B	A700S25-14F	A70P25-4
	020	20	16	FWP-40A14F	FWP-40B	A700S40-14F	A700S40-4
	029	29	24	FWP-63A22F	FWP-60B	A700S63-22F	A700S60-4
	038	38	31	FWP-80A22F	FWP-80B	A700S80-22F	A700S80-4
	055	55	45	-	FWP-125A	-	A700S125-4K
	073	73	60	-	FWP-150A	-	A70QS150-4K
	093	93	76	-	FWP-200A	-	A700S200-4K
	110	110	90	-	FWP-225A	-	A700S250-4
B	146	146	119	-	FWP-300A	-	A700S300-4
	180	180	147	-	FWP-350A		A700S350-4
	218	218	178	-	FWP-450A	-	A700S450-4
	265	265	217	-	FWP-600A	-	A70QS600-4K
	360	360	294	-	FWP-700A	-	A700S700-4
	434	434	355	-	FWP-900A	-	A70P900-4

Table 54-460V AC Input Drives

	Drive Current Rating Code	$\begin{aligned} & \text { DC } \\ & \text { Amps } \end{aligned}$	ACLine Amps	Bussmann		Mersen	
				Ferrule FWP Type	North American FWP Type	Ferrule A70QS Type	North American A70P / A70QS Type
A	4 P 1	4.1	3.3	FWP-10A14F	FWP-10B	A700S10-14F	A70P10-4
	6P0	6	4.9	FWP-15A14F	FWP-15B	A70QS16-14F	A70P15-4
	010	10	8.2	FWP-20A14F	FWP-20B	A700S20-14F	A70P20-4
	014	14	11.4	FWP-30A14F	FWP-30B	A700S32-14F	A70P30-4
	019	19	15.5	FWP-40A14F	FWP-40B	A700S40-14F	A700S40-4
	027	27	22.1	FWP-63A22F	FWP-60B	A700S63-22F	A700S60-4
	035	35	28.6	FWP-80A22F	FWP-70B	A700S80-22F	A700S70-4
	045	45	36.8	FWP-100A22F	FWP-90B	-	A700590-4
	052	52	42.5	FWP-100A22F	FWP-100B	-	A700S100-4
	073	73	59.6	-	FWP-150A	-	A70QS150-4K
	086	86	70.3	-	FWP-175A	-	A70QS175-4K
	100	100	81.7	-	FWP-200A	-	A700S200-4K
	129	129	105.4	-	FWP-250A	-	A700S250-4
B	167	167	136.4	-	FWP-350A	-	A700S350-4
	207	207	169.1	-	FWP-400A	-	A700S400-4
	250	250	204.3	-	FWP-500A	-	A700S500-4K
	330	330	269.6	-	FWP-700A	-	A700S700-4
	412	412	336.6	-	FWP-800A	-	A700S800-4

Table 55-575V AC Input Drives

Frame	Drive Current Rating Code	DCAmps	AC Line Amps	Bussmann North American FWP Type	Mersen North American A70P / A70QS Type
B	067	67.5	55.1	FWP-125A	A700S125-4K
	101	101.3	82.7	FWP-200A	A70QS200-4K
	135	135	110.3	FWP-250A	A700S250-4
	270	270	220.6	FWP-600A	A700S600-4K
	405	405	330.9	FWP-800A	A7005800-4

Frame A and B Field Circuit Fuses

Field circuit fuses are internally mounted and provided with the drive. See Fuse Code FS3 in Figure 68 on page 239. Also, see Figure 69 on page $\underline{244}$ and Figure 69 on page 244 for fuse locations.

Table 56-230V AC Input Drives

$\begin{aligned} & \text { ! ! } \\ & \text { 른 } \end{aligned}$	Drive Current Rating Code	Field Amps	Type	Quantity	Bussmann	Mersen	SIBA
A	7P0	10	6x32 mm	2	FWH-016A6F	E085449	7012540.16
	9P0						
	012						
	020						
	029						
	038						
	055						
	073	14					
	093						
	110						
B	146	20	$10 \times 38 \mathrm{~mm}$	2	FWC-25A10F	A60025-2	6003305.25
	180						
	218						
	265						
	360						
	434						

Table 57-460V AC Input Drives

$\begin{aligned} & \text { 은 } \\ & \text { 年 } \end{aligned}$	Drive Current Rating Code	Field Amps	Type	Quantity	Bussmann	Mersen	SIBA
A	4P1	10	$6 \times 32 \mathrm{~mm}$	2	FWH-016A6F	E085449	7012540.16
	6P0						
	010						
	014						
	019						
	027						
	035						
	045						
	052						
	073	14					
	086						
	100						
	129						
B	167	20	$10 \times 38 \mathrm{~mm}$	2	FWC-25A10F	A60Q25-2	6003305.25
	207						
	250						
	330						
	412						

Table 58-575V AC Input Drives

	Drive Current Rating Code	Field Amps	Quantity	Type	Bussmann	Mersen	SIBA
B	067	20	2	$10 \times 38 \mathrm{~mm}$	FWC-25A10F	A60Q25-2	6003305.25
	101						
	135						
	270						
	405						

Figure 69 - Frame A Field Circuit Fuses Location

Figure 70 - Frame B Field Circuit Fuses Location
Top View of Drive

Frame C and D Fuse Information

All fuses for armature and field circuit protection are internally mounted and provided with frame C and D drives.

Figure 71 - Frame C and D Fuse Table Designations

FS4 = Internally mounted fuses for the armature converter on the $A C$ input side.

FS3 = Internally mounted fuses for the field circuit on the $A C$ input side.

Frame C and D Field Circuit Fuses

Field circuit fuses for frames C and D drives are internally mounted (labeled FU1 and FV1) and provided with the drive. See Fuse Code FS3 in Figure 71. Also, see Figure 72 on page $\underline{246}$ and Figure 73 on page $\underline{247}$ for locations.

Table 59-230V AC Input Drives

$\begin{aligned} & \text { 른 } \\ & \text { 딘 } \end{aligned}$	Drive Current Rating Code	Field Amps	Type	Qty	Bussmann	Mersen	SIBA
C	521	20	$10 \times 38 \mathrm{~mm}$		FWC-25A10F	A60Q25-2	6003305.25
D	875	40	$22 \times 58 \mathrm{~mm}$	2	FWP-50A22F	A70QS50-22F	5014006.50

Table 60-460V AC Input Drives

唁	Drive Current Rating Code	Field Amps	Type	Qty	Bussmann	Mersen	SIBA
C	495	20	$10 \times 38 \mathrm{~mm}$	2	FWC-25A10F	A60Q25-2	6003305.25
	667					A60Q25-8	
D	830	40	$22 \times 58 \mathrm{~mm}$		WP-50A22F	A700S50-22F	014006.50
	996				FWP-50A22	ATOQSSO-22F	5014006.50
	1K1	70			FWP-100A22F	A70QS100-22F	5014006.100
	1K3						
	1K4						

Table 61-575V AC Input Drives

$\begin{aligned} & \text { 른 } \\ & \text { 른 } \end{aligned}$	Drive Current Rating Code	Field Amps	Type	Qty	Bussmann	Mersen	SIBA
C	540	20	$10 \times 38 \mathrm{~mm}$	2	FWC-25A10F	A60Q25-2	6003305.25
	675					A60Q25-8	
D	810	40	$22 \times 58 \mathrm{~mm}$		FWP-50A22F	A700S50-22F	5014006.50
	1K0						
	1K2						
	1K3						
	1K6						

Table 62-690V AC Input Drives

¢	Drive Current Rating Code	Field Amps	Type	Qty	Bussmann	Mersen	SIBA
C	452	20	$10 \times 38 \mathrm{~mm}$	2	FWC-25A10F	A60Q25-2	6003305.25
	565					A60Q25-8	
D	678	40	$22 \times 58 \mathrm{~mm}$				
	791				FWP-50A22F	A70QS50-22F	5014006.50
	904						
	1K0						
	1K1	70			FWP-100A22F	A700S100-22F	5014006.100
	1K2						
	1K4						
	1K5						

Figure 72 - Frame C Field Circuit Fuse Location

Figure 73 - Frame D Field Circuit Fuse Location

Fuses for Regenerative Frame C and D Drives

Leg fuses are internally mounted and provided with frames C and D drives．See Fuse Code FS4 in Figure 71 on page 245．Also，see Figure 74 on page 249 and Figure 75 on page 250 for fuse locations．

Table 63 －Leg Fuses－230V AC Input Frame C Drives

$\begin{aligned} & \text { 長 } \\ & \text { 坒 } \end{aligned}$	Drive	$\begin{aligned} & \text { DC } \\ & \text { Amps } \end{aligned}$	ACLine Amps	Qty	Bussmann	Mersen	SIBA
	Current Rating Code				Square Body－Flush End Contact		
C	521	521	426	6	170M5464＋switch 170H0069	6，9 URD 32 TTF 800 ＋switch MS 3－V1－5 BS	2067132.800 ＋switch 2800104
	700	700	571	6	170M5464＋switch 170H0069	6，9 URD 32 TTF 800 ＋switch MS 3V 1－5 BS	2067132.800 ＋switch 2800104

Table 64－Leg Fuses－230V AC Input Frame D Drives

$\begin{aligned} & \text { 髟 } \\ & \text { 要 } \end{aligned}$	Drive Current Rating Code	$\begin{aligned} & \text { DC } \\ & \text { Amps } \end{aligned}$	ACLine Amps	Qty	Bussmann	Mersen	SIBA
					Square Body－DIN 43653 Stud－Mount		
D	875	875	715	6	170M6263＋switch 170H0069	Y300263＋switch MS 3V 1－5 UR	$2063532.900+$ switch 2800104
	1K0	1050	858	6	170M6264＋switch 170H0069	Z300264＋switch MS 3V 1－5 UR	2063532.1000 ＋switch 2800104

Table 65 －Leg Fuses－460V AC Input Frame C Drives

	Drive		${ }^{\text {AC }}$	Qty	Bussmann	Mersen	SIBA
	Current Rating Code	Amps	Line Amps		Square Body－Flush End Contact		
C	495	495	404.4	6	170M5462＋switch 170H0069	6，9 URD 32 TTF $630+$ switch MS 3－V1－5 BS	$2067132.630+$ switch 2800104
	667	667	544.9	6	170 M5464＋switch 170H0069	6，9 URD 32 TTF $800+$ switch MS 3－V1－5 BS	2067132.800 ＋switch 2800104

Table 66 －Leg Fuses－460V AC Input Frame D Drives

$\begin{aligned} & \text { 을 } \\ & \text { 咅 } \end{aligned}$	Drive	$\begin{aligned} & \hline \text { DC } \\ & \text { Amps } \end{aligned}$	AC Line Amps	Qty	Bussmann	Mersen	SIBA
	Current Rating Code				Square Body－DIN 43653 Stud－Mount		
D	830	830	678.1	6	170 M 6262 ＋switch 170H0069	X300262＋switch MS 3V 1－5 UR	2063532.800 ＋switch 2800104
	996	996	813.7	6	170M6264＋switch 170H0069	Z300264＋switch MS 3V 1－5 UR	$2063532.1000+$ switch 2800104
	$1 \mathrm{K1}$	1162	949.4	6	170 M 6265 ＋switch 170H0069	A300262＋switch MS 3V 1－5 UR	$2063532.1100+$ switch 2800104
	1K3	1328	1085.0	6	170 M 6266 ＋switch 170H0069	B300266＋switch MS 3V 1－5 UR	2063532.1250 ＋switch 2800104
	1K4	1494	1220.6	6	170 M 6267 ＋switch 170H0069	C300267＋switch MS 3V 1－5 UR	$2063532.1400+$ switch 2800104

Table 67 －Leg Fuses－575V AC Input Frame C Drives

	Drive Current Rating Code	$\begin{aligned} & \hline \mathbf{D C} \\ & \text { Amps } \end{aligned}$	AC Line Amps	Qty	Bussmann	Mersen	SIBA
					Square Body－Flush End Contact		
C	540	540	441	6	－	11 URD 72 TTF 0800 ＋switch MS 3V 1－5 BS	$2077132.800+$ switch 2800104
	675	675	551	6	－	11 URD 72 TTF 0800 ＋switch MS 3V 1－5 BS	2077132.800 ＋switch 2800104

Table 68 －Leg Fuses－575V AC Input Frame D Drives

	Drive Current Rating Code	$\begin{aligned} & \mathrm{DC} \\ & \mathrm{Amps} \end{aligned}$	AC Line Amps	Qty	Bussmann	Mersen	SIBA
					Square Body－DIN 43653 Stud－Mount		
D	810	810	661	6	170M6246＋switch 170H0069	J300572＋switch MS 3V 1－5 UR	2073532.800 ＋switch 2800104
	1 KO	1080	881	6	170 M 6248 ＋switch 170H0069	L300574＋switch MS 3V 1－5 UR	$2073532.1000+$ switch 2800104
	1K2	1215	991	12	170 M 6244 ＋switch 170H0069	G300570＋switch MS 3V 1－5 UR	2073532.630 ＋switch 2800104
	1 K 3	1350	1102	12	170 M 6245 ＋switch 170H0069	H300571＋switch MS 3V 1－5 UR	2073532.700 ＋switch 2800104
	1K6	1688	1377	12	170 M 6246 ＋switch 170H0069	J300572＋switch MS 3V 1－5 UR	2073532.800 ＋switch 2800104

Table 69-Leg Fuses - 690V AC Input Frame C Drives

	Drive	$\begin{aligned} & \text { DC } \\ & \text { Amps } \end{aligned}$	$\begin{aligned} & \hline \text { AC } \\ & \text { Line } \\ & \text { Amps } \end{aligned}$	Qty	Bussmann	Mersen	SIBA
	$\begin{aligned} & \text { Current } \\ & \text { Rating } \\ & \text { Code } \end{aligned}$				Square Body - Flush End Contact		
C	452	452	369	6	170M5394 + switch 170H0069	12,5 URD 72 TTF 0500 + switch MS 3V 1-5 BS	2077132.500 + switch 2800104
	565	565	461	6	-	12,5 URD 72 TTF $0630+$ switch MS 3V 1-5 BS	2077132.630 + switch 2800104

Table 70-Leg Fuses - 690V AC Input Frame D Drives

뜬둔	Drive Current Rating Code	$\begin{array}{\|l\|} \hline \text { DC } \\ \text { Amps } \end{array}$	AC Line Amps	Qty	Bussmann	Mersen	SIBA
					Square Body - DIN 43653 Stud-Mount		
D	678	678	553	6	170M6244 + switch 170H0069	G300570 + switch MS 3V 1-5 UR	2073532.630 + switch 2800104
	791	791	645	6	170M6246 + switch 170H0069	J300572 + switch MS 3V 1-5 UR	2073532.800 + switch 2800104
	904	904	738	6	170M6247 + switch 170H0069	K300573 + switch MS 3V 1-5 UR	2073532.900 + switch 2800104
	1K0	1017	830	6	170M6248 + switch 170H0069	L300574 + switch MS 3V 1-5 UR	$2073532.1000+$ switch 2800104
	1K1	1130	922	12	170M6244 + switch 170H0069	G300570 + switch MS 3V 1-5 UR	2073532.630 + switch 2800104
	1K2	1243	1014	12	170M6244 + switch 170H0069	G300570 + switch MS 3V 1-5 UR	2073532.630 + switch 2800104
	1K4	1413	1153	12	170M6245 + switch 170H0069	H300571 + switch MS 3V 1-5 UR	2073532.700 + switch 2800104
	1K5	1582	1291	12	170M6246 + switch 170H0069	J300572 + switch MS 3V 1-5 UR	2073532.800 + switch 2800104

Figure 74 - Frame C Regenerative Drive - Leg Fuse Location
Leg fuses and switches are installed on the bus bars behind the control board EMI shield.

Drive shown with front covers removed and control board EMI shield lowered.

Figure 75 - Frame \mathbf{D} Regenerative Drive - Leg Fuse Location

Fuses for Non-Regenerative Frame C and D Drives

AC input line and/or leg fuses are internally mounted and provided with frames C and D drives. See Fuse Code FS4 in Figure 71 on page 245. Also, see Figure 76 on page 252 for fuse locations.

Table 71-AC Input Line Fuses - 230V AC Input Frame C Drives

른	Drive Current Rating Code	$\begin{array}{\|l\|} \hline \text { DC } \\ \text { Amps } \end{array}$	ACLine Amps	Qty	Bussmann	Mersen	SIBA
					Square Body - Flush End Contact		
C	521	521	426	3	170M5466 + switch 170H0069	6,9 URD 32 TTF 1000 + switch MS 3-V1-5 BS	2067132.1000 + switch 2800104
	700	700	571	3	170M5466 + switch 170H0069	6,9 URD 32 TTF 1000 + switch MS 3V 1-5 BS	2067132.1000 + switch 2800104

Table 72 - Leg Fuses - 230V AC Input Frame D Drives

$\begin{aligned} & \text { 른 } \\ & \text { 든 } \end{aligned}$	Drive Current Rating Code	DC Amps	ACLine Amps	Qty	Bussmann	Mersen	SIBA
					Square Body - DIN 43653 Stud-Mount		
D	875	875	715	6	170M6263 + switch 170H0069	Y300263 + switch MS 3V 1-5 UR	2063532.900 + switch 2800104
	1K0	1050	858	6	170M6264 + switch 170H0069	Z300264 + switch MS 3V 1-5 UR	2063532.1000 + switch 2800104

Table 73-AC Input Line Fuses - 460V AC Input Frame C Drives

$\stackrel{\text { 은 }}{\text { 둔 }}$	Drive	$\begin{array}{\|l\|} \hline \text { DC } \\ \text { Amps } \end{array}$	ACLine Amps	Qty	Bussmann	Mersen	SIBA
	Current Rating Code				Square Body - Flush End Contact		
C	495	495	404.4	3	170M5464 + switch 170H0069	6,9 URD 32 TTF 800 + switch MS 3-V1-5 BS	2067132.800 + switch 2800104
	667	667	544.9	3	170M5466 + switch 170H0069	6,9 URD 32 TTF 1000 + switch MS 3-V1-5 BS	2067132.1000 + switch 2800104

Table 74-Leg Fuses - 460V AC Input Frame D Drives

$\begin{aligned} & \text { 皆 } \\ & \text { 要 } \end{aligned}$	Drive Current Rating Code	$\begin{aligned} & \hline \text { DC } \\ & \text { Amps } \end{aligned}$	AC Line Amps	Qty	Bussmann	Mersen	SIBA
					Square Body - DIN 43653 Stud-Mount		
D	830	830	678.1	6	170M6262 + switch 170H0069	X300262 + switch MS 3V 1-5 UR	2063532.800 + switch 2800104
	996	996	813.7	6	170M6264 + switch 170H0069	Z300264 + switch MS 3V 1-5 UR	2063532.1000 + switch 2800104
	1K1	1162	949.4	6	170M6265 + switch 170H0069	A300262 + switch MS 3V 1-5 UR	2063532.1100 + switch 2800104
	1K3	1328	1085.0	6	170M6266 + switch 170H0069	B300266 + switch MS 3V 1-5 UR	2063532.1250 + switch 2800104
	1 K 4	1494	1220.6	6	170M6267 + switch 170H0069	C300267 + switch MS 3V 1-5 UR	2063532.1400 + switch 2800104

Table 75-AC Input Line Fuses - 575V AC Input Frame C Drives

	Drive Current Rating Code	$\begin{aligned} & \hline \text { DC } \\ & \text { Amps } \end{aligned}$	AC Line Amps	Qty	Bussmann	Mersen	SIBA
					Square Body - Flush End Contact		
C	540	540	441	3	170M5466 + switch 170H0069	6,9 URD 32 TTF 1000 + switch MS 3V 1-5 BS	$2067132.1000+$ switch 2800104
	675	675	551	3	170M5466 + switch 170H0069	6,9 URD 32 TTF 1000 + switch MS 3 V 1-5 BS	$2067132.1000+$ switch 2800104

Table 76 - Leg Fuses - 575V AC Input Frame D Drives

$\begin{aligned} & \text { 은 } \\ & \text { 돈 } \\ & \hline \end{aligned}$	Drive	$\begin{aligned} & \hline \text { DC } \\ & \text { Amps } \end{aligned}$	AC Line Amps	Qty	Bussmann	Mersen	SIBA
	Current Rating Code				Square Body - DIN 43653 Stud-Mount		
D	810	810	661	6	170 M 6262 + switch 170H0069	X300262 + switch MS 3V 1-5 UR	2063532.800 + switch 2800104
	1K0	1080	881	6	170 M 6264 + switch 170H0069	Z300264 + switch MS 3V 1-5 UR	2063532.1000 + switch 2800104
	1K2	1215	991	6	170 M 6265 + switch 170H0069	A300262 + switch MS 3V 1-5 UR	2063532.1100 + switch 2800104
	1K3	1350	1102	6	170M6266 + switch 170H0069	B300266 + switch MS 3V 1-5 UR	2063532.1250 + switch 2800104
	1K6	1688	1377	12	170M6262 + switch 170H0069	X300262 + switch MS 3V 1-5 UR	2063532.800 + switch 2800104

Table 77-AC Input Line Fuses - 690V AC Input Frame C Drives

		DC		Qty	Bussmann	Mersen	SIBA
	Current Rating Code		Line Amps		Square Body - Flush End Contact		
c	452	452	369	6	170M5463 + switch 170H0069	6,9 URD 32 TTF 0700 + switch MS 3V 1-5 BS	2067132.700 + switch 2800104
	565	565	461	6	170M5465 + switch 170H0069	6,9 URD 32 TTF 0900 + switch MS 3V 1-5 BS	2067132.900 + switch 2800104

Table 78-Leg Fuses - 690V AC Input Frame D Drives

른	Drive Current Rating Code	$\begin{aligned} & \mathrm{DC} \\ & \mathrm{Amps} \end{aligned}$	AC Line Amps	Qty	Bussmann	Mersen	SIBA
					Square Body - DIN 43653 Stud-Mount		
D	678	678	553	6	170M6260 + switch 170H0069	V300260 + switch MS 3V 1-5 UR	2063532.630 + switch 2800104
	791	791	645	6	170M6262 + switch 170H0069	X300262 + switch MS 3V 1-5 UR	2063532.800 + switch 2800104
	904	904	738	6	170M6263 + switch 170H0069	Y300263 + switch MS 3V 1-5 UR	2063532.900 + switch 2800104
	1K0	1017	830	6	170 M 6264 + switch 170H0069	Z300264 + switch MS 3V 1-5 UR	2063532.1000 + switch 2800104
	1K1	1130	922	6	170 M 6265 + switch 170H0069	A300262 + switch MS 3V 1-5 UR	2063532.1100 + switch 2800104
	1K2	1243	1014	6	170M6266 + switch 170H0069	B300266 + switch MS 3V 1-5 UR	2063532.1250 + switch 2800104
	1K4	1413	1153	6	170 M 6267 + switch 170H0069	C300267 + switch MS 3V 1-5 UR	2063532.1400 + switch 2800104
	1K5	1582	1291	12	170M6262 + switch 170H0069	X300262 + switch MS 3V 1-5 UR	2063532.800 + switch 2800104

Figure 76 - Frame C Non-Regenerative Drive - AC Input Line Fuse Location

Drive shown with front covers removed and control board EMI shield lowered.

Control Power Circuit Protection Fuses

Switching Power Supply Circuit Board Fuses

The following fuses are used to protect the switching power supply circuit.

IMPORTANT Verify the circuit board revision before you order and install fuses.			
Frame	Circuit Board ID / Revision	Designation	Fuse ($5 \times 20 \mathrm{~mm}$)
A	SW1-31/H and below	F1	1 A, 250V, slow
	SW1-31/I and above	F1	$2.5 \mathrm{~A}, 250 \mathrm{~V}$, slow
B	SW2-32 / H and below	F1	3.15 A, 250 V fast
		F2	2.5 A, 250 V slow
	SW2-32 / I and above	F1	
		F2	2.5 A, 250 V slow
\bar{C}	SW3-32 / H and below	F1	3.15 A, 250 V fast
		F2	$2.5 \mathrm{~A}, 250 \mathrm{~V}$ slow
	SW3-32 / I and above	F1	2.5 A, 250 V slow
		F2	
D	SW1-31/I and above	F1	$2.5 \mathrm{~A}, 250 \mathrm{~V}$, slow

Figure 77 - Frame A Switching Power Supply Circuit Board Fuse Location

Figure 78 - Frame B Switching Power Supply Circuit Board Fuse Location

Figure 79-Frame C Switching Power Supply Circuit Board Fuse Location

The switching power supply circuit board is on the back of the control board EMI shield.

Figure 80 - Frame D Switching Power Supply Circuit Board Fuse Location

The switching power supply circuit board is on the control panel.

Frame B Pulse Transformer Circuit Board Fuses

The following fuses are used to protect the MOVs on the pulse transformer circuit board on frame B drives only.

Circuit Board ID / Revision	Designation	Fuse (6 x 32 mm)
FIR2-xx / M and earlier	F1/F2/F3	16 A, 500V fast

Figure 81 - Frame B Pulse Transformer Circuit Board Fuse Location

Frame C Transient Noise Filter Circuit Board Fuses

The following fuses are used to protect the MOVs on the Transient Noise Filter circuit board for frame C drives only.

Board ID/Revision	Designation	Fuse (6 x 32 mm)
FL-31/All	F11/F21/F31	$25 \mathrm{~A}, 500 \mathrm{~V}$ fast

Figure 82 - Frame C Transient Noise Filter Circuit Board Fuse Locations

Frame D Overvoltage Clipping Circuit Board Fuses

The following fuses are used to protect the resistors and capacitors on the overvoltage clipping circuit board for frame D drives only. The overvoltage clipping circuit board is on the left side wall inside the drive enclosure, behind the control panel.

Circuit Board ID / Revision	Designation	Fuse (14 x 51 mm)
CFSFxxx/All	F11/F21/F31	$10 \mathrm{~A}, 690 \mathrm{~V}$ fast

Figure 83 - Frame D Overvoltage Clipping Circuit Board Fuse Locations

Overvoltage clipping board fuse locations (shown with control panel open).

AC Input Line Reactors and AC If a DC contactor is used, an AC input contactor is not needed. Input Contactors

Table 79-230V AC Input Drives

Frame	Drive Current Rating Code	DCAmps	AC Line Amps	Hp	IP00 (Open Style) Line Reactor Cat No.	Line Reactor kW (HP)	AC Input Contactor Cat. No.
A	7P0	7	5.7	1.5	1321-3R8-A	0.75 (1)	100-C12D10
	9P0	9	7.4	2	1321-3R12-A	1.49 (2)	100-C12D10
	012	12	9.8	3	1321-3R18-A	0.75...3.7 (1...5)	100-C12D10
	020	20	16	5	1321-3R18-A	0.75...3.7 (1...5)	100-C23D10
	029	29	24	7.5	1321-3R55-A	5.5... 11 (7.5...15)	100-C30D10
	038	38	31	10	1321-3R55-A	5.5... 11 (7.5...15)	100-C37D10
	055	55	45	15	1321-3R55-A	5.5...11 (7.5...15)	100-C60D10
	073	73	60	20	1321-3R80-A	15 (20)	100-C60D10
	093	93	76	25	1321-3R100-A	18.5... 22 (25...30)	100-C85D10
	110	110	90	30	1321-3R100-A	18.5... 22 (25...30)	100-D110D11
B	146	146	119	40	1321-3R160-A	30... 37 (40...50)	100-D140D11
	180	180	147	50	1321-3R160-A	30... 37 (40...50)	100-D180D11
	218	218	178	60	1321-3RB250-A	45... 56 (60...75)	100-D180D11
	265	265	217	75	1321-3RB250-A	45... 56 (60...75)	100-D250ED11
	360	360	294	100	1321-3RB320-A	75 (100)	100-D300ED11
	434	434	355	125	1321-3RB400-A	93 (125)	100-D420ED11
C	521	521	426	150	1321-3R500-A	112 (150)	100-D630ED11
	700	700	572	200	1321-3R600-A	149 (200)	100-D630ED11
D	875	875	715	250	1321-3R750-A	186 (250)	100-D860ED11
	1K0	1050	858	300	1321-3R850-A	224 (300)	100-D860ED11

Table 80-460V AC Input Drives

Frame	Drive Current Rating Code	DCAmps	AC Line Amps	Hp	IP00 (Open Style) Line Reactor Cat No.	Line Reactor kW (HP)	AC Input Contactor Cat. No.
A	4P1	4.1	3.3	2	1321-3R4-A	0.55 (0.75)	100-C12D10
	6P0	6	4.9	3	1321-3R8-A	0.75 (1)	100-C12D10
	010	10	8.2	5	1321-3R18-B	1.5...7.5 (2...10)	100-C12D10
	014	14	11.4	7.5	1321-3R18-B	1.5... 7.5 (2...10)	100-C12D10
	019	19	15.5	10	1321-3R18-B	1.5...7.5 (2...10)	100-C23D10
	027	27	22.1	15	1321-3R55-B	11... 22 (15...30)	100-C23D10
	035	35	28.6	20	1321-3R55-B	11... 22 (15...30)	100-C30D10
	045	45	36.8	25	1321-3R55-B	11... 22 (15...30)	100-C37D10
	052	52	42.5	30	1321-3R55-B	11... 22 (15...30)	100-C43D10
	073	73	59.6	40	1321-3R80-B	30 (40)	100-C60D10
	086	86	70.3	50	1321-3R100-B	$37 . .45$ (50...60)	100-C85D10
	100	100	81.7	60	1321-3R100-B	$37 . . .45$ (50...60)	100-C85D10
	129	129	105.4	75	1321-3R160-B	56... 75 (75...100)	100-D110D11

Frame	Drive Current Rating Code	DC Amps	AC Line Amps	Hp	IP00 (Open Style) Line Reactor Cat No.	Line Reactor kW (HP)	AC Input Contactor Cat. No.
B	167	167	136.4	100	1321-3R160-B	56... 75 (75...100)	100-D140D11
	207	207	169.1	125	1321-3RB250-B	93... 112 (125...150)	100-D180D11
	250	250	204.3	150	1321-3RB250-B	93... 112 (125...150)	100-D210ED11
	330	330	269.6	200	1321-3RB320-B	149 (200)	100-D300ED11
	412	412	336.6	250	1321-3RB400-B	186.4 (250)	100-D420ED11
C	495	495	404.4	300	1321-3R500-B	223.7 (300)	100-D420ED11
	667	667	544.9	400	1321-3R600-B	298.3 (400)	100-D630ED11
D	830	830	678.1	500	1321-3R750-B	372.8 (500)	100-D860ED11
	996	996	813.7	600	1321-3R850-B	447,4 (600)	100-D860ED11
	1K1	1162	949.4	700	1321-3R1000-B	552 (700)	100-G860KD22
	1K3	1328	1085.0	800	$2 \times 1321-3 \mathrm{R} 600-\mathrm{B}$	596.6 (800)	100-G860KD22
	1K4	1494	1220.6	900	$2 \times 1321-3 \mathrm{R} 600-\mathrm{B}$	671.1 (900)	100-G1200KD12

Table 81-575V AC Input Drives

Frame	Drive Current Rating Code	DC Amps	AC Line Amps	Hp	IP00 (Open Style) Line Reactor Cat No.	Line Reactor kW (HP)	AC Input Contactor Cat. No.
B	067	67.5	55.1	50	1321-3R55-B	37 (50)	100-C60D10
	101	101.25	82.7	75	1321-3R100-B	56 (75)	100-C85D10
	135	135	110.3	100	1321-3R130-B	75 (100)	100-D110D11
	270	270	220.6	200	1321-3RB250-B	149 (200)	100-D250ED11
	405	405	330.9	300	1321-3RB320-B	224 (300)	100-D420ED11
C	540	540	441.2	400	1321-3RB500-B	298 (400)	100-D630ED11
	675	675	551.5	500	1321-3R600-B	373 (500)	100-D630ED11
D	810	810	661.8	600	1321-3R750-B	447 (600)	100-D860ED11
	1K0	1080	882.4	800	1321-3R1000-B	597 (800)	100-G700KD22
	1K2	1215	992.7	900	1321-3R1000-B	671 (900)	100-G860KD22
	1K3	1350	1103.0	1000	$2 \times 1321-3 \mathrm{R} 600-\mathrm{B}$	746 (1000)	100-G1000KD12
	1K6	1687.5	1378.7	1250	$2 \times 1321-3 R 750-B$	-	(1)

(1) No AC Input Contactor available for this drive rating - must be sourced locally.

Table 82-690V AC Input Drives

Frame	Drive Current Rating Code	DC Amps	AC Line Amps	Hp	IP00 (Open Style) Line Reactor Cat No.	Line Reactor kW (HP)	AC Input Contactor Cat. No.
C	452	452	369	400	1321-3RB500-C	-	100-D420ED11
	565	565	462	500	1321-3RB600-C	-	100-D630ED11
D	678	678	554	600	1321-3R750-C	-	100-D630ED11
	791	791	646	700	1321-3R750-C	-	100-D860ED11
	904	904	739	800	1321-3R1000-C	-	100-D860ED11
	1K0	1017	831	900	1321-3R1000-C	-	100-D860ED11
	1K1	1130	923	1000	$2 \times 1321-3 R 600-C$	-	100-G700KD22
	1K2	1243	1016	1100	$2 \times 1321-3 \mathrm{R} 600-\mathrm{C}$	-	100-G860KD22
	1K4	1412.5	1154	1250	$2 \times 1321-3 R 750-C$	-	100-G1200KD12
	1K5	1582	1292	1400	$2 \times 1321-3 R 750-\mathrm{C}$	-	100-G1200KD12

Isolation Transformers

Three Phase Primary Voltage			Three Phase Secondary Voltage		
kVA	kW (Hp)	Voltage	230 V AC Catalog Number	460 V AC Catalog Number	575V AC Catalog Number
5	$\begin{aligned} & \hline 1.2-2.2 \\ & (1.5-3) \end{aligned}$	230	1321-3TW005-AA	1321-3TW005-AB	N/A
		460	1321-3TW005-BA	1321-3TW005-BB	N/A
		575	1321-3TW005-CA	1321-3TW005-CB	N/A
7.5	3.7 (5)	230	1321-3TW007-AA	1321-3TW007-AB	N/A
		460	1321-3TW007-BA	1321-3TW007-BB	N/A
		575	1321-3TW007-CA	1321-3TW007-CB	N/A
11	5.5 (7.5)	230	1321-3TW011-AA	1321-3TW011-AB	N/A
		460	1321-3TW011-BA	1321-3TW011-BB	N/A
		575	1321-3TW011-CA	1321-3TW011-CB	N/A
14	7.5 (10)	230	1321-3TW014-AA	1321-3TW014-AB	N/A
		460	1321-3TW014-BA	1321-3TW014-BB	N/A
		575	1321-3TW014-CA	1321-3TW014-CB	N/A
20	11 (15)	230	1321-3TW020-AA	1321-3TW020-AB	N/A
		460	1321-3TW020-BA	1321-3TW020-BB	N/A
		575	1321-3TW020-CA	1321-3TW020-CB	N/A
27	15 (20)	230	1321-3TW027-AA	1321-3TW027-AB	N/A
		460	1321-3TW027-BA	1321-3TW027-BB	N/A
		575	1321-3TW027-CA	1321-3TW027-CB	N/A
34	18.5 (25)	230	1321-3TW034-AA	1321-3TW034-AB	N/A
		460	1321-3TW034-BA	1321-3TW034-BB	N/A
		575	1321-3TW034-CA	1321-3TW034-CB	N/A
40	22 (30)	230	1321-3TW040-AA	1321-3TW040-AB	N/A
		460	1321-3TW040-BA	1321-3TW040-BB	N/A
		575	1321-3TW040-CA	1321-3TW040-CB	N/A
51	30 (40)	230	1321-3TW051-AA	1321-3TW051-AB	N/A
		460	1321-3TW051-BA	1321-3TW051-BB	N/A
		575	1321-3TW051-CA	1321-3TW051-CB	N/A
63	37 (50)	230	1321-3TH063-AA	1321-3TH063-AB	1321-3TH063-AC
		460	1321-3TH063-ВА	1321-3TH063-BB	1321-3TH063-BC
		575	1321-3TH063-CA	1321-3TH063-СВ	1321-3TH063-CC
75	45 (60)	230	1321-3TH075-AA	1321-3TH075-AB	1321-3TH075-AC
		460	1321-3TH075-BA	1321-3TH075-BB	1321-3TH075-BC
		575	1321-3TH075-CA	1321-3TH075-СВ	1321-3TH075-CC
93	56 (75)	230	1321-3TH093-АА	1321-3TH093-AB	1321-3TH093-AC
		460	1321-3TН093-ВА	1321-3TH093-ВВ	1321-3TH093-ВС
		575	1321-3TH093-CA	1321-3TH093-СВ	1321-3TH093-CC
118	75 (100)	230	1321-3TH118-AA	1321-3TH118-AB	1321-3TH118-AC
		460	1321-3TH118-BA	1321-3TH118-BB	1321-3TH118-BC
		575	1321-3TH118-CA	1321-3TH118-CB	1321-3TH118-CC

Three Phase Primary Voltage			Three Phase Secondary Voltage		
kVA	kW (Hp)	Voltage	230 V AC Catalog Number	460 V AC Catalog Number	575 V AC Catalog Number
145	93 (125)	230	1321-3TH145-AA	1321-3TH145-AB	1321-3TH145-AC
		460	1321-3TH145-BA	1321-3TH145-BB	1321-3TH145-BC
		575	1321-3TH145-CA	1321-3TH145-CB	1321-3TH145-CC
175	112 (150)	230	1321-3TH175-AA	1321-3TH175-AB	1321-3TH175-AC
		460	1321-3TH175-BA	1321-3TH175-BB	1321-3TH175-BC
		575	1321-3TH175-CA	1321-3TH175-CB	1321-3TH175-CC
220	145 (200)	230	1321-3TH220-AA	1321-3TH220-AB	1321-3TH220-AC
		460	1321-3TH220-BA	1321-3TH220-BB	1321-3TH220-BC
		575	1321-3TH220-CA	1321-3TH220-CB	1321-3TH220-CC
275	187 (250)	230	1321-3TH275-AA	1321-3TH275-AB	1321-3TH275-AC
		460	1321-3TH275-BA	1321-3TH275-BB	1321-3TH275-BC
		575	1321-3TH275-CA	1321-3TH275-CB	1321-3TH275-CC
330	224 (300)	230	1321-3TH330-AA	1321-3TH330-AB	1321-3TH330-AC
		460	1321-3TH330-BA	1321-3TH330-BB	1321-3TH330-BC
		575	1321-3TH330-CA	1321-3TH330-СВ	1321-3TH330-СС
440	298 (400)	230	N/A	1321-3TH440-AB	1321-3TH440-AC
		460	N/A	1321-3TH440-BB	1321-3TH440-BC
		575	N/A	1321-3TH440-CB	1321-3TH440-CC
550	373 (500)	230	N/A	1321-3TH550-AB	1321-3TH550-AC
		460	N/A	1321-3TH550-BB	1321-3TH550-BC
		575	N/A	1321-3TH550-CB	1321-3TH550-CC
660	448 (600)	230	N/A	1321-3TH660-AB	1321-3TH660-AC
		460	N/A	1321-3TH660-BB	1321-3TH660-BC
		575	N/A	1321-3TH660-СВ	1321-3TH660-CC
770	522 (700)	230	N/A	1321-3TH770-AB	1321-3TH770-AC
		460	N/A	1321-3TH770-BB	1321-3TH770-BC
		575	N/A	1321-3TH770-СВ	1321-3TH770-CC
880	597 (800)	230	N/A	1321-3TH880-AB	1321-3TH880-AC
		460	N/A	1321-3TH880-BB	1321-3TH880-BC
		575	N/A	1321-3TH880-СВ	1321-3TH880-CC

Dynamic Brake Resistor Kits and DC Output Contactors

See Table 85 and Table 86 on page 263 for recommended alternate DC Output Contactors for 575 V and 690 V AC input drives, respectively.

Table 83-230V AC Input Drives

	Drive Current Rating Code	$\begin{aligned} & \hline \mathbf{D C} \\ & \text { Amps } \end{aligned}$	AC Line Amps	Hp	Dynamic Brake Resistor Kit Cat. No.	Armature Voltage (Volts)	Total DB Resistance (ohms)	DC Loop Contactor Cat. No. ${ }^{(2)}$		DC Contactor Crimp Lugs Cat. No. ${ }^{(3)}$
								Drive without Dynamic Brake	Drive with Dynamic Brake	
A	7P0	7	5.7	1.5	1370-DBL62	240	20	1370-NC56	1370-DC56	1370-LG40
	9P0	9	7.4	2	1370-DBL63	240	20	1370-NC56	1370-DC56	1370-LG40
	012	12	9.8	3	1370-DBL64	240	15	1370-NC56	1370-DC56	1370-LG40
	020	20	16	5	1370-DBL65	240	8.6	1370-NC56	1370-DC56	1370-LG40
	029	29	24	7.5	1370-DBL66	240	6	1370-NC56	1370-DC56	1370-LG40
	038	38	31	10	1370-DBL67	240	5	1370-NC56	1370-DC56	1370-LG40
	055	55	45	15	1370-DBL68	240	3.5	1370-NC56	1370-DC56	1370-LG56
	073	73	60	20	1370-DBL69	240	2.6	1370-NC110	1370-DC110	1370-LG92
	093	93	76	25	1370-DBL70	240	2	1370-NC110	1370-DC110	1370-LG92
	110	110	90	30	1370-DBL71	240	2	1370-NC110	1370-DC110	1370-LG110
B	146	146	119	40	1370-DBL72	240	1.4	1370-NC180	1370-DC180	1370-LG160
	180	180	147	50	1370-DBL73	240	1.0	1370-NC180	1370-DC180	1370-LG180
	218	218	178	60	1370-DBL74	240	1.0	1370-NC280	1370-DC280	1370-LG228
	265	265	217	75	1370-DBL75	240	0.67	1370-NC280	1370-DC280	1370-LG268
	360	360	294	100	1370-DBL76	240	0.47	ABB_EHDB360C2P-1L2S	ABB_EHDB360C-1L22SS	(4)
	434	434	355	125	CUTLER- HAMMER_G3AP50 (Oty 4 - two in series, two in parallel)	240	0.4	ABB_EHDB520C2P-1L2S	ABB_EHDB520C-1L22SS	(4)
C	521	521	426	150	```HUBBELL_Y139W322 GB```	240	0.322			(4)
	700	700	572	200	(1)	240	0.25	ABB_EHDB800C2P-1L2S	ABB_EHDB800C-1L22SS	(4)
D	875	875	715	250	(1)	240	0.2	ABB_EHDB960C2P-1L2S	ABB_EHDB960C-1L22SS	(4)
	1K0	1050	858	300	(1)	240	0.2	$\begin{aligned} & \text { SIEMENS-MFG_14-193- } \\ & \text { 101-58-2 (Qty 2) } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { SIEMENS-MFG_14-193- } \\ & \text { 101-58-2 (0ty 1) } \\ & \hline \end{aligned}$	(4)

(1) No Dynamic Brake Resistor kit available for this drive rating - must be sourced locally.
(2) Coil voltage $=115 \mathrm{~V}$ AC, $50 / 60 \mathrm{~Hz}$.
(3) See DC Contactor Crimp Lug Kit Specifications on page 262 for more information.
(4) Wire and Lug size dependent on enclosure dimensions and local codes.

Table 84-460V AC Input Drives

	Drive Current Rating Code	$\begin{aligned} & \hline \mathbf{D C} \\ & \text { Amps } \end{aligned}$	AC Line Amps	Hp	Dynamic Brake Resistor Kit Cat. No.	Armature Voltage (Volts)	Total DBResistance(ohms)	DC Loop Contactor Cat. No. ${ }^{\text {(2) }}$		DC Contactor Crimp Lugs Cat. No. ${ }^{(3)}$
								Drive without Dynamic Brake	Drive with Dynamic Brake	
A	4P1	4.1	3.3	2	1370-DBH63	500	81	1370-NC56	1370-DC56	1370-LG40
	6P0	6	4.9	3	1370-DBH64	500	62	1370-NC56	1370-DC56	1370-LG40
	010	10	8.2	5	1370-DBH65	500	45	1370-NC56	1370-DC56	1370-LG40
	014	14	11.4	7.5	1370-DBH66	500	27	1370-NC56	1370-DC56	1370-LG40
	019	19	15.5	10	1370-DBH67	500	20	1370-NC56	1370-DC56	1370-LG40
	027	27	22.1	15	1370-DBH68	500	12	1370-NC56	1370-DC56	1370-LG40
	035	35	28.6	20	1370-DBH69	500	10	1370-NC56	1370-DC56	1370-LG40
	045	45	36.8	25	1370-DBH70	500	9	1370-NC56	1370-DC56	1370-LG52
	052	52	42.5	30	1370-DBH71	500	7	1370-NC56	1370-DC56	1370-LG52
	073	73	59.6	40	1370-DBH72	500	5.2	1370-NC110	1370-DC110	1370-LG92
	086	86	70.3	50	1370-DBH73	500	4	1370-NC110	1370-DC110	1370-LG92
	100	100	81.7	60	1370-DBH74	500	4	1370-NC110	1370-DC110	1370-LG110
	129	129	105.4	75	1370-DBH75	500	3	1370-NC180	1370-DC180	1370-LG140
B	167	167	136.4	100	1370-DBH76	500	2.1	1370-NC180	1370-DC180	1370-LG180
	207	207	169.1	125	1370-DBH77	500	2.1	1370-NC280	1370-DC280	1370-LG228
	250	250	204.3	150	1370-DBH78	500	1.5	1370-NC280	1370-DC280	1370-LG268
	330	330	269.6	200	1370-DBH79	500	1.05	ABB_EHDB360C2P-1L2S	ABB_EHDB360C-1L22SS	(4)
	412	412	336.6	250	HUBBELL_Y95W808GB	500	1	ABB_EHDB520C2P-1L2S	ABB_EHDB520C-1L22SS	(5)

	Drive Current Rating Code	$\begin{array}{\|l\|} \hline \text { DC } \\ \text { Amps } \end{array}$	AC Line Amps	Hp	Dynamic Brake Resistor Kit Cat. No.	Armature Voltage (Volts)	Total DB Resistance (ohms)	DC Loop Contactor Cat. No. ${ }^{(2)}$		DC Contactor Crimp Lugs Cat. No. ${ }^{(3)}$
								Drive without Dynamic Brake	Drive with Dynamic Brake	
C	495	495	404.4	300	HUBBELL_Y101W595GB	500	0.8	ABB_EHDB520C2P-1L2S	ABB_EHDB520C-1L22SS	5
	667	667	544.9	400	HUBBELL_Y109W542GB	500	0.625	ABB_EHDB800C2P-1L2S	ABB_EHDB800C-1L22SS	(5)
D	800	830	678.1	500	(1)	500	0.463	ABB_EHDB960C2P-1L2S	ABB_EHDB960C-1L22SS	(5)
	960	996	813.7	600	(2)	500	0.322	$\begin{aligned} & \text { SIEMENS-MFG_14-193- } \\ & \text { 101-58-2 (Qty 2) } \end{aligned}$	$\begin{aligned} & \text { SIEMENS-MFG_14-193- } \\ & \text { 101-58-2 (Qty 1) } \end{aligned}$	(5)
	1K1	1162	949.4	700	(2)	500	0.322	$\begin{aligned} & \text { SIEMENS-MFG_14-193- } \\ & 101-58-2(0 \text { (Qy } 2 \text {) } \end{aligned}$	$\begin{aligned} & \text { SIEMENS-MFG 14-193- } \\ & \text { 101-58-2 (0ty 1) } \end{aligned}$	(5)
	1K3	1328	1085.0	800	(2)	500	0.255	CUTLER- HAMMER_6702ED636-2 (Qty 2)	CUTLER- HAMMER_6702ED636-2 (Qty 1)	(5)
	1K4	1494	1220.6	900	(2)	500	0.255	CUTLER- HAMMER_6702ED636-2 (Oty 2)	CUTLER- HAMMER_6702ED636-2 (Oty 1)	(5)

(2) Coil voltage $=115 \mathrm{~V}$ AC, $50 / 60 \mathrm{~Hz}$.
(3) See DC Contactor Crimp Lug Kit Specifications on page 262 for more information.
(4) Wire and Lug size dependent on enclosure dimensions and local codes.

DC Contactor Crimp Lug Kit Specifications

Use the information that is provided in this table to assist you in ordering the correct Lug kit for your application.

Rated Motor Armature Current ADC	DC Contactor Rating ADC	$\begin{aligned} & \text { Armature Conductor Size }{ }^{(2)} \\ & \text { AWG } \end{aligned}$	$\begin{gathered} \hline \text { DB Conductor Size }{ }^{(3)} \\ \text { AWG } \end{gathered}$	Armature Conductor Crimp Lug Hole Size	DB Conductor Crimp Lug Hole Size	Lug Kit Catalog Number
4.1... 35	56	8	8	\#10	\#10	1370-LG40
45... 52	56	6	8	\#10	\#10	1370-LG52
55	56	4	8	\#10	\#10	1370-LG56
60... 86	110	2	6	0.25 in .	0.25 in.	1370-LG92
100... 110	110	1/0	4	0.25 in .	0.25 in.	1370-LG110
129	180	2/0	2	0.3125 in.	0.3125 in.	1370-LG140
146	180	3/0	2	0.3125 in.	0.3125 in.	1370-LG160
147... 167	180	4/0	2	0.3125 in.	0.3125 in.	1370-LG180
207... 218	280	300MCM	1/0	0.5 in .	0.375 in.	1370-LG228
250... 265	280	400MCM	2/0	0.5 in .	0.375 in.	1370-LG268
266... 280	280	500MCM	3/0	0.5 in .	0.375 in.	1370-LG280

(1) The Rated Motor Armature Current is taken directly from the motor nameplate or motor data. The current listed in this column is the maximum current that is allowed for the Armature Conductor Size (column 3) and the DC Contactor Rating (column 2).
(2) The armature conductors are sized by multiplying the Rated Motor Armature Current by 1.25 as provided for in NEC 420-22 (1987). The DC lug ratings are determined from NEC Table 310-16 (1987) for copper conductors, insulation temperature that is rated at $75^{\circ} \mathrm{C}\left(167^{\circ} \mathrm{F}\right)$ at an ambient temperature of $30^{\circ} \mathrm{C}\left(86^{\circ} \mathrm{F}\right)$. If conditions are other than shown in NEC Table $310-16$, then refer to application codes.
(3) The dynamic braking (DB) conductors are sized as in footnote 2, but at half ampacity due to the short time duration of current flow in these conductors, and has been sized to satisfy NEMA Standard ICS 3302.62 - Dynamic Braking. If the load inertia is larger than the motor inertia, calculations must be made to determine correct conductor sizing and DB resistor wattage per NEMA Standard ICS 3-302.62.

Alternate Dynamic Brake Resistor Kits and DC Output Contactors

The following alternate dynamic brake resistor kits and/or DC output contactors can be used with the corresponding PowerFlex DC drives but must be sourced separately from the drive.

Table 85-575V AC Input Drives

	Drive	DC	AC	Hp	Armature	DB Resistor	DC Loop Contactor Cat. No. ${ }^{(1)}$		DC Contactor Crimp Lugs Cat. No. ${ }^{(2)}$
뜬	Current Rating Code	Amps	Line Amps		Voltage (Volts)	Size (ohms)	Drive w/No Dynamic Brake	Drive w Dynamic Brake	
B	067	67.5	55.1	50	600	5.93	ABB_EHDB220C2P-1L2S	ABB_EHDB220C-1L22SS	(3)
	101	101	83	75	600	3.95	ABB_EHDB220C2P-1L2S	ABB_EHDB220C-1L22SS	
	135	135	110	100	600	2.96	ABB_EHDB220C2P-1L2S	ABB_EHDB220C-1L22SS	
	270	270	221	200	600	1.48	ABB_EHDB360C2P-1L2S	ABB_EHDB360C-1L22SS	
	405	405	331	300	600	0.988	ABB_EHDB520C2P-1L2S	ABB_EHDB520C-1L22SS	
C	540	540	441	400	600	0.741	ABB_EHDB650C2P-1L2S	ABB_EHDB650C-1L22SS	
	675	675	551	500	600	0.593	ABB_EHDB800C2P-1L2S	ABB_EHDB800C-1L22SS	
D	810	810	662	600	600	0.494	ABB_EHDB960C2P-1L2S	ABB_EHDB960C-1L22SS	
	1K0	1080	882	800	600	0.370	SIEMENS-MFG_14-193-101-58-2 (Qty 2)	SIEMENS-MFG_14-193-101-58-2 (Qty 1)	
	1K2	1215	993	900	600	0.329	SIEMENS-MFG_14-193-101-58-2 (Qty 2)	SIEMENS-MFG_14-193-101-58-2 (Qty 1)	
	1K3	1350	1103	1000	600	0.296	CUTLER-HAMMER_6702ED636-2 (Qty 2)	CUTLER-HAMMER_6702ED636-2 (Qty 1)	
	1K6	1688	1379	1250	600	0.237	CUTLER-HAMMER_6702ED636-2 (Qty 2)	CUTLER-HAMMER_6702ED636-2 (Qty 1)	

(1) Coil voltage $=115 \mathrm{~V}$ AC, $50 / 60 \mathrm{~Hz}$.
(2) See DC Contactor Crimp Lug Kit Specifications on page 267 for more information.
(3) Wire and Lug size dependent on enclosure dimensions and local codes.

Table 86-690V AC Input Drives

	Drive Current Rating Code	$\begin{aligned} & \hline \mathbf{D C} \\ & \text { Amps } \end{aligned}$	AC Line Amps	Hp	Armature Voltage (Volts)	DB Resistor Size (ohms)	DC Loop Contactor Cat. No. ${ }^{(1)}$		DC Contactor Crimp Lugs Cat. No.
							Drive w/No Dynamic Brake	Drive w Dynamic Brake	
C	452	452	369	400	700	1.03	$\begin{aligned} & \text { SIEMENS-MFG_14-193-101-58-2 (Qty } \\ & \text { 2) } \end{aligned}$	SIEMENS-MFG_14-193-101-58-2 (Qty 1)	(3)
	565	565	462	500	700	0.826	```SIEMENS-MFG_14-193-101-58-2 (Qty 2)```	SIEMENS-MFG_14-193-101-58-2 (Qty 1)	
D	678	678	554	600	700	0.688	```SIEMENS-MFG_14-193-101-58-2 (Qty 2)```	SIEMENS-MFG_14-193-101-58-2 (Qty 1)	
	791	791	646	700	700	0.590	```SIEMENS-MFG_14-193-101-58-2 (Qty 2)```	SIEMENS-MFG_14-193-101-58-2 (Qty 1)	
	904	904	739	800	700	0.516	```SIEMENS-MFG_14-193-101-58-2 (Qty 2)```	SIEMENS-MFG_14-193-101-58-2 (Qty 1)	
	1K0	1017	831	900	700	0.459	```SIEMENS-MFG_14-193-101-58-2 (Qty 2)```	SIEMENS-MFG_14-193-101-58-2 (Qty 1)	
	1K1	1130	923	1000	700	0.413	```SIEMENS-MFG_14-193-101-58-2 (Qty 2)```	SIEMENS-MFG_14-193-101-58-2 (Qty 1)	
	1K2	1243	1016	1100	700	0.375	```SIEMENS-MFG_14-193-101-58-2 (Qty 2)```	SIEMENS-MFG_14-193-101-58-2 (0ty 1)	
	1K4	1413	1154	1250	700	0.330	CUTLER-HAMMER_6702ED636-2 (Qty 2)	CUTLER-HAMMER_6702ED636-2 (Qty 1)	
	1K5	1582	1292	1400	700	0.295	CUTLER-HAMMER_6702ED636-2 (Qty 2)	CUTLER-HAMMER_6702ED636-2 (Qty 1)	

(1) Coil voltage $=115 \mathrm{~V}$ AC, $50 / 60 \mathrm{~Hz}$.
(2) See DC Contactor Crimp Lug Kit Specifications on page 262 for more information.
(3) Wire and Lug size dependent on enclosure dimensions and local codes.

Alternate EMC Filters

The following recommended filters can be used in place of the Rasmi filters that are listed in the table in the Installation Requirements Related to EN 61800-3 and the EMC Directive section on page 40 .

IMPORTANT	Only the Rasmi RF 3xxx-MHU, Rasmi RF-3xxx-SIE, and EPCOS B84143B Type SO81 filters have been certified for use with the PowerFlex DC drive. All other filters must be verified in the application.

Table 87 - Rasmi and Rasmi Alternative Filters

Frame	Drive Current Rating Code	Voltage Class	Rasmi Filters	Rasmi Alternative Type Filters	
			Part Number	Part Number	Part Number
A	7P0	230 VAC	EMI-FFP-480-9, Code 8270 (was RF 3009-SIEI)	RF 3007-FTF, Code 7670 (Rasmi / EuroTek)	RF 3010-MHU
	9P0		EMI-FFP-480-9, Code 8270 (was RF 3009-SIEI)	RF 3016-FTF, Code 7671 (Rasmi / EuroTek)	RF 3010-MHU
	012		EMI-FFP-480-24, Code 8271 (was RF 3024-SIEI)	RF 3016-FTF, Code 7671 (Rasmi / EuroTek)	RF 3016-MHU
	020		EMI-FFP-480-24, Code 8271 (was RF 3024-SIEI)	RF 3030-FTF, Code 8082 (Rasmi / EuroTek)	RF 3025-MHU
	029		EMI-FFP-480-30, Code 8272 (was RF 3030-SIEI)	RF 3030-FTF, Code 8082 (Rasmi / EuroTek)	RF 3040-MHU
	038		EMI-FFP-480-40, Code 8273 (was RF 3040-SIEI)	RF 3042-FTF, Code 7672 (Rasmi / EuroTek)	RF 3040-MHU
	055		RF 3055-FLP, Code 8078 (Rasmi / EuroTek)	RF 3055-FTF, Code 7673 (Rasmi / EuroTek)	RF 3070-MHU
	073		RF 3100-FLP, Code 8075 (Rasmi / EuroTek)	RF 3075-FTF, Code 7674 (Rasmi / EuroTek)	RF 3100-MHU
	093		RF 3100-FLP, Code 8075 (Rasmi / EuroTek)	RF 3100-FTF, Code 7675 (Rasmi / EuroTek)	RF 3100-MHU
	110		RF 3150-FLP, Code 8076 (Rasmi / EuroTek)	RF 3130-FTF, Code 7676 (Rasmi / EuroTek)	RF 3130-MHU
B	146		RF 3150-FLP, Code 8076 (Rasmi / EuroTek)	RF 3180-FTF, Code 7677 (Rasmi / EuroTek)	RF 3180-MHU
	180		RF 3180-FLP, Code 8077 (Rasmi / EuroTek)	RF 3180-FTF, Code 7677 (Rasmi / EuroTek)	RF 3180-MHU
	218		RF 3250-MHU	-	-
	265		RF 3320-MHU	-	-
	360		RF 3400-MHU	-	-
	434		RF 3600-MHU	-	-
C	521		RF 3600-MHU	-	-
	700		RF 3800-MHU	-	-
D	875		RF 31k0-MHU	-	-
	1 KO		RF 31k6-MHU	-	-

Frame	Drive Current Rating Code	Voltage Class	Rasmi Filters	Rasmi Alternative Type Filters	
			Part Number	Part Number	Part Number
A	$4 \mathrm{P1}$	460 VAC	EMI-FFP-480-9, Code 8270 (was RF 3009-SIEI)	RF 3007-FTF, Code 7670 (Rasmi / EuroTek)	RF 3010-MHU
	6 PO		EMI-FFP-480-9, Code 8270 (was RF 3009-SIEI)	RF 3007-FTF, Code 7670 (Rasmi / EuroTek)	RF 3010-MHU
	010		EMI-FFP-480-24, Code 8271 (was RF 3024-SIEI)	RF 3016-FTF, Code 7671 (Rasmi / EuroTek)	RF 3010-MHU
	014		EMI-FFP-480-24, Code 8271 (was RF 3024-SIEI)	RF 3016-FTF, Code 7671 (Rasmi / EuroTek)	RF 3016-MHU
	019		EMI-FFP-480-24, Code 8271 (was RF 3024-SIEI)	RF 3030-FTF, Code 8082 (Rasmi / EuroTek)	RF 3025-MHU
	027		EMI-FFP-480-30, Code 8272 (was RF 3030-SIEI)	RF 3030-FTF, Code 8082 (Rasmi / EuroTek)	RF 3040-MHU
	035		EMI-FFP-480-40, Code 8273 (was RF 3040-SIEI)	RF 3042-FTF, Code 7672 (Rasmi / EuroTek)	RF 3040-MHU
	045		RF 3045-FLP, Code 8073 (Rasmi / EuroTek)	RF 3055-FTF, Code 7673 (Rasmi / EuroTek)	RF 3050-MHU
	052		RF 3055-FLP, Code 8078 (Rasmi/ EuroTek)	RF 3055-FTF, Code 7673 (Rasmi / EuroTek)	RF 3070-MHU
	073		RF 3100-FLP, Code 8075 (Rasmi / EuroTek)	RF 3075-FTF, Code 7674 (Rasmi / EuroTek)	RF 3100-MHU
	086		RF 3100-FLP, Code 8075 (Rasmi / EuroTek)	RF 3100-FTF, Code 7675 (Rasmi / EuroTek)	RF3100-MHU
	100		RF 3100-FLP, Code 8075 (Rasmi/ EuroTek)	RF 3100-FTF, Code 7675 (Rasmi / EuroTek)	RF3100-MHU
	129		RF 3150-FLP, Code 8076 (Rasmi / EuroTek)	RF 3130-FTF, Code 7676 (Rasmi / EuroTek)	RF 3130-MHU
B	167		RF 3180-FLP, Code 8077 (Rasmi/ EuroTek)	RF 3180-FTF, Code 7677 (Rasmi / EuroTek)	RF 3180-MHU
	207		RF 3250-MHU	-	-
	250		RF 3250-MHU	-	-
	330		RF 3400-MHU	-	-
	412		RF 3600-MHU	-	-
C	495		RF 3600-MHU	-	-
	667		RF 3800-MHU	-	-
D	830		RF 31k0-MHU	-	-
	996		RF 31k6-MHU	-	-
	$1 \mathrm{K1}$		RF 31k6-MHU	-	-
	1K3		RF 31k6-MHU	-	-
	1K4		RF 31k6-MHU	-	-

Table 88 - Schaffner and Schaffner Alternative Filters

Frame	Drive Current Rating Code	Voltage Class	Schaffner Filters	Schaffner Alternative Type Filters	
			Part Number	Part Number	Part Number
A	7P0	230 V	FN 258-7-29	FN 3258-7-44	FN 3270H-10-44
	9P0		FN 258-16-29	FN 3258-16-44	FN 3270H-10-44
	012		FN 258-16-29	FN 3258-16-44	FN 3270H-20-44
	020		FN 258-30-33	FN 3258-30-33	FN 3270H-20-44
	029		FN 258-30-33	FN 3258-30-33	FN 3270H-35-33
	038		FN 258-42-33	FN 3258-42-33	FN 3270H-50-34
	055		FN 258-55-34	FN 3258-55-34	FN 3270H-65-34
	073		FN 258-75-34	FN 3258-75-34	FN 3270H-80-35
	093		FN 258-100-35	FN 3258-100-35	FN 3270H-100-35
	110		FN 258-130-35	FN 3258-130-35	FN 3270H-150-99
B	146		FN 258-180-40	FN 3258-180-40	FN 3270H-150-99
	180		FN 258-180-40	FN 3258-180-40	FN 3270H-200-99
	218		FN 258-250-40	FN 3359-250-28	FN 3270H-250-99
	265		FN 258-250-40	FN 3359-320-99	FN 3270H-320-99
	360		-	FN 3359-400-99	FN 3270h-400-99
	434		-	FN 3359-400-99	FN 3270H-600-99
C	521		-	FN 3359-600-99	FN 3270H-600-99
	700		-	FN 3359-800-99	FN 3270H-800-99
D	875		FN 3359-1000-99	-	FN 3270H-1000-99
	1 KO		FN 3359-1000-99	-	FN 3270H-1000-99

Frame	Drive Current Rating Code	Voltage Class	Schaffner Filters	Schaffner Alternative Type Filters	
			Part Number	Part Number	Part Number
A	4P1	460	FN 258HV-7-29	-	FN 3270H-10-44
	6P0		FN 258HV-7-29	-	FN 3270H-10-44
	010		FN 258HV-16-29	-	FN 3270H-10-44
	014		FN 258HV-16-29	-	FN 3270H-20-44
	019		FN 258HV-30-33	-	FN 3270H-20-44
	027		FN 258HV-30-33	-	FN 3270H-35-33
	035		FN 258HV-42-33	-	FN 3270H-35-33
	045		FN 258HV-55-34	-	FN 3270H-50-34
	052		FN 258HV-55-34	-	FN 3270H-65-34
	073		FN 258HV-75-34	-	FN 3270H-80-35
	086		FN 258HV-100-35	-	FN 3270H-100-35
	100		FN 258HV-100-35	-	FN 3270H-100-35
	129		FN 258HV-130-35	-	FN 3270H-150-99
B	167		FN 3359HV-180-28	-	FN 3270H-200-99
	207		FN 3359HV-250-28	-	FN 3270H-250-99
	250		FN 3359HV-320-99	-	FN 3270H-250-99
	330		FN 3359HV-320-99	-	FN 3270H-320-99
	412		FN 3359HV-400-99	-	FN 3270H-400-99
C	495		FN 3359HV-600-99	-	FN 3270H-600-99
	667		FN 3359HV-800-99	-	FN 3270H-800-99
D	830		FN 3359HV-800-99	-	FN 3270H-1000-99
	996		FN 3359HV-1000-99	-	FN 3270H-1000-99
	1K1		FN 3359HV-1600-99	-	-
	1K3		FN 3359HV-1600-99	-	-
	1K4		FN 3359HV-1600-99	-	-
B	067	575	FN 258HV-75-34	-	-
	101		FN 258HV-100-35	-	-
	135		FN 258HV-130-35	FN 3359HV-150-28	-
	270		FN 3359HV-320-99	-	-
	405		FN 3359HV-400-99	-	-
C	540		FN 3359HV-600-99	-	-
	675		FN 3359HV-800-99	-	-
D	810		FN 3359HV-800-99	-	-
	1K0		FN 3359HV-1000-99	-	-
	1K2		FN 3359HV-1600-99	-	-
	1K3		FN 3359HV-1600-99	-	-
	1K6		FN 3359HV-1600-99	-	-
C	452	690	FN3359HV-600-99	-	-
	565		FN3359HV-600-99	-	-
D	678		FN3359HV-800-99	-	-
	791		FN3359HV-800-99	-	-
	904		FN3359HV-1000-99	-	-
	1K0		FN3359HV-1600-99	-	-
	1K1		FN3359HV-1600-99	-	-
	1K2		FN3359HV-1600-99	-	-
	1K4		FN3359HV-1600-99	-	-
	1K5		FN3359HV-1600-99	-	-

Table 89 - EPCOS and EPCOS Alternative Filters

Frame	Drive Current Rating Code	Voltage Class	$\begin{array}{\|l\|} \hline \text { EPCOS Filters } \\ \hline \text { Part Number } \\ \hline \end{array}$	EPCOS Alternative Type Filters	
				Part Number	Part Number
D	875	230	B84143B10005080	B84143B10005020	-
	1K0		B84143B16005080	B84143B16005020	-
D	830	460	B84143B10005081	B84143B10005020	B84143B10005021
	996		B84143B16005081	B84143B16005020	B84143B16005021
	1K1		B84143B16005081	B84143B16005020	B84143B16005021
	1K3		B84143B16005081	B84143B16005020	B84143B16005021
	1K4		B84143B1600S081	B84143B16005020	B84143B16005021
B	135	575	B84143B0180S081	B84143B01505021	-
	270		B84143B0320S081	B84143B03205021	-
	405		B84143B06005081	B84143B06005021	-
c	540		B84143B06005081	B84143B06005021	-
	675		B84143B10005081	B84143B10005021	-
D	810		B84143B10005081	B84143B10005021	-
	1K0		B84143B16005081	B84143B16005021	-
	1K2		B84143B16005081	B84143B16005021	-
	1K3		B84143B16005081	B84143B16005021	-
	1K6		B84143B25005021	-	-
c	452	690	B84143B06005081	B84143B06005021	-
	565		B84143B06005081	B84143B06005021	-
D	678		B84143B10005081	B84143B10005021	-
	791		B84143B10005081	B84143B10005021	-
	904		B84143B10005081	B84143B10005021	-
	1K0		B84143B16005081	B84143B16005021	-
	1K1		B84143B16005081	B84143B16005021	-
	1K2		B84143B16005081	B84143B16005021	-
	$1 \mathrm{K4}$		B84143B16005081	B84143B16005021	-
	1K5		B84143B16005081	B84143B16005021	-

Terminal Adapter Kits for Frame D Drives

The following frame D drives require the listed terminal adapter kits to meet UL installation requirements.

Voltage Class	Drive Current Rating Code	U, V, W Terminal Adapter Kit Number	C, D Terminal Adapter Kit Number
230	1K0	SK-20P-S726172	-
460	1K1	SK-20P-S726171	-
	1K3		-
	1K4		-
575	$1 \mathrm{K0}$	SK-20P-S726172	-
	1K2	SK-20P-S726171	-
	1K3		-
	1K6		SK-20P-S726173
690	1K0	SK-20P-S726172	-
	1K1	SK-20P-S726171	-
	1K2		-
	1K4		-
	1K5		-

Notes:

HIM Overview

Topic	Page
External and Internal Connections	$\underline{269}$
LCD Display Elements	$\underline{270}$
ALT Functions	$\underline{270}$
Menu Structure	$\underline{272}$
Viewing and Editing Parameters	$\underline{274}$
Removing/Installing the HIM	$\underline{275}$

External and Internal Connections

The PowerFlex DC drive provides a number of cable connection points for the HIM (frame A shown).

No.	Connector	Description
1	DPI Port 1	HIM connection when installed in cover.
2	DPI Port 2	DPI cable connection for handheld and remote options.
3	DPI Port 3 or 2	Splitter cable that is connected to DPI Port 2 provides additional port.
4	DPI Port 5	Cable connection for communication adapter (shown with front cover removed).

LCD Display Elements

ALT Functions

Display	Description			
	Direction \|Drive Status	Alarm	Auto/Man	Information
0.0 rpm	Commanded or Output Speed or Current			
Main Menu: Diagnostics Parameter Device Select	Programming / Monitoring / Troubleshooting			

The top line of the HIM display can be configured with parameter 1321 [DPI Fdbk Select].

To use an ALT function, press the ALT key, release it, then press the programming key that is associated with the function printed on the HIM above the key:

Table 90 - ALT Key Functions

Using the S.M.A.R.T. List Screen

The LCD HIM provides the S.M.A.R.T. list screen, which contains some of the most commonly changed parameters, including the following:

Parameter Name / Number	Description
[Max Ref Speed] (45)	The base motor speed from the motor nameplate.
[Rated Motor Volt] (175)	The maximum armature voltage of the drive output.
[Nom Mtr Arm Amps] (179)	Corresponds to 100\% of the current limit.
[Nom Mtr Fld Amps] (280)	Rated motor nameplate field current.
[Anlg In1 Sel] (70)	Selects the parameter to which a value is written from analog input 1 (default = "Speed Ref A")
[Maximum Speed] (2)	Defines the maximum speed of the drive.
[Current Limit] (7)	Symmetrical current limit for both current directions for four quadrant drives, expressed as a percentage of the value in parameter 179 [Nom Mtr Arm Amps].
[Accel Time 1] (660)	Sets the rate of acceleration for Ramp 0.
[Fdbk Device Type] (414)	The source of speed feedback.

Some important Start Up parameters are not included in this screen. See Drive Start Up on page 91 for detailed instructions.

Figure 84 - HIM Menu Structure

Diagnostics Menu

When a fault trips the drive, use this menu to access detailed data about the drive.

Option	Description
Faults	View fault queue or fault information, clear faults, or reset drive.
Status Info	View parameters that display status information about the drive.
Device Items	View statistics that are associated with DPI communication.
Device Version	View the firmware version and hardware series of components.

Parameter Menu

Use this menu to view and edit parameters for the drive. When you enter the the Parameter menu, by default the File-Group-Parameter view is displayed. To access other views for the Parameter menu, with "Parameter" highlighted in the Main menu, press Alt then Sel (View), select the desired view in the list and press Enter. The following selections are available:

Option	Description
Param Access Lvl	Displays parameter 211 [Param Access Level]. The PowerFlex DC drive is initially set to the Basic Parameter view. To view all parameters, set parameter 211 [Param Access Lvl] to option 1 "Advanced".
File-Group-Par	Displays all parameters in a File - Group - Parameter (FGP) structure. The FGP structure simplifies programming by grouping parameters that are used for similar functions.
Numbered List	Displays all parameters in numerical order.
Changed Params	Displays the most recently changed parameter. You can scroll through the list of all changed parameters to the least recently changed. The new and default values are listed for each parameter.

See Viewing and Editing Parameters on page 274 for more information.

Device Select Menu

Use this menu to access parameters in connected peripheral devices.

Memory Storage Menu

Drive data can be saved to, or recalled from, 'HIM sets.' HIM sets are files that are stored in permanent nonvolatile HIM memory.

ATTENTION: It is recommended that you stop the drive before performing a download to the drive by using the HIM CopyCat function, DriveExecutive, or DriveExplorer.

Option	Description
HIM CopyCat	
Device -> HIM	Save data to a HIM set.
Device $<-$ HIM	Load data from a HIM set to active drive memory.
Delete HIM Set	Delete a HIM set.
Reset To Defaults	Restore the drive to its factory default settings.

Preferences Menu

The HIM and drive have features that you can customize.

Option	Description
Drive Identity	Add text to identify the drive.
User Dspy Lines	Select the display, parameter, scale, and text for the User Display. The Ues Display is two lines of user-defined data that appears when the HIM is not being used for programming.

Viewing and Editing Parameters

LCD HIM

Numeric Keypad Shortcut

On a HIM with a numeric keypad, press the ALT key and the +/- key to access the parameter by typing its number.

Removing/Installing the HIM
The HIM can be removed or installed while the drive is powered.

IMPORTANT HIM removal is only permissible in Auto mode. If the HIM is removed while in Manual mode or the HIM is the only remaining control device, a fault occurs.

Step	Example Displays
To remove the HIM, follow these steps.	
1. Press ALT and then confirmation screen appears.	Remove Op Intrfc: Press Enter to Disconnect Op Intrfc? (Port 1 Control)
2. To confirm that you want to remove the HIM, press	
3. Remove the HIM from the cradle on the drive.	
To install the HIM, insert it into the cradle on the drive or connect	
the DPI cable.	

Notes:

Application Notes

Topic	Page
Alpha Test Mode	$\underline{277}$
Analog Input Configuration	$\underline{280}$
Current / Speed Curve	$\underline{282}$
Drive Reference and Feedback Scaling	$\underline{283}$
Droop Compensation	$\underline{289}$
Field-weakening Mode Configuration (v1.006)	$\underline{289}$
Lifting/Torque Proving	$\underline{293}$
Manually Tuning the Speed Regulator for	$\underline{304}$
Firmware Revision 6.001 and Later	$\underline{\underline{306}}$
PID Function	$\underline{310}$
Reference Control	

Topic	Page
Resolver Cable Balance Tuning Test	$\underline{\underline{313}}$
Resolver Type Selection	$\underline{314}$
Scale Blocks	$\underline{315}$
SCR Diagnostic Tests	$\underline{316}$
S-curve Configuration	$\underline{318}$
Speed Regulation Functions	$\underline{320}$
Speed / Torque Mode Selection	$\underline{333}$
Start At Powerup	$\underline{334}$
Fine-Tuning the Regulators	

Alpha Test Mode

The Alpha Test is a diagnostic function that allows you to activate the Armature or Field power module in an open loop mode. By commanding an SCR firing angle, a voltage is produced at the output of the selected power module. The SCR firing angle is specified in parameter 167 [Arm Test Angle] or Par 168 [Fld Test Angle]. A load greater than 500 mA is required for proper SCR operation typically, an incandescent bulb or inductive load (never a motor) is used.

The Alpha Test is started as soon as parameter 166 [Alpha Test] is set to one of the following values:

- 1 "Arm Fwd" (armature forward)
- 2 "Arm Rev" (armature reverse)
- 3 "Fld Fwd" (field forward).

The HIM displays "ArmAlphaTest" or "FldAlphaTest" while active. Start and Jog commands have no affect and a motor contactor is not closed when the test mode is initiated.

The Alpha Test ends when Par 166 [Alpha Test] is set to 0 "Off". Otherwise, only a digital input Enable or a Fault stops the test - a HIM Stop has no affect. A change to the Alpha Test Mode (set in Par 166 [Alpha Test]) resets both test angles to their minimum firing value (180 deg).

Overcurrent and Overvoltage fault protections are active during these tests. Also, the Autotune function is disabled while Alpha test is enabled.

Alpha Test Setup and Operation

ATTENTION: Only qualified electrical personnel familiar with the construction and operation of this equipment and the hazards that are involved should perform this test. Failure to observe this precaution could result in equipment damage and/or bodily injury.

ATTENTION: The Alpha test is open loop. Therefore, disconnect the motor armature and field leads and replace them with dummy loads. Failure to observe this precaution could result in machine damage and/or bodily injury.

ATTENTION: Uncontrolled machine operation could result with a motor connected during these tests and may cause personal injury and/or equipment damage. Verify that the drive is not connected to a motor armature circuit before enabling these test modes.

WARNING: Remove power before you make or break cable connections. When you remove or insert a cable connector with power applied, an electrical arc may occur. An electrical arc may cause these system events, which can cause personal injury or property damage.

- An erroneous signal to system field devices, which can cause unintended machine motion
- An explosion in a hazardous environment

Electrical arcing causes excessive wear to contacts on both the module and its mating connector. Worn contacts can create electrical resistance.

IMPORTANT The Alpha Test requires that you attach the leads of an isolated oscilloscope to the armature or field terminals of the drive.

1. Remove and lock-out all incoming power to the drive.

2. Disconnect the motor armature leads and mechanically lock the rotor.
3. Attach the isolated oscilloscope leads to the appropriate drive terminals (based on test to be performed).
4. Reapply power to the drive.
5. Verify the no faults or alarms present. If an alarm or fault code displays, see Chapter 4 - Troubleshooting on page 217.
6. Open the Enable input on the drive.
7. Set Par 166 [Alpha Test] to the desired value ($1=$ "Arm Fwd", $2=$ "Arm Rev" or 3 = "Fld Fwd").
8. Close the Enable input.
9. Slowly decrease the appropriate angle parameter (Par 167 [Arm Test Angle] or Par 168 [Fld Test Angle]) until a steady pattern of voltage pulses display on the oscilloscope. The resulting patterns indicate the status of the thyristors.

- Six pulses per AC line cycle indicate that all thyristors in the selected bridge are operating properly.
- Fewer than six pulses per AC line cycle indicates that one or more thyristors for the selected bridge are not operating.

Conduction (or output voltage) does not typically begin until the angle is below approximately 120°.
10. Open the Enable input and set Par 166 [Alpha Test] to 0 "Off".
11. Remove power from the drive.
12. Remove the oscilloscope from the leads of the drive and unlock the rotor.
13. If necessary, replace the defective firing board in the drive.
14. Reconnect the motor armature and field leads to the drive.
15. Reapply power to the motor and drive.

Analog Input Configuration

The analog inputs default to $\pm 10 \mathrm{~V}$. To configure the analog inputs for $0-10 \mathrm{~V}$, set parameters [Anlg Inx Config] to 1, " $0-10 \mathrm{~V}$ ". To configure the analog inputs for a current signal, set parameters [Anlg Inx Config] to 2, " $0-20 \mathrm{~mA}$ " or 3, " 4 to 20 mA ". In addition, switches S9, S10, and S11 must be properly configured (see Control Circuit Board Jumper and DIP Switch Settings on page 76 for more information).

See the Analog Inputs/Outputs Mapping block diagram on page 348 for more information.

Example 1:

The speed reference value of a drive is defined with an external voltage of 5 V . With this value, the drive reaches the maximum allowable speed set in Par 45 [Max Ref Speed]. Enter a scaling factor of 2 in [Anlg In x Scale] to scale the input voltage from 5 V to 10 V .

Example 2:

An external analog reference reaches a maximum value of 9.8 V . Enter a scaling factor of 1.020 in [Anlg In x Scale] to scale the maximum voltage from 9.8 V to 10 V .

The same result could be obtained via parameter [Anlgx Tune Scale], by entering the values of the appropriate parameters via the HIM. The maximum possible analog-input value (in this case 9.8 V) must be present at the terminal with a positive polarity at the time of configuration.

Analog-input Signal Comparison

This feature provides an indication via the HIM or a digital output when the signal of analog input 1 has reached a limit above or below a set reference point.

Calculations that are used to determine Pars 1042 [Anlg In 1 Cmp] and 1043 [Anlg In 1 Cmp Err]:

- $[$ Anlg In 1 Cmp$]=($ comparison value $) \times 10000 /($ max. reference value $)$
- [Anlg In1 Cmp Err] $=($ tolerance value $) \times 10000 /($ max. reference value $)$

Example 1:

An application requires an indication via a digital output that the motor speed is within 100 rpms of 700 rpm .

- Par 45 [Max Ref Speed] = 1500 rpm (maximum reference value)
- For Analog Input $1,10 \mathrm{~V}$ or 20 mA sets the maximum value of Par 44 [Speed Ref A] = Par 45 [Max Ref Speed]

Configure the following:

- Set Par 70 [Anlg In 1 Sel] $=$ "Speed Ref A"
- Set [Digital Outx Sel] = "Input1 Cmp" (Par 1045 [Anlg In 1 Cmp Eq])
- Set Par 1042 [Anlg In1 Cmp] = 4667 ($700 \times 10000 / 1500$)
- Set Par 1043 [Anlg In1 Cmp Err] $=666(100 \times 10000 / 1500)$
- Par 1045 [Anlg In 1 Cmp Eq] = " 1 " (high) when the signal on Analog Input 1 is within the range that is specified in Par 1043 [Anlg In 1 Cmp Err]. Par 1045 [Anlg In 1 Cmp Eq] = " 0 " (low) when the signal on Analog Input 1 is outside the range that is specified in Par 1043 [Anlg In 1 Cmp Err].

Example 2:

An application requires an indication via a digital output that the output current is within $\pm 2 \%$ of 50% of the maximum current limit.

- Par 7 [Current Limit] $=100 \%$ (maximum reference value)
- For Analog Input $1,10 \mathrm{~V}$ or 20 mA sets the maximum value $=\operatorname{Par} 7$ [Current Limit]

Configure the following:

- Set Par 70 [Anlg In 1 Sel] = "Pos Cur Lim"
- Set [Digital Outx Sel] = "Input1 Cmp" (Par 1045 [Anlg In1 Cmp Eq])
- Set Par 1042 [Anlg In 1 Cmp] = $5000(50 \times 10000 / 100)$
- Set Par 1043 [Anlg In 1 Cmp Err] $=200(2 \times 10000 / 100)$

Current / Speed Curve

The current/speed curve function lets you control these attributes:

- Establish a current limit lower than the standard current limits of the drive (specified in parameters 8 [Current Lim Pos] and 9 [Current Lim Neg]).
- Reduce the output current (torque) of the drive through a defined curve as the speed increases based on a threshold speed, effectively reducing torque. The curve is composed of five equally divided set points.

Configure these parameters to enable and control the current / speed curve.

- Enable the current/speed curve function by setting parameter 750 [TrqTpr Enable] to 1 "Enabled".
- Set the current limit (for both directions of rotation in four quadrant drives) in parameter 751 [$\operatorname{Trq} \operatorname{Tpr} \operatorname{Lim} 0]$. The value that is specified in this parameter overrides the value of parameters 8 [Current Lim Pos] and 9 [Current Lim Neg].
- Set the threshold speed at which current (torque) reduction begins in parameter 756 [TrqTpr Spd].
- Set the first reduced current limit in parameter 752 [$\operatorname{Trq} \operatorname{Tpr} \operatorname{Lim} 1]$. The value that is defined in this parameter must be set according to these constraints:
- Less than the value of parameter 751 [$\operatorname{Trq} \operatorname{Tpr} \operatorname{Lim} 0]$
- Greater than the values in parameters 753 [$\mathrm{TrqTpr} \operatorname{Lim} 2], 754$ [TrqTpr Lim3], and 755 [TrqTpr Lim4].
- Set the second, third, and final reduced current limits in parameters 753 [TrqTpr Lim2], 754 [$\mathrm{TrqTpr} \operatorname{Lim} 3]$ and 755 [$\operatorname{TrqTpr} \operatorname{Lim} 4]$, respectively. The value of each subsequent parameter must be less than the previous parameter value. The drive maintains the value that is specified in parameter 755 [$\operatorname{TrqTpr} \operatorname{Lim} 4$] up to the value set in parameter 162 [Max Feedback Spd].

Drive Reference and Feedback Scaling

With firmware revision 3.001, external reference and feedback speed values are each normalized to 25,000 counts. For firmware revision 2.005 and lower, external reference and feedback speed values are scaled to "rpm x 4 " counts.

The value of parameter 45 [Max Ref Speed] (rpm) determines the correlation (scaling) between the following attributes:

- DPI speed reference counts and rpm
- Analog-input reference values ($10 \mathrm{~V}=\operatorname{Par} 45 \mathrm{rpm}$).

All speed reference values are based on the value of [Max Ref Speed]. The value of [Max Ref Speed] represents the maximum speed that the motor can attain (also known as "gear-in speed"). If field weakening is used, [Max Ref Speed] is set to the field weakened speed. Otherwise, the motor base speed is typically used.

The value of parameter 162 [Max Feedback Spd] (rpm) determines the correlation (scaling) between DPI speed feedback counts and rpm and the DC tachometer values (if configured). All speed feedback values are based on [Max Feedback Spd]. Typically, [Max Feedback Spd] is set to the same value as parameter 45 [Max Ref Speed], but is not required (because each is separately scaled to 25000 counts). See Valid Speed Feedback Values on page 287 for limitations for parameter 162 [Max Feedback Spd] and 169 [Encoder PPR].

Armature Voltage Feedback

When armature voltage feedback is configured, Par 162 [Max Feedback Spd] must be set to the motor base speed (rpm) value that is associated with Par 175 [Rated Motor Volt].

DC Analog Tachometer Feedback

DC analog tachometer feedback is configured with these settings:

- Set parameter 414 [Fdbk Device Type] to 2 "DC Tach"
- Position DIP switch S4 on the control board to the maximum input voltage for the tachometer (see Table 28 on page 77 for details)
- Set parameter 162 [Max Feedback Spd] to the same rpm value as indicated by the maximum input voltage that is set with DIP switch S4

To maximize the feedback speed resolution, use Par 562 [Anlg Tach Gain] to scale the voltage indicated by DIP switch S4 to Par 162 [Max Feedback Spd]. Use this equation to determine the correct analog-tachometer gain setting:

Par 562 [Anlg Tach Gain] = (Tachometer Maximum DC Input Voltage) x (1000 rpm/ volts Tach Voltage) / Par 45 [Max Ref Speed]

Encoder Feedback

Encoder feedback is configured with parameter 169 [Encoder PPR]. No scaling or switch settings are needed, but the same limitations as the DC analog tachometer apply. See Valid Speed Feedback Values on page 287 for more information on setting parameters 162 [Max Speed Feedback] and 169 [Encoder PPR].

Speed Regulator Feedback Bypass

Speed Regulator feedback bypass provides an automatic switch to armature voltage feedback when a speed feedback-signal loss occurs ("Speed Fdbk Loss" (F91). Speed Regulator feedback bypass is configured with these settings:

- Set parameter 458 [SpdReg FB Bypass] to 1 "Enabled"
- Connect the drive armature-voltage feedback terminals A1 and A2 to the motor terminals A1 and A2, respectively

The drive armature-voltage feedback terminals must be connected to the motor terminals to use Speed Regulator feedback bypass when these conditions are present:

- A DC contactor is installed with the drive
- Field weakening is enabled (Par 469 [Field Mode Sel] = 1 "Field Weaken")

Drive Reference and Feedback Scaling Examples

The examples that are listed here are based on the following data:

- 500 V motor, with base speed $=1750 \mathrm{rpm}$
- Weakened spd $=2500 \mathrm{rpm}$
- Weakened ratio $=70 \%(1750 / 2500=0.7)$
- $50 \mathrm{~V} / 1000 \mathrm{rpm}$ tachometer
- 240 ppr encoder
- 7500 fpm application (field weakened or gear-in speed)

Examples 2, 3, and 4 indicate how the value of Par 162 [Max Speed Feedback] is derived from the required analog tachometer scaling that DIP switch S4 determines.

Example 1: Armature Voltage Feedback (Overvoltage Fixed at 20\%)

Because armature voltage feedback is being used the maximum reference and feedback speeds must be equal and set to the rated speed of the motor. In this case, field weakening is not permitted.

- Par 175 [Rated Motor Volt] $=500 \mathrm{~V}$ (default)
- Par 45 [Max Ref Speed] = 1750 rpm (default)
- Par 162 [Max Feedback Spd] = 1750 rpm (default)
- The reference and feedback resolution $=0.21 \mathrm{fpm} /$ count ($5250 \mathrm{fpm} / 25000$ counts)

Example 2: DC Tachometer with No Feedback Bypass

When a DC tachometer is used, the maximum feedback speed must be scaled to the maximum voltage of the tachometer. A loss of feedback resolution results when Par 562 [Anlg Tach Gain] is left at the default value (1.0000). The loss in resolution occurs because the drive is only using 1750 rpm out f the maximum 3600 rpm .

- Par 175 [Rated Motor Volt] = 500V (default)
- Par 45 [Max Ref Speed] = 1750 rpm (default)
- Par 562 [Anlg Tach Gain] $=1.0000$ (default)
- Par 585 [Overspeed Val] $=1925 \mathrm{rpm}$ (default)
- Set DIP switch S4 = 180V

This value is set to the next highest DIP switch setting available based on the result of the following calculation:

Tachometer	x Max Motor Speed	\times Overspeed Percentage	$=$ Scaled Tach Input Volts
$(50 \mathrm{~V} / 1000 \mathrm{rpm})$	$(1750 \mathrm{rpm})$	(1.1)	96.25 V

- Set Par 162 [Max Feedback Spd] = 3600 rpm

This value is based on $(180 \mathrm{~V} / 50 \mathrm{~V})=3.6(1000)$

- The reference resolution $=(5250 \mathrm{fpm} / 25000$ counts $)=0.21 \mathrm{fpm} /$ count
- The feedback resolution $=0.62 \mathrm{fpm} /$ count

Example 3: DC Tachometer with Feedback Bypass

This example is similar to example 2 except that it compensates for the loss in feedback resolution by setting parameter 562 [Anlg Tach Gain].

- Par 175 [Rated Motor Volt] $=500 \mathrm{~V}$ (default)
- Par 45 [Max Ref Speed] = 1750 rpm (default)
- Set Par 562 [Anlg Tach Gain] $=2.057$ (3600/1750)
- Par 585 [Overspeed Val] $=1925 \mathrm{rpm}$ (default)
- Set DIP switch S4 = 180V

This value is set to the next highest DIP switch setting available based on the result of the following calculation:

Tachometer	x Max Motor Speed \times Overspeed Percentage	$=$ Scaled Tach Input Volts	
$(50 \mathrm{~V} / 1000 \mathrm{rpm})$	$(1750 \mathrm{rpm})$	(1.1)	96.25 V

- Par 162 [Max Feedback Spd] = 1750 rpm (default)

This value is based on: $(180 \mathrm{~V} / 50 \mathrm{~V} / 2.057)=1.750(1000)$

- The reference and feedback resolution $=(5250 \mathrm{fpm} / 25000$ counts $)=0.21$ fpm/count

Example 4:DC Tachometer with Field Weakening

This example is similar to example 3 except that a field weakening speed of 2500 rpm is configured rather than a base speed of 1750 rpm .

- Par 175 [Rated Motor Volt] $=500 \mathrm{~V}$ (default)
- Set Par 45 [Max Ref Speed] = 2500 rpm
- Set Par 562 [Anlg Tach Gain] $=1.44$
- Set Par 585 [Overspeed Val] $=2750$ rpm
- Set DIP switch S4 $=180 \mathrm{~V}$

This value is set to the next highest DIP switch setting available based on the result of the following calculation:

Tachometer	\times Max Motor Speed	\times Overspeed Percentage	$=$ Scaled Tach Input Volts
$(50 \mathrm{~V} / 1000 \mathrm{rpm})$	$(2500 \mathrm{rpm})$	(1.1)	137.5 V

- Set Par 162 [Max Feedback Spd] $=2500$ rpm

This value is based on: $(180 \mathrm{~V} / 50 \mathrm{~V} / 1.44)=2.5(1000)$

- The reference and feedback resolution $=(7500 \mathrm{fpm} / 25000$ counts $)=0.3$ fpm/count

Example 5: Encoder with Field Weakening

This example is similar to example 4 except that an encoder is configured so there is no feedback scaling required.

- Par 175 [Rated Motor Volt] $=500 \mathrm{~V}$ (default)
- Set Par 45 [Max Ref Speed] $=2500 \mathrm{rpm}$
- Set Par 162 [Max Feedback Spd] $=2500$ rpm
- Set Par 169 [Encoder PPR] $=240 \mathrm{ppr}$
- Set Par 585 [Overspeed Val] $=2750$ rpm
- The reference and feedback resolution $=(7500 \mathrm{fpm} / 25000$ counts $)=0.3$ fpm/count

Valid Speed Feedback Values

Regardless of the type of speed feedback device that is used, the value of parameters 162 [Max Feedback Spd] and 169 [Encoder PPR] must be in the 'Allowed Area' that is shown in Figure 85 on page 288 based on the value of Par 175 [Rated Motor Volt].

Figure 85 - Speed Feedback Settings

Droop Compensation

Field-weakening Mode Configuration (v1.006)

The Droop function is used when the current must be balanced between two drives. A typical situation that requires the use of the Droop function is when two motors are mechanically coupled and must run at the same speed. If Droop is not used, a difference in the drives speed regulators can result in these issues:

- One of the motors runs at a higher speed and is overloaded.
- One of the motors runs at a lower speed and acts, essentially, as a brake.

The Droop function lets you overcome this difference by adding a load compensation component to the speed reference, which is proportional to the actual load differences of the drives.
For example:

Master Drive		Slave Drive	
[Anlg $\ln 1$ Sel]	= "Speed Ref $\mathrm{A}^{\prime \prime}$	[Anlg $\ln 1 \mathrm{Sel}$]	= "Speed Ref $\mathrm{A}^{\prime \prime}$
[Anlg Out1 Sel]	= "Torque Ref" (Par 14)	[Anlg In2 Sel]	= "Load Comp" (Par 698)
		[Enable Droop]	= "Enabled"
		[Droop Percent]	= 5%
		[Droop Filter]	$=100 \mathrm{~ms}$
		[Droop Limit]	$=1000$

See the block diagram for Droop Compensation - Inertia / Loss Compensation on page 354 for more information.

$$
\begin{array}{ll}
\text { IMPORTANT } & \text { This configuration applies only to firmware revision 1.006. For instructions on } \\
\text { how to configure a drive with firmware revision } 2.001 \text { for use with an AC or DC } \\
\text { contactor, with or without a dynamic brake, see Contactors on page } 30 .
\end{array}
$$

The following configuration is required when operating the drive in field weakening mode with a DC contactor and/or inverting fault device that is installed in the armature circuit.

ATTENTION: The following information is merely a guide for proper installation. Rockwell Automation, Inc. cannot assume responsibility for the compliance or the noncompliance to any code, national, local or otherwise for the proper installation of this drive or associated equipment. A hazard of personal injury and/or equipment damage exists if codes are ignored during installation.

Complete the appropriate installation and programming requirements that are contained on pages $\underline{290} . .292$ when your PowerFlex DC drive uses this configuration:

- Field weakening mode is enabled (Par 469 [Field Mode Sel] set to 1 "Field Weaken")
- A DC contactor and/or an inverting fault device is installed in the armature circuit

> ATTENTION: If a dynamic brake resistor is used with one of these configurations, dynamic braking stop time is extended when the digital input configured as 35 "Fld Weak En" is asserted. If one of these configurations is used in an inappropriate application, equipment damage and/or personal injury may result. Do not use one of these configurations without considering applicable local, national, and international codes, standards, regulations, or industry guidelines.

Using a DC Contactor Only (Firmware v1.006 Only)

1. Set parameter 1391 [ContactorControl] to "Contactor" (default value).
2. Set one [Relay Out x Sel] parameter and one [Digital Inx Sel] parameter to "Contactor" (default value for parameters 1392 [Relay Out 1 Sel] and 140 [Digital In8 Sel]).
3. Connect the DC contactor auxiliary (status) contact to a second digital input.
4. Set the corresponding second [Digital Inx Sel] parameter (133...144) to "Fld Weak En".
5. Set the corresponding [Inversion In x] parameter (1276... 1283 or 1387...1390) for the second digital input to "Enabled".

Using a DC Contactor and a Dynamic Brake (Firmware v1.006 Only)

1. Set parameter 1391 [ContactorControl] to "Contactor+DB".
2. Set one relay output parameter (1392 [Relay Out 1 Sel] or 629 [Relay Out 2 Sel]) to "Contactor" and the other relay output parameter to "ContactorDB".
3. Set one [Digital Inx Sel] parameter to "Contactor" (default value for parameter 140 [Digital In8 Sel]).
4. Connect the DC contactor auxiliary (status) contact to a second digital input.
5. Set the corresponding second [Digital Inx Sel] parameter (133...144) to "Fld Weak En".
6. Set the corresponding [Inversion In x] parameter (1276... 1283 or 1387...1390) for the second digital input to "Enabled".

Using an Inverting Fault Device Only (Firmware v1.006 Only)

1. Connect the inverting-fault device contact to two separate digital inputs. When two inverting fault devices are used, the device contacts must be wired in series.
2. Set one corresponding [Digital Inx Sel] parameter (133...144) to 35 - "Fld Weak En".
3. Set the other corresponding [Digital Inx Sel] parameter (133...144) to 14 "Aux Fault".
4. Set both of the corresponding [Inversion In x] parameters (1276... 1283 or 1387...1390) to 1 - "Enabled".

Using a DC Contactor and an Inverting Fault Device (Firmware v1.006

 Only)
DC Contactor Configuration

1. Set parameter 1391 [ContactorControl] to "Contactor" (default value).
2. Set one [Relay Out x Sel] parameter and one [Digital Inx Sel] parameter to "Contactor" (default value for parameters 1392 [Relay Out 1 Sel] and 140 [Digital In8 Sel]).
3. Connect the DC contactor auxiliary (status) contact to a digital input.
4. Set the corresponding [Digital Inx Sel] parameter (133...144) to 35 - "Fld Weak En".
5. Set the corresponding [Inversion In x] parameter (1276... 1283 or 1387...1390) to 1 - "Enabled".

Inverting-fault Device Configuration

1. Connect the inverting-fault device contact to a digital input.
2. Set the corresponding [Digital Inx Sel] parameter (133...144) to 14 - "Aux Fault".
3. Set the corresponding [Inversion In x] parameter (1276... 1283 or 1387...1390) to 1 - "Enabled".

Using a DC Contactor, a Dynamic Brake and an Inverting Fault Device (Firmware v1.006 Only)

DC Contactor and Dynamic Brake Configuration

1. Set parameter 1391 [ContactorControl] to "Contactor+DB".
2. Set one [Relay Out x Sel] parameter (1392 [Relay Out 1 Sel] or 629 [Relay Out 2 Sel]) to "Contactor" and the other relay output to "ContactorDB".
3. Set one [Digital Inx Sel] parameter to "Contactor" (default value for parameter 140 [Digital In8 Sel]).
4. Connect the DC contactor auxiliary (status) contact to a second digital input.
5. Set the corresponding second [Digital Inx Sel] parameter (133...144) to "Fld Weak En".
6. Set the corresponding [Inversion In x] parameter (1276... 1283 or 1387...1390) for the second digital input to "Enabled".

Inverting-fault Device Configuration

1. Connect the inverting-fault device contact to a digital input.
2. Set the corresponding [Digital Inx Sel] parameter (133...144) to 14 - "Aux Fault".
3. Set the corresponding [Inversion In x] parameter (1276... 1283 or 1387...1390) to 1 - "Enabled".

Lifting/Torque Proving

TorqProve ${ }^{\text {mi }}$ technology for PowerFlex DC drives is intended for applications where proper coordination between motor control and a mechanical brake is required. Before the mechanical brake is released, the drive checks motor armature continuity and verify proper motor control (torque proving). The drive also verifies that the mechanical brake has control of the load before drive control (brake proving) is released. After the drive sets the brake, motor movement is monitored to verify that the brake can hold the load.

ATTENTION: Loss of control in suspended load applications can cause personal injury and/or equipment damage. The drive or mechanical brake must always control the load. Parameters $1100 \ldots 1114$ are designed for lifting/torque proving applications. It is the responsibility of the engineer and/or end user to configure drive parameters, test any lifting functionality and meet safety requirements in accordance with all applicable codes and standards.

TorqProve can be operated with an encoder or encoderless. See "Attention" on page 294 before the use of TorqProve with no encoder.

TorqProve functionality with an encoder includes:

- Torque Proving (includes last torque measurement)
- Brake Proving
- Brake Slip (feature slowly lowers load if brake slips/fails)
- Float Capability (ability to hold full torque at zero speed)
- Micro-Positioning
- Fast Stop
- Speed Deviation Fault and Encoder Loss Fault.

Encoderless TorqProve functionality includes:

- Torque Proving
- Micro-Positioning
- Fast Stop
- Speed Deviation Fault.

IMPORTANT Brake Slip detection and Float capability (ability to hold load at zero speed) are not available in encoderless TorqProve.

Figure 86 - Torque Proving Flow Diagram

All times between Drive Actions are programmable and can be made very small (i.e. Brake Release Time can be 0.1 seconds)
(1) For torque proving to function properly, a mechanical brake must be wired to a relay output.

\triangle

ATTENTION: You must read this information before you use the TorgProve feature without an encoder.
Encoderless TorqProve must be limited to lifting applications where personal safety is not a concern. Encoders offer additional control and protection and must be used where personal safety is a concern. Encoderless TorqProve cannot hold a load at zero speed without a mechanical brake and does not offer additional protection if the brake slips/fails. Loss of control in suspended load applications can cause personal injury and/or equipment damage.
It is your responsibility to configure drive parameters, test any lifting functionality, and meet safety requirements in accordance with all applicable codes and standards. If encoderless TorqProve is desired, you must certify the safety of the application. To acknowledge that you have read this information and properly certified the encoderless application, parameter 414 [Fdbk Device Type] must be changed to "DC Tach" (2). If parameter 414 is set to " $D C$ Tach," you can set bit 1 of parameter 1100 [Torq Prove Cfg] to "1" without causing a Type 2 alarm when lifting/torque proving is enabled (Par 1100, bit $0=1$).

Tuning The Motor For Torque Prove Applications

It is possible to use Autotune to tune the motor (see Tune the Current Regulator on page 100 and Tune the Speed Regulator on page 107). However, it is recommended that the motor is disconnected from the hoist/crane equipment during the routine.

ATTENTION: Unexpected brake release can cause personal injury and/or equipment damage. To guard against an unexpected brake release, verify the digital output that is used for brake connections and/or programming. The PowerFlex DC drive does not control the mechanical brake until TorqProve is enabled. If the brake is connected to a digital output, it could be released. If necessary, disconnect the digital output until wiring/ programming can be completed and verified.

Crane Setup with Encoder/Resolver Feedback

These setup instructions assume the following.

- The drive and motor size have been carefully selected
- The drive parameters are at the factory defaults
- Programming is done with DriveExplorer or DriveTools SP software
- Crane control is done via Run Forward / Run Reverse inputs
- The mechanical brake control is wired to Relay Output 2
- If a resolver is used, the drive must have a Resolver Feedback module installed
- The encoder/resolver is mounted on the back of the motor (not behind the gearbox)
- The encoder, if used, meets this specification: Quadrature differential (A, A-, B, B-), Line driver output, Minimum 1000 PPR 5V or 12V signals (12 V preferred)

ATTENTION: Loss of control in suspended load applications can cause personal injury and/or equipment damage. The drive or mechanical brake must always control the load. Parameters $1100 \ldots 1114$ are designed for lifting/torque proving applications. It is the responsibility of the engineer and/or end user to configure drive parameters, test any lifting functionality and meet safety requirements in accordance with all applicable codes and standards.

Set Up the Drive

Adjust parameter settings and enter nameplate data.

Parameter	Setting
Braking Details	
245 [Speed Ramp En]	1 "Enabled"
629 [Relay Out 2]	31 "TP Brake Cmd"
Motor Nameplate Data	
175 [Rated Motor Volt]	Motor nameplate voltage
179 [Nom Mtr Arm Amps]	Motor nameplate current
162 [Max Feedback Spd]	Motor nameplate speed
280 [Nom Mtr Fld Amps]	Motor nameplate field current
374 [Drv Fld Brdg Cur]	Drive Field Supply Rating (matches S14)
Motor Control	
241 [Spd Trq Mode Sel]	1 "Speed Reg"
Maximum Speed	
45 [Max Ref Speed]	Motor nameplate speed
Drive Duty Rating	
376 [MtrOvrld Type]	1 "Heavy Duty"
Overload Speed	
334 [MtrOvrld Speed]	0\% (so no current derating is applied)
Protection	
479 [MtrOvrld Flt Cfg]	2"Fault"
7 [Current limit]	200\% (of P179 Nom Mtr Arm Amps)

Motor Tuning Routines

Run the following three tests in the order listed. See Chapter 2 "Drive Start Up" staring on page 91 for details. If these tests have already been performed, proceed to Torque Prove Setup on page 298.

Current Tune

This routine measures motor characteristics with the brake set (brake closed).

Verify Motor Rotation and Speed Feedback Polarity

This test checks for correct motor armature and speed feedback device connections.

Speed Tune

This routine gives better results if the connected equipment allows free motor rotation. This routine requires the mechanical brake to open and the motor to run.

If a "TorqPrv Spd Band" fault (F94) occurs during any of the motor tuning routines, see page $\underline{224}$ for a list of possible errors and actions.

Speed Reference Setup

1. Set the minimum speed.

Parameter	Setting
$1[$ Minimum Speed $]$	0.00

2. Set the maximum speed limits.

Parameter	Setting
$2[$ Maximum Speed $]$	Speed limit that is used during normal operation

3. Set the digital input functions.

Parameter	Setting
133 [Digital $\ln 1$ Sel]	"Stop/CF" (2)
134 [Digital $\ln 2$ Sel]	"Run Forward" (6)
135 [Digital $\ln 3$ Sel]	"Run Reverse" (7)
136 [Digital $\ln 4$ Sel]	"Enable" (1)
137 [Digital $\ln 5$ Sel]	"Flt MicroPs" (65)
138 [Digital $\ln 6$ Sel]	"Not Used" (0)

4. Set the speed reference.

Set the DPI Speed Reference to the nominal operating speed.

Parameter	Setting
70 [Anlg In1 Sel]	"Off" (0)
323 [DPI P1 Select]	"Speed Ref A" (1)

5. Verify the speed reference in parameter 1329 [Speed Ref Source] $=1323$.
6. Set the speed loop tuning.

Parameter	Setting
434 [Speed Reg BW]	20 R/S Defines the reactivity of the speed regulator. This value is used to calculate Kp and Ki gains.
433 [Total Inertia]	1.5 Secs This value can be increased or decreased depending on Speed regulator response.

Torque Prove Setup

Carefully perform the following steps in the order presented.

1. Enter the Torque Prove parameter settings.

Parameter	Setting
629 [Relay Out 2 Sel]	"TP Brake Cmd" (31)
1100 [Torq Prove Cfg]	Bit 0"TP Enable" =1

Once Torque Prove is activated, the drive is in alarm state.
2. Select the source of speed feedback.

Parameter	Setting
414 [Fdbk Device Type]	"Encoder" (1) - Verify that P169 [Encoder PPR] is set correctly.

3. Set the time to decrease motor torque during the Brake Slip test.

Drive Parameter	Setting
1104 [Torq Limit Slew]	10.000 Secs (Default)

4. Set the speed deviation.

Parameter	Setting
1105 [Speed Dev Band]	52.50 RPM (Default)

Increase this setting if the drive faults on F94 "TorqPrv Spd Band."
5. Set the speed deviation level.

Parameter	Setting
1106 [SpdBand Intgrtr]	60 ms (Default)

Increase this setting if the drive faults on F94 "TorqPrv Spd Band."
6. Set the brake release time.

Parameter	Setting
1107 [Brk Release Time]	100 ms (Default)

Increase or decrease this setting depending on the time that is required to open the brake.
7. Set the brake set time.

Parameter	Setting
1108 [Brk Set Time]	100 ms (Default)

Increase or decrease this setting depending on the time that is required to close the brake.
8. Set the allowable brake slip.

Parameter	Setting
1109 [Brk Alarm Travel]	1.00 (Default)

Sets the number of motor revolutions the motor is allowed to lower the load when a brake slip has been detected.
9. Set the brake slip definition.

Parameter	Setting
1110 [Brk Slip Count]	0.25 (Default)

Sets the number of encoder or resolver revolutions to define a brake slippage condition.
10. Set the brake float tolerance.

Parameter	Setting
1111 [Float Tolerance]	52.50 RPM

Sets the level at which the float timer starts counting.
11. Set the brake float time.

Parameter	Setting
1113 [ZeroSpdFloatTime]	5.000 Secs (Default)

Sets the time to maintain zero speed with brake open when the run command has been released.

The drive is now configured and Torque Prove for the mechanical brake control is activated. The load can now be applied.

Optimize the Speed Loop Tuning

You can now use DriveObserver to optimize the speed loop tuning. Use a 30 second time scaling on the X -axis. Use DriveObserver to configure the following traces.

Parameter	Setting
1008 [Spd Reg Fdbk]	Scaled to minimum and maximum speed limits
113 [Ramp 0ut]	Scaled to minimum and maximum speed limits
200 [Arm Current]	Scaled to current limit value
41 [Current Reg In]	Default scaling

Run the crane up and down under full load. Adjust acceleration and deceleration rates if necessary.

Troubleshooting Crane Setup with Encoder/Resolver Feedback

The following faults commonly occur during drive commissioning.

F4 "AC Undervoltage"

- If the mains supply is still present, reduce the undervoltage level at P481 [UnderVolt Thresh].

F5 "Arm Overvoltage"

- Verify the parameter settings as stated in Set Up the Drive on page 296.

F94 "TrqProve Spd Band" (Speed deviation fault)

- This fault is only active when TorqProve is enabled.
- The speed loop tuning is incorrect. Increase P434 [Spd Reg BW] or P433 [Total Inertia]. If these values are too high, the regulator becomes unstable.
- P1008 [Spd Reg Fdbk] should follow P113 [Ramp Out] as closely as possible.
- The drive is going into current limit. The drive is undersized or acceleration / deceleration is set too fast.
- The brake is not opening. Check for faulty brake operation.

For more fault information, see Chapter 4 Troubleshooting on page 217.

Crane Setup - Encoderless

These setup instructions assume the following.

- The drive and motor size have been carefully selected
- The drive parameters are at the factory defaults
- Programming is done with DriveExplorer or DriveTools SP software
- Crane control is done via Run Forward / Run Reverse inputs
- The mechanical brake control is wired to Relay Output 2

ATTENTION: Loss of control in suspended load applications can cause personal injury and/or equipment damage. The drive or mechanical brake must always control the load. Parameters $1100 \ldots$. . 1114 are designed for lifting/torque proving applications. It is the responsibility of the engineer and/or end user to configure drive parameters, test any lifting functionality and meet safety requirements in accordance with all applicable codes and standards.

Set Up the Drive

Adjust the parameter settings and enter nameplate data.

Parameter	Setting
Braking Details	
245 [Speed Ramp En]	1 "Enabled"
629 [Relay Out 2]	31 "TP Brake Cmd"
Motor Nameplate Data	
175 [Rated Motor Volt]	Motor nameplate voltage
179 [Nom Mtr Arm Amps]	Motor nameplate current
162 [Max Feedback Spd]	Motor nameplate speed
280 [Nom Mtr Fld Amps]	Motor nameplate field current
374 [Drv Fld Brdg Cur]	Drive Field Supply Rating (matches S14)
Motor Control	
241 [Spd Trq Mode Sel]	1 "Speed Reg"
Maximum Speed	
45 [Max Ref Speed]	Motor nameplate speed
Drive Duty Rating	
376 [MtrOvrld Type]	1 "Heavy Duty"
Overload Speed	
334 [MtrOvrld Speed]	0\%
Protection	
479 [MtrOvrld Flt Cfg]	2"Fault"
7 [Current limit]	200\% (of P179 Nom Mtr Arm Amps)

Motor Tuning Routines

Run the following three tests in the order listed. See Chapter 2 "Drive Start Up" staring on page 91 for details. If these tests have already been performed, proceed to Torque Prove Setup.

Current Tune

This routine measures motor characteristics with the brake set (brake closed).

Verify Motor Rotation and Speed Feedback Polarity

This test checks for correct motor armature and speed feedback device connections.

Speed Tune

This routine gives better results if the connected equipment allows free motor rotation. This routine requires the mechanical brake to open and the motor to run.

If a "TorqPrv Spd Band" fault (F94) occurs during any of the motor tuning routines, see page 224 for a list of possible errors and actions.

Speed Reference Setup

1. Set the minimum speed.

Parameter	Setting
$1[$ Minimum Speed $]$	0.00

2. Set the maximum speed limits.

Parameter	Setting
$2[$ Maximum Speed $]$	Speed limit that is used during normal operation

3. Set the digital input functions.

Parameter	Setting
133 [Digital $\ln 1$ Sel]	"Stop/CF" (2)
134 [Digital $\ln 2$ Sel]	"Run Forward" (6)
135 [Digital $\ln 3$ Sel]	"Run Reverse" (7)
$136[$ Digital $\ln 4$ Sel]	"Enable" (1)
137 [Digital $\ln 5 \mathrm{Sel}]$	"Flt MicroPsn" (65)
138 [Digital $\ln 6$ Sel]	"Not Used" (0)

4. Set the speed reference.

Set the DPI Speed Reference to the nominal operating speed.

Parameter	Setting
70 [Anlg In1 Sel]	"Off" (0)
323 [DPI P1 Select]	"Speed Ref A" (1)

5. Verify the speed reference in parameter 1329 [Speed Ref Source] $=1323$.
6. Set the speed loop tuning.

Parameter	Setting
434 [Speed Reg BW]	20 R/S Defines the reactivity of the speed regulator. This value is used to calculate Kp and Ki gains.
433 [Total Inertia]	1.5 Secs This value can be increased or decreased depending on Speed regulator response.

Torque Prove Setup

Carefully perform the following steps in the order presented.

1. Enter the Torque Prove parameter settings.

Parameter	Setting
629 [Relay Out 2 Sel]	"TP Brake Cmd" (31)
1100 [Torq Prove Cfg]	Bit 0 "TP Enable" $=1$
	Bit 1 "Encoderless" $=1$
	Bit 5 "BrkSlipEncls" $=1$

2. Select the source of speed feedback.

Parameter	Setting
414 [Fdbk Device Type]	"DC Tach" (2)

3. Set the speed deviation.

Parameter	Setting
1105 [Speed Dev Band]	200 RPM

This setting can be lowered once the system has been tuned. The lower this value, the faster the protection.
4. Set speed deviation level.

Parameter	Setting
1106 [SpdBand Intgrtr]	200 ms

This setting can be lowered once the system has been tuned. The lower this value, the faster the protection.
5. Set brake float tolerance.

Parameter	Setting
1111 [Float Tolerance]	25 RPM

Determines the level where the mechanical brake sets in encoderless mode.
The drive is now configured and Torque Prove for the mechanical brake control is activated. The load can now be applied.

Optimize the Speed Loop Tuning

You can now use DriveObserver to optimize the speed loop tuning. Use a 30 second time scaling on the X -axis. Use DriveObserver to configure these traces:

Parameter	Setting
1008 [Spd Reg Fdbk]	Scaled to minimum and maximum speed limits
113 [Ramp 0ut]	Scaled to minimum and maximum speed limits
200 [Arm Current]	Scaled to current limit value
41 [Current Reg In]	Default scaling

Run the crane up and down under full load. Adjust acceleration and deceleration rates if necessary.

Troubleshooting Crane Setup - Encoderless

The following faults commonly occur during drive commissioning.

F4 "AC Undervoltage"

- If the mains supply is still present, reduce the undervoltage level at P481 [UnderVolt Thresh].

F5 "Arm Overvoltage"

- Verify the parameter settings as stated in Set Up the Drive on page 301.

F94 "TrqProve Spd Band" (Speed deviation fault)

- This fault is active only when TorqProve is enabled.
- The speed loop tuning is not correct. Increase P434 [Spd Reg BW] or P43 [Total Inertia]. If these values are too high, the regulator becomes unstable.
- P1008 [Spd Reg Fdbk] should follow P113 [Ramp Out] as closely as possible.
- The drive is going into current limit. The drive is undersized or acceleration / deceleration is set too fast.
- The brake is not opening. Check for faulty brake operation.

For more fault information, see Chapter 4 Troubleshooting on page 217.

Manually Tuning the Speed Regulator for Firmware Revision 6.001 and Later

The calculation of Speed Loop gains was simplified in firmware revision 6.001 and later so that they are similar to other PowerFlex Architecture class drives. The value of parameter 434 [Spd Reg BW] now automatically determines the Speed Regulator gains (Kp and Ki). The Speed Regulator gains can still be entered manually by setting P434 [Spd Reg BW] to 0 . There is also a separate bandwidth parameter for bypass mode, P448 [Spd Reg BW Bypass]. This parameter affects P459 [Spd Reg Kp Bypass] and P460 [Spd Reg Ki Bypass]. Follow these steps when converting to revision 6.001 and later from an earlier firmware revision:

1. Before installing PowerFlex DC firmware revision 6.001 or later, save the current drive-configuration data by using the HIM CopyCat function, or DriveExplorer or DriveExecutive software.
2. Record the following parameter values:

Parameter	Value
87 [SpdReg Kp Pct]	
88 [SpdReg Ki Pct]	
1013 [Torque Const]	
1030 [Spd Tune Inertia]	
1031 [Spd Tune Friction]	

3. Download the PowerFlex DC firmware revision 6.001 or later. A F100 "EEPROM Error" fault occurs and all parameters are reset to the factory default values.
4. Download the saved HIM CopyCat or DriveExecutive configuration data to the drive. An error message/messages appears due to the change in major revision number.
5. Acknowledge the error/fault messages by selecting OK (DriveExplorer or DriveExecutive software) or pressing the Esc key (HIM).
6. Verify that P1013 [Torque Const] equals the value that you recorded in the table in step 2.
7. See the table in step 2 to enter values for these parameters:

- Enter the value that is recorded in table 2 for Par 1030 [Spd Tune Inertia] into Par 1014 [Inertia]
- Enter the value that is recorded in table 2 for Par 1031 [Spd Tune Friction] into Par 1015 [Friction]

8. Verify that P1034 [Spd Reg Kp Pct] equals the value that is recorded in the table in step 2 for P87 [Spd Reg Kp Pct]. If the values are not equal, P434 [Spd Reg BW] can be adjusted to make P1034 [Spd Reg Kp Pct] the same as the original value for P87 [Spd Reg Kp Pct].
9. Verify that P1035 [Spd Reg Ki Pct] equals the value that is recorded in the table in step 2 for P88 [Spd Reg Ki Pct].

If completed properly, the Speed Regulator performance is now the same as it was in the previous firmware revision. If desired, the Speed Regulator autotune (see page 107) can be executed to have the drive automatically determine the Speedregulator gain values.

A summary of the basic relationships between Speed Regulator gains, bandwidth, and tuning for firmware revision 6.001 and later is shown here.

Damping (Par 436)	z
Inertia (P433)	J
Bandwidth (Par 434)	$\mathrm{BW}=\mathrm{Kp} / \mathrm{J}$
Proportional Gain (Par 87)	$\mathrm{Kp}=\mathrm{BW} * \mathrm{~J}$
Integral Gain (Par 88)	$\mathrm{Ki}=(\mathrm{BW} * \mathrm{Kp}) /\left(4^{*} \mathrm{z}^{2}\right)$
Load Time Constant	$\mathrm{Tc}=\mathrm{Kp} / \mathrm{Ki}=\left(4^{*} \mathrm{z}^{2}\right) / \mathrm{BW}=1 /$ Wld

PID Function

The PID function is used to increase or reduce the reference signal output to the speed or current regulator of the drive. The PID function can be used for niproll, winder/unwinder, roll doctor/salvage machine, pump, and extruder pressure control and extruder temperature-control applications. (See the complete "PID Control" block diagram on page 362 .)

These examples are included for configuring the following applications:

- Speed winder with a load cell and tension control
\square Line speed signal (see Configure a Line Speed Signal on page 306)
\square Closed loop dancer / load cell feedback (see Configure the Feedback Signal in the Follower Drive/Drives on page 308)
\square Tension set point (see Configure the Tension Set Point Signal in the Follower Drive/Drives on page 309)
- Torque winder with a load cell and tension control
\square Line speed signal (see Configure a Line Speed Signal on page 306)
- Closed loop dancer / load cell feedback (see Configure the Feedback Signal in the Follower Drive/Drives on page 308)
\square Tension set point (see Configure the Tension Set Point Signal in the Follower Drive/Drives on page 309)

Configure a Line Speed Signal

The line speed signal is the main reference for the speed or current regulator in the follower drive/drives.

In the Master drive:

- Configure an analog output for the main speed reference (1"Spd Ref Out")

In the Follower drive:

- Set Par 80 [Anlg In3 Sel] to 12 "UserDefined0"
- Set Par 786 [PID Source] to 19 "UsrDefined0" (Par 503).

In addition you can configure the following:

- Enter the gain for the feed-forward signal in Par 787 [PID Source Gain]
- Monitor the feed-forward signal after the gain is applied in Par 758 [Feed Fwd PID]

Configure the Feedback Signal in the Follower Drive/Drives

The feedback signal originates from a load cell or a closed loop dancer and is input to the drive via an analog input.

- Set Par 70 [Anlg In 1 Sel] to 19 "PID Feedback".

In addition you can configure the following:

- Par 763 [PID Feedback] contains the raw feedback counts from the analog input signal that is received from the transducer position (dancer) or tension (load cell)
- Monitor the tension set point for a torque winder application in Par 1194 [Act Ten Ref Pct]
- Configure the PID feedback gain in Par 1254 [PID Error Gain]
- Limit the PID correction error using Par 757 [PID Clamp]
- Monitor the actual error input to the PI and PD blocks in Par 759 [PID Error]

Configure the Tension Set Point Signal in the Follower Drive/Drives

Configure the initial tension for the application in the Follower drive/drives:

- Set Par 75 [Anlg In 2 Sel] to 17 "PID Setpt 0"

In addition, configure the following in the Follower drive/drives:

- Verify that Par 762 [PID Setpoint Sel] is set to 0 "Setpoint 0"

Reference Control

The drive speed command can be obtained from any of these sources:

- Digital inputs that are configured as speed selects
- A digital input that is configured for "Auto/Manual"
- Reference Select bits of a command word (see Communication Configurations on page 237 for more information)

The actual source-parameter number is displayed in parameter 1329 [Speed Ref Source] with any modifications indicated in parameter 1330 [Spd Ref Sel Sts].

"Auto" Speed Sources

Analog input 1 is the default auto source for a command reference when these selections are configured:

- Parameter 70 [Anlg In 1 Sel] (analog input 1) is set to "Speed Ref A"
- All speed select digital inputs are open or not programmed

If any of the speed-select digital inputs are closed, the drive uses other parameters as the auto-speed command source.

"Manual" Speed Sources

The manual source for the speed command to the drive is one of these options:

- A HIM request for manual control (see ALT Functions on page 270)
- Control terminal block (analog input or MOP) if a digital input is programmed to "Auto/Manual"

Speed Source Changes

The selection of the active speed reference can be made through the digital inputs, DPI command, Jog button, or Auto/Manual HIM operation.

Figure 87 - Speed-reference Selection Chart

Torque Reference Source

The torque reference can only be supplied by an analog input, the HIM, or a network reference. You cannot switch between available sources while the drive is running. Digital inputs that are programmed as "Speed Sel 1, 2, 3" and the HIM Auto/Manual function (see Figure 87 on page 311) do not affect the active torque reference. The HIM, however, cannot acquire Manual Reference control while it is configured to supply the torque reference.

Auto/Manual Examples

$P L C=$ Auto, HIM = Manual
A PLC controls a process when the drive is in Auto mode, but requires manual control from the HIM during set-up. The PLC issues the speed reference through a communication module that is installed in the drive (Port 5). Therefore, parameter 1327 [DPI P5 Select] is set to "Speed Ref A" with the drive running from the Auto source.

Acquire Manual Control

- Press ALT then Auto/Man on the HIM. When the HIM acquires manual control, the drive speed command comes from the HIM speed control keys.

Release to Auto Control

- Press ALT then Auto/Man on the HIM again. When the HIM releases manual control, the drive speed-command returns to the PLC.

PLC = Auto, Terminal Block = Manual
A PLC controls a process when the drive is in Auto mode, but requires manual control from an analog potentiometer that is wired to the drive terminal block. The PLC issues the auto speed reference through a communication module that is installed in the drive (Port 5). Therefore, parameter 1327 [DPI P5 Select] is set to "Speed Ref A" with the drive running from the Auto source. Because analog input 2 issues the manual speed reference, parameter 75 [Anlg in 2 Sel] is set to "TB Man Ref". The value of analog input 2 can be viewed in parameter 267 [TB Manual Ref]. To switch between Auto and Manual, parameter 136 [Digital In4 Sel] is set to "Auto/ Manual".

Acquire Manual Control

- Close the digital input. With the input closed, the speed command comes from the pot.

Release to Auto Control

- Open the digital input. With the input open, the speed command returns to the PLC.

Auto/Manual Notes

1. Manual control is exclusive. If a HIM or terminal block takes manual control, no other device can take manual control until the Him or terminal block releases control.
2. If a HIM has manual control and power is removed from the drive, the drive returns to Auto mode when power is reapplied.

Resolver Cable Balance Tuning Test

At drive power-up, the resolver feedback module automatically performs cable length compensation and resonance tuning for the attached resolver and cable. The status of the cable length compensation and resonance are identified in parameter 426 [Resolver Status], bit 3 "CableCompSts" and 10 "HardwareSts," respectively. The cable balance-tuning test can be performed to attempt the enhancement of the resolver performance. This optional test takes approximately 10 seconds to complete successfully.

ATTENTION: The motor rotates during this tuning procedure. Hazard of personal injury exists due to motor shaft rotation and/or machinery motion.

Performing the Cable Balance Tuning Test

WARNING: Remove power before you remove or make cable connections. When you remove or insert a cable connector with power applied, an electrical arc may occur. An electrical arc may cause these system events, which can cause personal injury or property damage.

- An erroneous signal to system field devices, which can cause unintended machine motion
- An explosion in a hazardous environment

Electrical arcing causes excessive wear to contacts on both the module and its mating connector. Worn contacts can create electrical resistance.

1. Remove and lock-out all incoming power to the drive.
2. Verify that the resolver feedback module has been correctly installed and wired in the drive according to the PowerFlex DC Drive Resolver Feedback Module Installation Instructions, publication 20P-IN071.
3. Apply power to the drive.
4. Verify that Par 422 [Fdbk Option ID] displays the appropriate module ID for the resolver feedback-module board that is installed in the drive.
5. Verify that the following parameters have been properly configured:

- Parameter 423 [Reslvr Type Sel] (see page 136)
- Parameter 424 [Reslvr Spd Ratio] (see page 136)
- Parameter 425 [Resolver Config] (see page 137)

6. Set Par 414 [Fdbk Device Type] to 3 "Armature" (armature voltage feedback).
7. Run the drive at 50% of base speed (or at least 750 rpm when 10 -bit resolution that is selected. Higher resolutions and $\mathrm{x} 2, \mathrm{x} 5$ resolvers have lower minimum speeds).
8. Verify that Par 426 [Resolver Status], bit 2 "ReslvrMinSpd" is not set.
9. Set Par 431 [Reslvr CableBal] to 1 "On" (this parameter automatically resets to zero after tuning is completed).

Resolver Type Selection

10. Monitor Par 426 [Resolver Status], bits 0 "CableBalSts" and 1 "CableBalTest". The initial test typically takes approximately 10 seconds to complete successfully (subsequent tests more quickly). However, if the cable balance algorithm is unable to adapt to the cable, the test could be active for up to 60 seconds.

- For bit 0 "CableBalSts": $1=$ the cable is not balanced or the test is active, and $0=$ the cable is balanced (tuned).
- For bit 1 "CableBalTest": $0=$ the cable balance (tuning) test is completed, and $1=$ the cable cannot be balanced or the motor was not at minimum speed during the test.

11. Stop the drive. If the cable balance test fails, verify that the resolver is properly configured and connected to the drive. Repeat the test after addressing any issues.
12. Reconfigure Par 414 [Fdbk Device Type] to 4 "Resolver".

The following table provides a description and related attributes for the resolver types compatible with the PowerFlex DC drive and resolver feedback module. Where possible, specific compatible resolver models have been identified. Additional options are available for this parameter when a resolver with attributes that match is used (identified by the option "Resolver xx ").

Table 91 - Resolver Type Attributes

Par 423 [Reslvr Type Sel] Option	Resolver Catalog Numbers (Manufacturer)	Par 424 [Reslvr Spd Ratio]	Carrier Frequency	Input Voltage	Transformer Ratio	Feedback Amp Gain	Power Amp Voltage
1 "2014x1/AMCl"	800123-R,-1R,-2R (Rel) TS-2014N181E32 (Tam) TS-2087N1E9 (Tam) TS-2087N11E9 (Tam) R11X-C10/7 (Adv)	x1	2381	26	0.4538	0.5	45
2"T2014x2/2087"	800123-S, -1S, -2S (Rel) TS-2014N182E32 (Tam) TS-2087N12E9 (Tam) TS-2087N2E9 (Tam)	x2	2381	26	0.4538	0.5	45
3"T2014×5/2087"	800123-T, 1T, 2T (Rel) TS-2014N185E32 (Tam) TS-2087N5E9 (Tam)	x5	2381	26	0.4538	0.5	45
4 "Resolver 04"	-	x2	4000	8	0.25	0.92	14
5 "Resolver 05"	-	x2	9300	22	0.5	0.5	45
6 "Resolver 06"	-	x1	4000	5	0.5	0.92	14
7 "Resolver 07"	-	x1	7000	4.25	0.4706	0.92	14
8"Resolver 08"	-	x1	2500	12	0.5	0.5	45
9"Resolver 09"	-	x2	4000	8	0.25	0.92	14
10 "Resolver 10"	-	x2	9300	15.5	0.5013	0.5	45
11 "Resolver 11"	-	x2	2500	7	1.7	0.5	45
12 "Resolver 12"	-	x2	9300	22	0.5	0.5	45
13 "Resolver 13"	-	x1	2000	6.36	0.5	0.92	14
14 "Resolver 14"	-	x1	6500	8	0.5	0.5	14
15 "Resolver 15"	-	x1	6500	8	0.5	0.5	14

(1) Abbreviations in this column indicate the following resolver manufacturers: Adv = Advanced Micro Controls, Inc. (AMCI), Rel = Reliance ($-\mathrm{x}=$ foot mounted, $-1 \mathrm{x}=\mathrm{foot}$ mounted, double shaft, $-2 \mathrm{x}=\mathrm{flange}-\mathrm{mounted}$), Tam $=$ Tamagawa.

Scale Blocks

Link Parameters Via the Scale Block Parameters

You can enter most parameter values directly. However, certain parameters can be "linked" by using the Scale Block parameters so the value of one parameter becomes the value of another.

For example, the value of an analog input 1, parameter 70 [Anlg In Sel], can be linked to parameter 660 [Accel Time 1]. Follow these steps to link parameters.

1. Set parameter 70 [Anlg In 1 Sel] to 12 "UserDefined0".
2. Set parameter 484 [Scale1 Input] to " 503 " (the parameter number of [UserDefined0]).
3. Set parameter 485 [Scale1 Output] to " 660 " (the parameter number of [Accel Time 1]).

Rather than entering an acceleration time via the HIM, this link allows the value to change by varying the analog signal, providing additional flexibility for certain applications. Test this functionality for the desired response before applying to an application.

SCR Diagnostic Tests

Two SCR diagnostic functions are available; (1) Open SCR, and (2) Shorted SCR. Each test is run to identify which SCR or SCR pair has failed, including multiple SCR failures. However, if the drive cannot determine the specific shorted SCR or SCR pair, a shorted SCR (b15) is indicated in Par 214 [SCR Diag Status] and bits $0 \ldots 11$ remain off (0). Each diagnostic function can be enabled/disabled independently (default is disabled) via parameter 213 [SCR Diag Test En] and each operate after the drive is started. Typically, enable the SCR diagnostic functions when a problem is suspected.

When enabled, the Shorted SCR test pulses each SCR/pair immediately after a Start command (and the contactor is closed). The test results in a short delay before controlling the motor. If a shorted SCR is detected, a non-configurable fault is generated.

The Open SCR test monitors voltage and/or current and uses these adjustable parameters to determine when and if to initiate a fault or alarm:

- 215 [OpenSCR WarnLvl]
- 217 [OpenSCR Threshold]
- 218 [OpenSCR Trip Lvl]

You can configure parameter 216 [OpenSCR Flt Cfg] to indicate a fault or an alarm that is based on the Open SCR test results.

Parameter 214 [SCR Diag Status] shows which SCR(s) were detected as failed (open or shorted).

Open SCR Test

Under normal drive operation, the load that each SCR carries is relatively equal, as shown in this image.

If one or more SCRs fail to turn on, a unique pattern of insufficient or missing current-pulses results, as shown in this image.

Open SCR diagnostics detects SCRs that are not conducting by analyzing the level of current produced by each SCR pair firing. If an SCR(s) consistently fails to produce current at a level approximately equal to other SCRs that fired, the drive concludes that an open SCR has occurred.

The Open SCR diagnostic test calculates the percentage deviation of current feedback for each pair of SCRs from the average current feedback. The percent deviation must exceed the value set for Par 216 [OpenSCR Threshold] before the test proceeds to the next part of the diagnostic. In the next part, deviations from the average current are accumulated over time to eliminate transient effects from the calculation. When the deviations reach the value of Par 218
[OpenSCR Trip Lvl], an open SCR condition is annunciated based on Par 216
[OpenSCR Flt Cfg]. The open SCR(s) are indicated in Par 214
[SCR Diag Status].
You can configure the drive to indicate a warning that SCR operation is imbalanced before a fault is generated. This warning is only indicated in Par 214 [SCR Diag Status], bit 13 "OpenSCR Warn". To configure the drive to indicate a warning before a fault, set Par 215 [OpenSCR Warn Lvl] less than Par 218 [OpenSCR Trip Lvl]. To avoid nuisance open SCR events, such as an unbalanced AC supply line, use these parameters to increase the tolerance to the conditions that can trigger the event.

Shorted SCR Test

Once enabled, the shorted SCR test executes each time that the drive is started. This test introduces a delay of a few seconds before controlling the motor. If a shorted SCR is detected, a non-configurable fault (F89 [Shorted SCR]) is generated and also indicated in Par 214 [SCR Diag Status].

S-curve Configuration

To enable S-shaped ramp (S-curve) operation in the drive, set Par 18 [Ramp Type Select] to 1 " S shaped." When S -curve operation is enabled, it allows for a smoother change in speed than a linear ramp.

When S-curve is added to the ramp, the total length of time to perform a speed change increases. When accelerating, the S-curve does not exceed the maximum acceleration set by parameters 24 and 660 [Accel Time x]. Likewise, when decelerating, the S-curve does not exceed the maximum deceleration set by parameters 32 and 662 [Decel Time x]. When the S-curve times are much smaller ($<20 \%$) than the linear acceleration times, the speed profile is similar to a linear ramp (slightly delayed). As S-curve times are increased, more of the speed profile is spent in the "s" (non-linear) and less in the linear acceleration section. When s-curve and linear ramp times are equal, there is no longer any linear
portion of the ramp (although maximum acceleration is reached at the mid-point of the total ramp). When S-curve time is larger than the linear ramp time, again there is no linear portion, and maximum acceleration is never reached. The same is true for deceleration ramps.

The total ramp time is independent of the change in the speed reference. So, it takes the same amount of time to make a 10 rpm change as it will for a 1000 rpm change. Do not "ramp" the reference externally to the drive while S-curve is enabled in the drive (it makes the ramp time longer).

When the S-shaped ramp <= Linear ramp, the S-shaped ramp speed profile is divided into three sections:

- Initial (positive) "S" (jerk)
- Linear (constant acceleration)
- Final (negative) " S " (jerk)

Approximately half of the value of parameter 19 [S Curve Time] is added to the initial " S " and half of the value is added to the final "S."

When the S-shaped ramp > Linear ramp, the linear portion becomes zero.
To calculate the total ramp time when S-curve is enabled, the amount of time in each section of the profile must be determined. $\mathrm{T} 1=$ initial S and final S, and $T 2$ $=$ linear.

The total ramp time $\mathrm{T} 3=\mathrm{T} 1+\mathrm{T} 2+\mathrm{T} 1$ (each ramp has two equal " S " portions and one linear portion). In the following equations, $\mathrm{Ta}=$ linear ramp time (Pars $24,32,660$, and 662), Ts = S-curve time (Par 19).

For S -shaped ramp <= Linear ramp

- $\mathrm{T} 1=(\mathrm{Ts} * \mathrm{Ts}) /(2 * \mathrm{Ta})$
- $\mathrm{T} 2=\mathrm{Ta}-\mathrm{T} 1$

For S-shaped ramp > Linear ramp

- $\mathrm{T} 1=\mathrm{Ts} / \mathrm{sqrt}(2)$
- $\mathrm{T} 2=0$

S-curve Acceleration Ramp Example:

Acceleration-ramp parameter configuration:

- Par 18 [Ramp Type Select] = 1 "S shaped"
- Par 660 [Accel Time 1] $=5 \mathrm{~s}(\mathrm{Ta})$
- Par 19 [S Curve Time] $=3.5 \mathrm{~s}(\mathrm{Ts})$

In this case, S-shaped ramp <= Lramp, so T1 and T2 are calculated as:

$$
\begin{aligned}
\mathrm{T} 1 & =(3.5 * 3.5) /(2 * 5) \\
\mathrm{T} 1 & =12.25 / 10 \\
\mathrm{~T} 1 & =\mathbf{1 . 2 3} \mathbf{s}
\end{aligned}
$$

$$
\mathrm{T} 2=5-1.23
$$

$$
\mathrm{T} 2=3.78 \mathrm{~s}
$$

The resulting total ramp time is calculated as:

$$
\begin{aligned}
& \mathrm{T} 3=1.23+3.78+1.23 \\
& \mathrm{~T} 3=\mathbf{6 . 2 4} \mathbf{s}
\end{aligned}
$$

Therefore, the total acceleration-ramp time with S-curve enabled in this example increased the total ramp time without S-curve by 1.24 seconds.

Speed Regulation Functions

The PowerFlex DC drive provides a flexible speed regulator circuit that can be adapted to the requirements of various applications. The drive is set to PI regulation by default.

Adaptive Speed Regulator

The adaptive speed regulator function enables different gains of the speed regulator depending on the speed reference or another variable (adaptive reference). This feature allows optimum adaptation of the speed regulator to the specific application.

In v6.001 and later, the internal value of these gains is shown in Testpoints $575 . .580$ (see Testpoint Codes and Functions on page 231). The internal value represents the equivalent firmware version 5.007 and earlier speed regulator gains.

The adaptive speed regulator is enabled when parameter 181 [Adaptive Spd En] = " 1 Enabled". Normally the gain depends on the speed of the drive. It can, however, follow a variable reference that is defined in parameter 183 [Adaptive Ref]. The type of regulation that is used is selected in parameter 182 [Adaptive Reg Typ]; $0=$ "Speed", or $1=$ "Adaptive Ref".

Parameters 184 [Adaptive Spd 1] and 185 [Adaptive Spd 2] are used to define the three ranges that can have different gains. A parameter set can be defined for each of these ranges, with each set containing an individually definable P and I component. The three sets of parameters are: 188 [Adaptive P Gain1] and 189 [Adaptive I Gain1], 190 [Adaptive P Gain2] and 191 [Adaptive I Gain2], and 192 [Adaptive P Gain3] and 193 [Adaptive I Gain3]). When the adaptive speed regulator is enabled, the first set of parameters is active until the speed specified in Par 184 [Adaptive Spd 1] or Par 183 [Adap Ref] is reached.

Parameters 186 [Adaptive Joint 1] and 187 [Adaptive Joint 2] provide a smooth transition between the different parameter sets. The fields must be defined so that [Adaptive Joint 1] and [Adaptive Joint 2] do not overlap.

When the adaptive speed regulator is enabled, parameters 87 [Spd Reg Kp] and [Spd Reg Ki] parameters have no effect on the speed regulator. They do, however, retain their value and are active when the adaptive speed regulator is disabled.

Configuring the Adaptive Speed Regulator

- Set Par 181 [Adaptive Spd En] = " 1 Enabled"
- If the gain must be changed based on units other than the drive speed reference, set Par 182 [Adaptive Reg Typ] = 1 "Adaptive Ref". The adaptive reference is provided to the drive as an analog value via an analog input. For this reason, Par 183 [Adaptive Ref] must be assigned to an analog input. The other possibility is to enter the value of Par 183 [Adaptive Ref] via the HIM. In this case, the analog input is not necessary.
- Enter the appropriate values in Par 184 [Adaptive Spd 1] and Par 185 [Adaptive Spd 2] to define the three speed ranges. Values are expressed as a percentage of Par 45 [Max Ref Speed] and the maximum value of Par 183 [Adaptive Ref].
- When Par 182 [Adaptive Reg Typ] = 0 "Speed", tuning is completed via Fine-Tuning the Regulators on page 334. In this case the following points must be considered:
- The value that is entered in Par 61 [TstGen Offset] must meet these constraints:
- Set to the low end of the speed range to be tuned
- Set outside the range of the values in parameters [Adaptive Joint x]
- Enter the step value in Par 60 [TstGen Amplitude], so that the speed remains inside the range to be tuned.
- The optimization is conducted separately for each range and the parameters of the regulator are set for each range with Pars [Adaptive P Gainx] and [Adaptive I Gainx].
- After the optimization of the different phases, review the entire speed range. By changing the value of [Adaptive Joint x], it is possible to reduce the instabilities present in the transients during the changes from one range to the other. Increasing the values transients are slighter.
- When Par 182 [Adaptive Reg Typ] = 1 "Adaptive Ref", tuning is application-specific.
- When the speed zero logic (see page 325) is disabled (factory default setting) and the drive is disabled, the gains of the speed regulator are active. These gains are set via Pars 188 [Adaptive P Gain1] and 189 [Adaptive I Gain 1]. When the speed zero logic is enabled, the values set when the motor is stopped are valid.

Speed Up Function

The Speed-up function is used to avoid oscillations in the presence of loads with a high moment of inertia. To enable the Speed-up function, set Par 1016 [SpdFuncSelect] to 0 "Speed Up." When this function is enabled, a D (derivative) value is added to the speed feedback circuit, which allows you to increase the integral gain of the speed regulator. It is also useful in the case of cyclical nonconstant loads on the motor (for example, cams). The feedback that is applied to the speed regulator is made of two components:

- the motor speed
- the output signal from the Speed Up function

Figure 88 - Speed-Up function inactive
Oscillation during a speed change due to a high moment of inertia. Top: Par 122 [Spd Feedback] Bottom: Par 199 [Arm Current Pct]

Figure 89 - Speed-up function active The same drive with Speed-up function active. Top: Par 122 [Spd Feedback] Bottom: Par 199 [Arm Current Pct]

Parameters that are used in the example:

- Par 445 [Spd Up Gain Pct] $=50 \%$
- Par 446 [Speed Up Base] $=14 \mathrm{rpm} / \mathrm{ms}$
- Par 447 [Speed Up Filter] $=20 \mathrm{~ms}$

Speed Threshold Indicators

There are two speed threshold functions available that can be programmed via a digital output to provide indication of when the drive has exceeded certain set points.

Par 393 [Speed Threshold] displays whether the speed of the drive is above or below a set speed for clockwise and counter-clockwise rotation. Set the threshold speed for clockwise rotation in Par 101 [Speed Thresh Pos] and set the threshold speed for counter-clockwise rotation in Par 102 [Speed Thresh Neg]. You can specify a delay time in Par 103 [Threshold Delay] that must elapse before indication that the speed has fallen below the threshold values. Par 393 [Speed Threshold] can be assigned to a digital output. The assigned digital output changes state only at the clockwise (positive) speed threshold.

The value of Par 394 [At Speed] identifies if the drive speed is equal or not equal to the set speed reference (in Par 118 [Speed Reg In]) before the speed regulator and ramp reference (if enabled) are applied. The speed above and below the speed reference at which indication occurs is set in Par 104 [At Speed Error]. Use Par 105 [At Speed Delay] to specify a delay time before indication that the speed reference is within the range set in Par 104 [At Speed Error] occurs. Par 394 [At Speed] can be assigned to a digital output.

Speed Zero Function

The Speed Zero Logic determines the behavior of the drive when the motor is at zero speed. See the Speed Adaptive and Speed Zero Logic block diagram on page 357.

Configuring the Speed Zero Logic

It is possible to avoid drive creep when the motor is at zero speed by disabling the Integral section of the Speed regulator. By default, the output of the Integral portion of the Speed regulator is disabled (Par 123 [Spd Zero I En] $=0$ "Disabled").

IMPORTANT If the speed regulator is disabled, the motor cannot receive a load when it is stopped. Therefore this function is not suitable for all applications!

Disable the output of the P gain of the Speed regulator by setting Par 126 [Spd Zero P Gain] to one of the following settings:

- If the speed reference is above the value set in Par 106 [RefZero Level]: Set Par 124 [Spd Ref Zero En] = 1 "Enabled"
- If the speed reference and/or the reaction are above the value set in Par 106 [Ref Zero Level], set Par 124 [Spd Ref Zero En] = 0 "Disabled"

Par 124 [Spd Ref Zero En] is active only when Par 125 [Spd Zero P En] = 1 "Enabled".

Set the P gain for zero speed:

- If the P gain corresponds to the value set in Par 126 [Spd Zero P Gain], then set Par 125 [Spd Zero P En] = 1 "Enabled"
- If the P gain corresponds to the normal P gain, then set Par 125 [Spd Zero PEn] = 0 "Disabled"

The P gain at zero speed is set via Par 126 [Spd Zero P Gain] when Par 125 [Spd Zero P En] = 1 "Enabled".

The value of Par 106 [Ref Zero Level] determines the threshold for the recognition of zero speed.

Speed Draw Function

The Speed Draw function can be used to apply a configurable speed ratio (set in Par 1017 [Speed Ratio]) to the main speed reference of the drive. This function is useful in a multi-drive system where a proportional speed increase between the motors is required. The range of parameter 1017 [Speed Ratio] can be set in one of these ways:

- 0...32767, if written in digital form
- $0 \ldots . .20000(0 \mathrm{~V}$ to $+10 \mathrm{~V})$, if assigned to an analog input

The resulting speed value can be viewed in Par 1018 [Speed Draw Out] via an analog output.

Figure 90 - Speed Draw Example

Speed Draw Example Configuration

Drive A:

- Set parameter 70 [Anlg In 1 Sel] to 4 "Trim Speed"

Drive B:

- Set parameter 70 [Anlg In 1 Sel] to 4 "Trim Speed"
- Set parameter 75 [Anlg In 2 Sel] to 22 "Speed Ratio"
- Set parameter 1017 [Speed Ratio] to 10500

Drive C:

- Set parameter 70 [Anlg In 1 Sel] to 4 "Trim Speed"
- Set parameter 75 [Anlg In 2 Sel] to 22 "Speed Ratio"
- Set parameter 1017 [Speed Ratio] to 11000

Speed / Torque Mode Selection

Parameter 241 [Spd Trq Mode Sel] is used to choose whether the drive operates as a speed regulator, a torque regulator, or a combination of the two. Each mode is discussed in more detail in this section. See the "Torque Mode Selection" block diagram on page 353 for more information.

This function is only available for firmware revision 3.001 and later.

Zero Torque Mode

Zero torque current is allowed when Par $241[$ Spd Trq Mode Sel] is set to 0 "Zero Trq Ref". Operation in zero torque mode allows the motor to be fully fluxed and ready to rotate when a speed command or torque command is given. This mode can be used for a cyclical application where throughput is a high priority. The control logic can select zero torque during the "rest" portion of a machine cycle instead of stopping the drive. When the cycle start occurs, instead of issuing a start to the drive, a speed regulation mode can be selected. The drive then immediately accelerates the motor without the need for "flux up" time.

IMPORTANT Zero Torque may excessively heat the motor if operated in this mode for extended periods of time. No load or flux current is still present when the drive is operating in zero torque mode. A motor with an extended speed range or separate cooling methods (blower) may be required.

Speed Regulation Mode

When Par 241 [Spd Trq Mode Sel] is set to 1 "Speed Reg" (default), the drive and motor are operated in speed mode. The torque command changes as necessary to maintain the desired speed. Operating as a speed regulator is the most common and simplest mode to configure. Examples of speed regulated applications are blowers, conveyors, feeders, pumps, saws, and tools.

In a speed regulated application, the speed regulator output generates the torque reference. Under steady state conditions, the speed feedback is steady while the torque reference is a constantly adjusting signal. This constant adjustment is required to maintain the desired speed. In a transient state, the torque reference changes dramatically to compensate for a speed change. A short duration change in speed is the result of increasing or decreasing the load rapidly.

Inertia compensation is summed with the output of the speed regulator.

Torque Regulation Mode

Par 241 [Spd Trq Mode Sel] is set to 2 "Torque Reg" for torque mode. In torque regulation mode, the drive controls the desired motor torque. The motor speed is the result of torque command and load present at the motor shaft. The reference signal is equal to the value of Par 39 [Torque Ref]. A torque regulated application can be described as any process that requires some tension control. An example is a winder or unwinder with material being "drawn" or pulled with a specific tension required.

If the material that is being wound or unwound breaks, the load decreases dramatically and the motor can potentially go into an overspeed condition.

Speed Limited Adjustable Torque (SLAT) Min Mode and SLAT Max Mode

SLAT Min Mode (Par 241 [Spd Trq Mode Sel] set to 3) and SLAT Max Mode (Par 241 [Spd Trq Mode Sel] set to 4) are for applications that require a smooth transition from a torque mode to a speed mode of operation. Examples include: web handlers, center winders, and center unwinders, where the drive is normally following a torque reference but a break or slippage could occur. Direction of the applied torque and direction of the material movement determine whether SLAT Min or SLAT Max mode is used.

SLATMin Mode

In SLAT Min mode, a speed reference that forces the speed regulator into saturation (the speed reference is slightly above the speed feedback) is typically configured. In this case, the drive follows the torque reference until there is a breakage or slippage in the application.

When the drive is following a torque reference (torque mode) in SLAT Min mode, one of two conditions forces the drive into following the speed reference (speed mode):

1. The output of the speed regulator becomes less than the torque reference.
2. The speed error becomes negative (the speed feedback becomes greater than the speed reference). A negative speed error indicates forced speed mode.

Parameter 15 [SLAT Err Stpt] and parameter 16 [SLAT Dwell Time] let you set some hysteresis for turning off the forced speed mode. They are set to " 0 " as default so that there is no hysteresis. In SLAT Min mode, Par 15 [SLAT Err Stpt] sets how much less the speed feedback is than the speed reference before turning off the forced speed mode. Par 16 [SLAT Dwell Time] sets how long the speed error must exceed the SLAT error set point before turning off the forced speed mode.

When the drive switches from torque mode to forced speed mode, the speedregulator integral part is pre-loaded with the InternalTorque Reference (ITR) or Par 14 [Selected TorqRef] to create a smooth transition.

In order for the drive to switch from speed to torque mode, forced speed mode (if active) must first be turned off. Forced speed mode turns off when the speed error is greater than the SLAT error setpoint for the SLAT dwell time. With default parameter settings, forced speed mode turns off when the speed error becomes positive.

When Forced Speed Mode is off, the drive switches back to torque mode when the speed regulator output becomes greater than the torque reference.

Figure 91 - SLAT Min Mode Block Diagram

SLATMax Mode

In SLAT Max mode, a speed reference that forces the speed regulator into saturation (the speed reference is slightly below the speed feedback) is typically configured. In this case, the drive follows the torque reference until there was a breakage or slippage in the application.

In SLAT Max mode, the drive switches from torque mode to speed mode when either one of the two following conditions occur:

1. The output of the speed regulator becomes more than the torque reference (speed mode).
2. The speed error becomes positive (speed mode). In other words, the speed feedback becomes less than the speed reference.

Parameter 15 [SLAT Err Stpt] and parameter 16 [SLAT Dwell Time] let you set some hysteresis for turning off the forced speed mode. They are set to " 0 " as default so that there is no hysteresis. In SLAT Max mode, Par 15 [SLAT Err Stpt] sets how much more the speed feedback is than the speed reference before turning off the forced speed mode. Par 16 [SLAT Dwell Time] sets how long the speed error must exceed the SLAT error set point before turning off the forced speed mode.

When the drive switches from torque mode to forced speed mode, the speedregulator integral part is pre-loaded with the InternalTorque Reference (ITR) or Par 14 [Selected TorqRef] to create a smooth transition.

In order for the drive to switch from speed mode to torque mode, forced speed mode (if active) must first be turned off. Forced speed mode turns off when the speed error is less than the SLAT error setpoint for the SLAT Dwell Time. With default parameter settings, forced speed mode turns off when the speed error becomes negative.

When Forced Speed Mode is off, the drive switches back to torque mode when the speed regulator output becomes less than the torque reference.

Figure 92 - SLAT Max Mode Block Diagram

Example:

The application is a paper winder. The drive is set for SLAT Min mode, so that the drive normally runs in torque mode and follows Par 39 [Torque Ref]. [Torque Ref] comes from an external controller and is approximately 60% of motor torque during the snapshot. The speed reference, also from an external controller, is set just above the speed feedback so the speed regulator is saturated while in torque mode. Figure 93 captures what occurs in the drive during a break in the web.

Figure 93 - SLAT Min Mode Trace Example

Sum Mode

Sum mode is selected when Par 241 [Spd Torq Mode Sel] is set to 5 "Sum". In this mode, the reference is derived from the sum of the speed regulator output (Par 236 [Spd Reg Out Pct]) and the torque reference (Par 39 [Torque Ref]). This mode can be used for applications that have precise speed changes with critical time constraints.

Torque Mode Selection Status Bits

Bits 7 "Forced Spd", 8 "Speed Mode", and 9 "Torque Mode" of parameter 382 [Drive Status 2] display the status of the speed/torque mode for the drive.

Par 241 [Spd Trq Mode Sel]	Par 382 [Drive Status 2]		
	Bit 8 "Speed Mode"	Bit 9"Torque Mode" (1)	
0"Zero Trq Ref"	0	0	1
1"Speed Reg"	0	1	0
2"Torque Reg"	0	0	1
3"SLAT Min"		(1)	$\overline{(b 7+b 8)}$
4"SLAT Max"		(2)	$\overline{(b 7+b 8)}$
5"Sum"	0	1	1

(1) $\mathrm{b} 9=\operatorname{not}(\mathrm{b} 7+\mathrm{b} 8)$, if $\mathrm{b} 7=1 \& \mathrm{~b} 8=0$, then $\mathrm{b} 9=0$.
(1) 3 "SLAT Min"

Bit 7 "Forced Spd	0	Not in Forced Speed Mode (FSM)
	$0->1$	Speed error < 0 (i.e., Feedback > Reference), preload the speed regulator integrator with the value of Par 14 [Selected Torque Ref]
	1	Forced Speed Mode (FSM), speed error <0
	$1->0$	Error (i.e., Reference - Feedback) >Par 15 [SLAT Err Stpt] for more than the value of Par 16 [SLAT Dwell Time]
Bit 8 "Speed Mode"	0	Par 236 [Spd Reg Pct Out] > Par 39 [Torque Ref]
	1	Par 236 [Spd Reg Pct Out] < Par 39 [Torque Ref]

(2) 4 "SLAT Max"

Bit 7"Forced Spd	0	Not in Forced Speed Mode (FSM)
	$0->1$	Speed error > 0 (i.e., Feedback < Reference), preload the speed regulator integrator with the value of Par 14 [Selected Torque Ref]
	1	Forced Speed Mode (FSM), speed error > 0
$1->0$	Error (i.e., Reference - Feedback) < -Par 15 [SLAT Err Stpt] for more than the value of Par 16 [SLAT Dwell Time]	
	0	Par 236 [Spd Reg Pct 0ut] < Par 39 [Torque Ref]
	1	Par 236 [Spd Reg Pct Out] > Par 39 [Torque Ref]

When Par 241 [Spd Trq Mode Sel] is changed to 1 "Speed Reg", the speed regulator integrator is preloaded with the value of Par 14 [Selected Torque Ref]. When Par 241 [Spd Trq Mode] is changed to 5 "Sum", the speed regulator is preloaded with the value of Par 14 [Selected Torq Ref]... 39 [Torque Ref].

Start At Powerup

The "Start At Powerup" function lets you resume running at commanded speed automatically after these conditions are met:

- Drive input power is restored
- A run command is issued
- All start permissive conditions are met (see Figure 94 - Start Permissives Flow Diagram)

To enable this feature, parameter 1344 [Start At Powerup] must be set to 1 "Enable".

ATTENTION: Equipment damage and/or personal injury may result if this parameter is used in an inappropriate application. Do not use this function without considering applicable local, national, and international codes, standards, regulations, or industry guidelines.

In addition, A delay time of up to 10800 seconds (3 hours) can be programmed in parameter 1345 [Powerup Delay]. An automatic drive restart is not possible before the delay time has expired. If a "Start", "Run" or "Stop" command is asserted before the time in this parameter expires, the "Start At Powerup" function is aborted.

Figure 94 - Start Permissives Flow Diagram

Until the time that is specified in parameter 1345 [Powerup Delay] elapses, these indications occur:

- An alarm indicator "ei" is displayed on the HIM
- Bit 12 "PwrUp Start" of parameter 1380 [Drive Alarm 1] is set to " 1 "

Fine-Tuning the Regulators

The PowerFlex DC drive control regulators have predefined values that are meant to provide consistent drive performance without performing any further configuration. One exception is the armature current regulator, which must always be tuned. When the armature current regulator has been tuned to meet the requirements of the application, the fine-tuning procedures for the other regulators are not necessary. However, the fine-tuning procedures can be used to optimize the output and control features of the drive.

The drive contains the following regulation circuits:

- Armature current regulator - The armature current auto-tuning procedure is run via Par 452 [CurrReg Autotune]. See Chapter 2 - Drive Start Up Tune the Current Regulator on page 100.
- A manual procedure to adjust the armature inductance when the autotune steps yielded a value outside the recommended setting. See Manually Adjusting the Current Regulator Tune Settings on page 335.
- Field current regulator:
- A fine-tuning procedure is available. See Fine-Tuning the Field Current Regulator on page 337.
- Speed regulator - The speed auto-tuning procedure is run via Par 1027 [Spd Reg Autotune]. See Chapter 2 - Drive Start Up - Tune the Speed Regulator on page 107. A fine-tuning procedure is available. See FineTuning the Speed Regulator on page 339.
- Armature voltage regulator - A fine-tuning procedure is available. See Fine-Tuning the Voltage Regulator in the Field Converter on page 341.

To obtain a step function, the internal "Test generator" can be used. The goal of the fine-tuning procedures is to obtain an optimal step response. For example, it is recommended that you directly measure the step response for the field current regulator.

The field current can be directed to an analog output on the Terminal Block (with a 2 ms sample rate).

Using the Test Generator

The "Test Generator" function creates signals with a rectangular wave form based on a specific frequency and amplitude. The frequency and amplitude can be added to a configurable offset value, if needed. Par 58 [TstGen Output] determines which regulator input signal (reference) is used; torque current, field, ramp, or speed.

Manually Adjusting the Current Regulator Tune Settings

While the drive is operating, the value of Par 587 [I Reg Error] is updated in response to changes in the current output to the motor. By manually applying current steps to the motor, this parameter can be used as an indication whether the current regulator in the drive is correctly tuned. Ideally, the value of Par 587 [I Reg Error] should be as near to zero as possible. However, values between - 40 and 40 are acceptable during normal operation (because the drive is responding to changing current demands). Manually tuning the Current Regulator attempts to have Par 587 [I Reg Error] reach its lowest value in response to applied steps in current to the motor.

Adjustments to Par 587 [I Reg Error] are made by changing Par 454 [Arm Inductance] and by stepping the current to the motor. Par 587 [I Reg Error] values are valid only when the drive is operating under at least a 30% current load. The manual-tuning procedure progresses through larger current steps up to 100\%. Par 454 [Arm Inductance] and Par 453 [Arm Resistance] are the currentregulator tuning parameters and typically do not match the motor data-sheet values.

Manual Current-loop Tuning

When attempting to tune the current loop manually, the current reference is stepped to values that can cause the motor to rotate even while the field is disabled (residual flux). If possible, the motor armature shaft should be locked to prevent rotation or decrease the maximum amplitude of current applied per step to minimize armature movement. Not locking the armature is optional only when an external speed-measurement device, such as an encoder or tachometer, is used. Armature rotation interferes with obtaining acceptable tuning values. Be sure to record all original parameter values that are changed as part of configuration for this test.

1. Disable the field regulator by setting Par 497 [Field Reg Enable] to 0 "Disabled".

For firmware revision 3.001 and later, make these parameter configurations:

- Par 469 [Field Mode Sel] to 2 "External"
- Par 414 [Fdbk Device Type] to 1 "Encoder" (a Type 2 alarm is generated if Par 414 is set to 3 "Armature")

2. Verify that Par 351 [Field Current] is set to zero (0 or <0.05 A).
3. Disable the speed regulator by setting Par 242 [Speed Reg En] to 0 "Disabled".
4. Set/verify that Parameters 7 [Current Limit], 8 [Current Lim Pos] and 9 [Current Lim Neg] are at 100%.
5. Set Par 453 [Arm Resistance], calculated as:
(Par 175 [Rated Motor Volt] / Par 179 [Nom Mtr Arm Amps]) x 0.04
6. Set Par 454 [Arm Inductance] to the minimum value (based on drive size).
7. Set Par 39 [Torque Ref] to 30% (a percentage relative to Par 179 [Nom Mtr Arm Amps]).
8. Start the drive and observe the value of Par 587 [I Reg Err] for a few seconds; it should settle to a specific value. Verify that the motor shaft does not rotate (a small amount of movement, less than a revolution, is OK).
9. Stop the drive.

If a Speed Feedback Loss fault (F91) occurs, increase the value of Par 455 [Spd FB Loss Lvl] to its maximum value.
a. If Par 587 [I Reg Err] is positive, increase the value of Par 454 [Arm Inductance]. The value of parameter 587 determines the magnitude of change. Generally, make large increases (for example, double) when Par 587 is large (greater than 40) and smaller increases as Par 587 gets closer to zero.
b. If Par 587 [I Reg Err] is negative, decrease the value of Par 454 [Arm Inductance]. Again, proportional to the magnitude of Par 587.
10. Repeat step 8 until Par 587 [I Reg Err] is as close to zero as possible. Values less than 20 are acceptable as close to zero. However, with some motors, the minimum value of Par 587 can only be 60 (especially at smaller current steps). With higher current steps, values can be less than 10 or less than 5 .
11. Repeat steps 8 and 9 with Par 39 [Torque Ref] set to 60% and then again at 100%. If motor rotation occurs, try lowering the current step value. The higher the current step, the better the tuning results are. If motor rotation still occurs enter the highest current step value that does not cause rotation but provides enough time for Par 587 to reach a stable value. Typically, a stable [I Reg Err] value can be obtained in less than 2 seconds.
12. The current loop should be tuned with the final values of Pars 453 [Arm Resistance] and 454 [Arm Inductance] and a small value in Par 587 [I Reg Err].
13. Restore these parameters to their original values:

- 497 [Field Reg Enable]
- 469 [Field Mode Sel]
- 414 [Fdbk Device Type]
- 242 [Speed Reg En]
- 7 [Current Limit]
- 8 [Current Lim Pos]
- 9 [Current Lim Neg]
- 455 [Spd FB Loss Lvl]

14. Unlock the motor armature (if necessary).
15. Verify that the motor is attached to any normal application inertia (not process material).
16. Perform a speed regulator autotune by setting Par 1027 [Spd Reg Autotune] $=1$ and pressing the Start button.
17. When autotuning completes, speed regulator tuning values should be automatically updated.

If the drive is configured as an armature voltage regulator ($\operatorname{Par} 414=3$ "Armature"), the calculated gains (Par 87 and 88) may need to be adjusted. These adjustments are necessary because this type of regulator (voltage) is less responsive than a true speed regulator (that uses encoder or tachometer feedback).

Fine-Tuning the Field Current Regulator

IMPORTANT In most cases motors with a direct current and an independent excitation work with a constant field (Par 469 [Field Mode Sel] $=0$ "Base Speed"). In this case, it is not necessary to optimize the field current or armature voltage regulators.

This procedure is used for drives that use constant torque and power (mixed armature and field regulation). In these cases, it is necessary to configure the field converter according to this method.
$\begin{array}{ll}\text { IMPORTANT } & \begin{array}{l}\text { Do not issue a "Start" command to the drive during the field current-regulator } \\ \text { fine-tuning procedure. }\end{array}\end{array}$
Follow these steps to fine-tune and optimize the field current regulator:

1. Configure the following parameters:

- Set Par 467 [Max Fld Flux Pct] $=100 \%$ of the field rated current of the connected motor
- Set Par 468 [Min Fld Curr Pct] $=0$
- Set Par 91 [Fld Reg Kp] $=0.00$
- Set Par 92 [Fld Reg Ki] $=0.00$

2. Measure the field current by using an analog output by setting:

- Par 66 [Anlg Out1 Sel] = 18 "Fld Current"
- Par 67 [Anlg Out2 Sel] $=24$ "Field Ref"

3. Configure the following parameters:

- Set Par 497 [Field Reg Enable] = 1 "Enabled" (default)
- Set Par 469 [Field Mode Sel] = 1 "Field Weaken"
- Set Par 498 [Force Min Field] = 1 "Enabled"

4. Configure the following Test Generator parameters:

- Set Par 58 [TstGen Output] = 3 "Field Ref"
- Set Par 60 [TstGen Amplitude] $=70 \%$ of the field rated current of the motor (this setting allows the system overshoot).

5. Increase the value of the Par 91 [Fld Reg Kp] until the overshoot of the field current (displayed in Par 234 [Fld Current Pct]) is lower than 4\%.
6. Increase the value of Par 92 [Fld Reg Ki] until the overshoot is higher than 4%. Then, decrease the value of this parameter until it becomes slightly lower than 4%.

IMPORTANT Because of the relatively high field time constant, the rising speed of the field current is limited. The rising time with optimal tuning conditions could be up to 100 milliseconds.
7. Set Par 58 [TstGen Output] $=0$ "NotConnected".
8. Set Par 498 [Force Min Field] = 0 "Disabled".
9. Set Par 468 [Min Fld Curr Pct] to the desired value.
10. Configure the analog outputs according to your application needs.

Field Current Regulator Tuning Examples

Figure 95 - Increase in the field current with oscillation Non-optimal response of the regulator.
Top: Par 500 [Flux Ref Pct]
Bottom: Par 234 [FId Current Pct]

Figure 97 - Increase in the field current without oscillation This graph, as compared to the graph in Figure 95, shows an increase in [FId Reg Kp] from 2% to 10% with [FId Reg Ki] $=5 \%$.
Top: Par 500 [Flux Ref Pct]
Bottom: Par 234 [FId Current Pct]

Figure 96-Too high of a time constant on the field The reduction of the field current depends on the field time constant. Therefore, the regulator has no influence on the flux current. Top: Par 500 [Flux Ref Pct]
Bottom: Par 234 [FId Current Pct]

Fine-Tuning the Speed Regulator

Follow these steps to fine-tune and optimize the speed regulator:

1. Configure the following Test Generator parameters:

- Set Par 58 [TstGen Output] = 4 "Ramp Ref"
- Set Par 59 [TstGen Frequency] $=0.2 \mathrm{~Hz}$
- Set Par 60 [TstGen Amplitude] $=10 \%$
- Set Par 61 [TstGen Offset] $=20 \%$

2. Measure the results on analog outputs 1 and 2 by setting:

- Par 66 [Anlg Out 1 Sel] $=8$ "Spd Reg Out"
- Par 67 [Anlg Out2 Sel] = 13 "Motor Curr".

3. Set Par 660 [Accel Time 1] $=0$ sec.
4. Set Par 662 [Decel Time 1] $=0$ sec.
5. Set Par 87 [Spd Reg Kp] $=0.00$
6. $88[$ Spd Reg Ki] $=0.00$
7. Start the drive.
8. Increase the value of Par 87 [Spd Reg Kp] until the overshoot is lower than 4% with the shortest possible acceleration or deceleration time.
9. Increase the value of Par 88 [Spd Reg Ki] until the overshoot is higher than 4%. Then, decrease the value of this parameter until its value becomes slightly lower than 4%.
10. Stop the drive.
11. Set Par 58 [TstGen Output] $=0$ "NotConnected".

IMPORTANT When the "Bypass" function is enabled (Par 458 [SpdReg FB Bypass] = 1 "Enabled"), the drive is switched to armature feedback automatically when a "Speed fbk loss" fault occurs due to an encoder or tachometer feedback loss. In this case, you must repeat steps $1 . . .9$ of the "Fine-Tuning the Speed Regulator" procedure when the fault has been cleared. After an automatic switch to armature feedback, the speed regulator works with Pars 459 [SpdReg Kp Bypass] and 460 [SpdReg Ki Bypass] and the D (derivative) part of the speed regulator is automatically excluded.

When it is necessary to have different gains for the speed regulator above the speed range, you can utilize the adaptive speed regulator. For further information about this function, see the Adaptive Speed Regulator block diagram page 320.

[Spd Reg Kp] and [Spd Reg Ki] curves

Figure 98 - [Spd Reg Kp] too low
Top: Par 122 [Spd Feedback]
Bottom: Par 199 [Arm Current Pct]

Figure 99-[Spd Reg Kp] too high
Top: Par 122 [Spd Feedback]
Bottom: Par 199 [Arm Current Pct]

Figure 100-[Spd Reg Ki] too high
Top: Par 122 [Spd Feedback]
Bottom: Par 199 [Arm Current Pct]

$20.00 \mathrm{~ms} /$ DIV

Figure 101 - [Spd Reg Ki] correct
Top: Par 122 [Spd Feedback]
Bottom: Par 199 [Arm Current Pct]

$20.00 \mathrm{~ms} / \mathrm{DIV}$

Fine-Tuning the Voltage Regulator in the Field Converter

IMPORTANT	In most cases, DC motors with independent excitation, work with a constant
field (Par 469 [Field Mode Sel] = " "Base Speed"). In this case, it is not	
	necessary to optimize the regulator of the field current and the regulator of the
armature voltage.	

When field weakening occurs, the voltage regulator keeps the armature voltage at a constant level. The critical point for this regulator is at the beginning of field weakening. Tune the regulator so that the armature voltage undergoes small changes.

IMPORTANT Before the optimization of the voltage regulator, the speed and field current regulators must have already been tuned. See Tune the Current Regulator on page 100 and Fine-Tuning the Field Current Regulator on page 337.

1. Configure the following Test Generator parameters:

- Set Par 58 [TstGen Output] = 4 "Ramp Ref"
- Set Par 59 [TstGen Frequency] $=0.2 \mathrm{~Hz}$
- Set Par 60 [TstGen Amplitude] $=10 \%$
- Set Par 61 [TstGen Offset] = to the switching point from the armature to the field regulation. For example: If Par 162 [Max Feedback Spd] = 2000 rpm , field weakening starts at 1500 rpm . Therefore, set Par 61 [TstGen Offset] = 75\%.

2. Measure the field current and the armature voltage by using analog outputs 1 and 2 , by setting:

- Par 66 [Anlg Out1 Sel] = 18 "Fld Current"
- Par 67 [Anlg Out2 Sel] = 14 "Motor Volts"

3. Start the drive.
4. Check the armature voltage via analog output 2 . After a possible short oscillation, the voltage should remain constant. See the Field Voltage Regulator Tuning Examples examples on page 342 . You can change the Proportional and Integral gains of the Field Voltage regulator via Pars 493 [Arm Volt Kp] and 494 [Arm Volt Ki].
5. Stop the drive.
6. Set Par 58 [TstGen Output] $=0$ "NotConnected".

Field Voltage Regulator Tuning Examples

Figure 102 - Field voltage oscillation
Oscillation after a speed change where [Arm Volt Kp] $=10 \%$ and
[Arm Volt Ki] $=80 \%$.
Top: Par 234 [FId Current Pct]
Bottom: Par 233 [Output Voltage]

Figure 103-Too small of a gain
The armature voltage increases where [Arm Volt Kp] $=3 \%$ and
[Arm Volt Ki] = 5\%.
Top: Par 234 [FId Current Pct]
Bottom: Par 233 [Output Voltage]

Figure 104-Optimal field regulation
After a short transient, the field current and armature voltage are constant. [Arm Volt Kp] $=40 \%,[$ Arm Volt Ki] $=5 \%$.
Top: Par 234 [FId Current Pct]
Bottom: Par 233 [Output Voltage]

Tuning the Field Current Curve

The function of the field current curve is to control the actual motor flux and then motor torque if the field goes into an overvoltage condition. Figure 105 illustrates the relationship between flux and flux current when the field current curve is defined versus not defined.

Complete these procedures in the order that is listed when tuning the field current curve:

- Field current regulator. See Fine-Tuning the Field Current Regulator on page 337.
- Field current curve tuning (Flux / if curve)
- Voltage regulator in the field converter. See Fine-Tuning the Voltage Regulator in the Field Converter on page 341.

Figure 105 - Curve Conversion Flux/Current

Examples:

- Curve A - If the default settings of the drive are retained, the flux current to flux reference remains linear when the value of Par 500 [Flux Ref Pct] changes. For example:
- If Par 467 [Max Fld Flux Pct] / Par 500 [Flux Ref Pct] = 100\%, then Par 234 [Fld Current Pct] / Par 500 [Flux Ref Pct] = Par 280 [Nom Mtr Fld Amps]
- If Par 467 [Max Fld Flux Pct] / Par 500 [Flux Ref Pct] $=50 \%$, then Par 234 [Fld Current Pct] / Par 500 [Flux Ref Pct] = 50\% of Par 280 [Nom Mtr Fld Amps]
- Curve B - After the field current curve fine-tuning procedure is completed, the flux current to flux reference curve will be correct for the motor. See the Current-regulator block diagram on page 358.

Field-current Curve Tuning Procedure:

1. Reset the field current curve by setting Par 920 [Reset Fld Curve] to " 1 ".
2. Configure the following parameters:

- Enter the percentage (100%) of the maximum motor nameplate rated armature voltage in Par 921 [Out Volt Level]
- Set Par 469 [Field Mode Sel] = 0 "Base Speed"
- Set Par 467 [Max Fld Flux Pct] $=100 \%$

3. Start the drive.
4. Increase the motor speed until the value (electromotive force) displayed in Par 233 [Output Voltage] corresponds to the value previously set in Par 175 [Rated Motor Volt].
5. Decrease the value of Par 467 [Max Fld Flux Pct] until the value displayed in Par 233 [Output Voltage] is equal to 90% of Par 175 [Rated Motor Volt]. When you have reached this value, read the value that is displayed in Par 234 [Fld Current Pct] and enter the value into Par 918 [Fld Const 90 Pct].
6. Decrease the value of Par 467 [Max Fld Flux Pct] until the value displayed in Par 233 [Output Voltage] is equal to 70% of Par 175 [Rated Motor Volt]. When you have reached this value, read the value that is displayed in Par 234 [Fld Current Pct] and enter the value into Par 917 [Fld Const 70 Pct].
7. Decrease the value of Par 467 [Max Fld Flux Pct] until the value displayed in Par 233 [Output Voltage] is equal to 40% of Par 175 [Rated Motor Volt]. When you have reached this value, read the value that is displayed in Par 234 [Fld Current Pct] and enter the value into Par 916 [Fld Const 40 Pct].
8. Stop the drive.
9. Set the desired method of field control in Par 469 [Field Mode Sel] (0 "Base Speed" or 1 "Field Weaken")
10. Reset the value of 467 [Max Fld Flux Pct] to 100%.

If you change the value of Par 175 [Rated Motor Volt] or par 280 [Nom Mtr Fld Amps], the field current curve must be retuned.

Control Block Diagrams

Topic	Page
PowerFlex DC Drive Overview	$\underline{346}$
Digital Inputs/0utputs (Standard and Expansion) Mapping	$\underline{347}$
Analog Input//0utputs Mapping	$\underline{348}$
Speed Reference Selection	$\underline{349}$
Speed Reference Generation	$\underline{350}$
Ramp Reference Block	$\underline{351}$
Speed Regulator	$\underline{352}$
Torque Mode Selection	$\underline{353}$
Droop Compensation - Inertia / Loss Compensation	$\underline{354}$
Speed Feedback	$\underline{355}$
Speed Regulator Pl Block	$\underline{356}$
Speed Adaptive and Speed Zero Logic	$\underline{358}$
Current Regulator	$\underline{359}$
Field Current Regulator	$\underline{360}$
Motor Parameters	$\underline{361}$
Speed Threshold / Speed Control	$\underline{362}$
PID Control	$\underline{363}$
Scale Blocks	$\underline{364}$
User Defined Variables	$\underline{366}$
Taper Current Limits	$\underline{367}$
Unit Scaling	$\underline{367}$
Test Generator	$\underline{368}$
Speed Select Settings	
Fault / Alarm Mapping	

Diagram Conventions

Examples:

PXXX = Parameter Number
ParName = Parameter Name
PowerFlex DC Drive Overview

Analog Inputs/Outputs

Speed Reference Selection

To Speed Reference
Generation Diagram
(Speed Ramp Disabled)
(sperlol

Torque Mode Selection

Droop Compensation

Speed Regulator PI Block

(2 ms)

Speed $\mathbf{P} / \boldsymbol{I}$ Base
p93 Spd Reg Kp Base
P94 Spd Reg KiB Bre

$\underset{\text { (background) }}{\text { Scale Blocks }}$

Note: Up to six scale blocks are available. Scale blocks 3-6 follow the same flow as scale blocks 1 and 2, shown here.
User-Defined Parameters

Test Generator

Speed Select Settings

			Reference
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

"Arm Overvoltage" (F5)

"Auxiliary Input" (F2)

1 = "Alarm"
2 = "Fault"
$3=$ "Fast Stop"
$4=$ "Normal Stop"
$5=$ "CurrLim Stop"
"Motor Over Temp" (F16)

"FId Current Loss" (F6)
P473
FldLoss Flt Cfg
$0=$ "Ignore"
$1=$ "Alarm"
$2=$ "Fault"
"Speed Fdbk Loss" (F91)

$1=$ "Alarm"
$2=$ "Fault"
"Motor Overload" (F7)

Installing a Communication Adapter

Communication Adapter Kits

The following Communication Adapter kits are available for use with the PowerFlex ${ }^{\circ}$ DC drive:

Comm Option	Catalog Number
BACnet ${ }^{\text {® }}$ MS/TP RS-485 Communication Adapter	20-COMM-B
ControlNet ${ }^{\text {tm }}$ Communication Adapter (Coax)	20-COMM-C
DeviceNet ${ }^{\text {tm }}$ Communication Adapter	20-COMM-D
EtherNet//P ${ }^{\text {rm }}$ Communication Adapter	20-COMM-E
HVAC Communication Adapter	20-COMM-H
PROFIBUS ${ }^{\text {m }}$ DP Communication Adapter	20-COMM-P
ControlNet ${ }^{\text {tm }}$ Communication Adapter (Fiber)	20-COMM-Q
Remote I/O Communication Adapter ${ }^{(1)}$	20-COMM-R
RS-485 DF1 Communication Adapter	20-COMM-S
External Comms Power Supply	20-XCOMMAC-PS1
DPI External Communication Kit	20-XCOMMDC-BASE
External DPI //0 Option Board ${ }^{(2)}$	20-XCOMMIO-OPT1
Compact 1/0 to DPI/SCANport Module	1769-SM1
Serial Null Modem Adapter	1203-SNM
Smart Self-powered Serial Converter (RS-232) includes 1203-SFC and 1202-C10 Cables	1203-SSS
Universal Serial Bus' ${ }^{\text {T" }}$ (USB) Converter includes 2 m USB, $20-\mathrm{HIM}$-H10 \& 22-HIM-H10 Cables	1203-USB

(1) This item has Silver Series status. For information, refer to http://www.ab.com/silver.
(2) For use only with External DPI Communication Kits 20-XCOMM-DC-BASE.

What The Communication Adapter Kit Includes

- Communication Adapter module w/captive screws
- Internal Interface cable
- Communication Adapter User Manual
- Additional components, based on the option selected
- Phillipss screwdriver

Phillips is a registered trademark of Phillips Screw Company.

Safety Precautions

Installing the Communication Adapter Module in the Drive

ATTENTION: Allow only qualified personnel familiar with drives, power products and associated machinery to plan or implement the installation, startup, configuration and subsequent maintenance of the system. Failure to comply may result in personal injury and/or equipment damage.

ATTENTION: To avoid an electric shock hazard, verify that all power to the drive has been removed before performing the following.

ATTENTION: This drive contains ESD (Electrostatic Discharge) sensitive parts and assemblies. Static control precautions are required when installing, testing, servicing or repairing this assembly. Component damage may result if ESD control procedures are not followed. If you are not familiar with static control procedures, reference A-B publication 8000-4.5.2, "Guarding Against Electrostatic Damage" or any other applicable ESD protection handbook.

Follow these steps to install a communication adapter module:

WARNING: Remove power before making or breaking cable connections. When you remove or insert a cable connector with power applied, an electrical arc may occur. An electrical arc can cause personal injury or property damage by:

- sending an erroneous signal to your system's field devices, causing unintended machine motion
- causing an explosion in a hazardous environment

Electrical arcing causes excessive wear to contacts on both the module and its mating connector. Worn contacts may create electrical resistance.

1. Remove and lock-out all incoming power to the drive.

2. Disconnect the DPI cable from the HIM on the drive.
3. Remove the cover(s) from the drive:

Frame A

a. Remove the screws that secure the bottom cover to the drive, then slide the cover down and off the drive chassis.

b. Press in on the sides at the bottom edge of the top cover and at the same time pull the cover toward you to pull it partially off the drive chassis. Next, at the top of the drive, pull the cover forward, away from the drive, until the pins fit in the keyhole in the top of the cover, then carefully lift the cover off of the drive chassis.

IMPORTANT The HIM assembly is connected to the control board by a cable and therefore will not pull free from the drive until disconnected. See step 4 page 373 for instructions.

Frames B and C

a. Loosen, but do not remove, the screws that secure the bottom cover to the drive, then slide the cover down and off the drive chassis.

b. Loosen, but do not remove, the screws that secure the top cover to the drive, then slide the cover up and off the drive chassis.

IMPORTANT The HIM assembly is connected via a cable to the control board and therefore will not pull free from the drive until disconnected. See step 4 on page 373 for instructions.

Frame D

a. Loosen, but do not remove, the Hexalobular head screws that secure the cover, containing the HIM cradle, to the drive frame. Then, slide the cover up until the screw heads line up with the key holes and lift the cover off the chassis.

IMPORTANT The HIM assembly is connected to the control board by a cable and therefore will not pull free from the drive until disconnected. See step 4 below for instructions.

4. Disconnect the HIM Communication cable from the connector on the upper right corner of the control board and set the cover aside.

5. Secure and ground the Communication Adapter to the EMI Shield on the drive using the four captive screws.

IMPORTANT All screws must be tightened, because the adapter is grounded through a screw to the EMI shield. Recommended tightening torque is $0.9 \mathrm{~N} \cdot \mathrm{~m}$ ($8 \mathrm{lb} \cdot \mathrm{in})$.
6. Connect the Internal Interface cable to the DPI connectors on the control board and the communication Adapter board.

7. Refer to the Adapter's User Manual for network connection, commissioning, and configuration information.
8. Install the HIM Communication cable in reverse order or removal.
9. Install the drive covers in reverse order of removal.

Optional Analog and Digital I/O Expansion Circuit Board

What This Option Board Provides

The optional I/O expansion circuit board ${ }^{(1)}$ is mounted on the control circuit board of the drive and provides these additional I/O signals:

- Four Digital Inputs
- Four Digital Outputs
- Two Analog Outputs

This circuit board is catalog number 20P-S5V62.
Figure 106-I/0 Expansion Board Mounting Location

Table 92 - Recommended Signal Wire Size

Wire Type and Size		Tightening Torque $\mathbf{N} \bullet \mathbf{m}(\mathrm{lb} \cdot \mathbf{i n})$	
Flexible $\left(\mathbf{m m}^{2}\right)$	multi-core $\left(\mathbf{m m}^{2}\right)$	AWG	$2 \ldots 16$
$0.14 \ldots 1.5$	$0.14 \ldots 1.5$	$28 \ldots . .13 .5)$	

A $75 \times 2.5 \times 0.4 \mathrm{~mm}$ ($3.0 \times 0.1 \times 0.02$ in.) flathead screwdriver is recommended for connecting wire to the terminal block inputs. Strip the ends of the cables to a length of 6.5 mm (0.26 in.).

IMPORTANT	To improve the noise immunity it is recommended that you connect the common of the outputs (terminals 2, 4, 5 and 15 of the I/0 Expansion board) with the ground (terminal 10 or 20) on the standard I/0 terminal blocks on the control board. If this is not possible, these terminals must be grounded by means of a $0.1 \mathrm{mf} / 250 \mathrm{~V}$ capacitor.

[^5]Table 93-l/0 Expansion Board Terminal Block 1 Designations

	No.	Signal	Description	Factory Default	Config. Parameter
	1	Analog Output 3 (+)	$\pm 10 \mathrm{~V}, 5 \mathrm{~mA}$ maximum	18 "Fld Current"	68 [Anlg Out3 Sel]
	2	Analog Output 3 (-)			
	3	Analog Output 4 (+)	$\pm 10 \mathrm{~V}, 5 \mathrm{~mA}$ maximum	14 "Motor Volts"	69 [Anlg Out4 Sel]
	4	Analog Output 4 (-)			
	5	Digital Output Common		-	-
	6	Digital Output 5 (+)	Max volt. +30V, max cur. 50 mA	26 "Alarm"	149 [Digital Out5 Sel]
	7	Digital Output 6 (+)		-	-
	8	Digital Output 7 (+)		-	-
	9	Digital Output 8 (+)		-	-
	10	+24VDC	Drive supplied power for Digital Outputs. Max volt. +30V, max. cur. 80 mA .	-	-

Table 94-I/O Expansion Board Terminal Block 2 Designations

	No.	Signal	Description	Factory Default	Config. Parameter
	11	Digital Input 9	Max volt. +30 V , \max cur. $15 \mathrm{~V} / 3.2 \mathrm{~mA}, 24 \mathrm{~V} / 5 \mathrm{~mA}$, and $30 \mathrm{~V} /$ 6.4 mA .	-	-
-	12	Digital Input 10			
1212	13	Digital Input 11			
${ }^{13} 1415$	14	Digital Input 12			
	15	Digital Input Common		-	-

Figure 107-I/0 Expansion Board Wiring Diagram

Optional 115V AC to 24V DC I/O Converter Circuit Board

What This Option Board Provides

The 115 V AC to 24 V DC I/O converter circuit board ${ }^{(1)}$ allows you to convert 115 V AC digital input signals to 24 V DC digital input signals to provide an interface with the standard digital I/O terminal blocks on the PowerFlex DC drive control circuit board. The circuit board contains the following I/O:

- Eight opto isolated 115 V AC digital inputs
- Eight interface outputs for the digital inputs on control board of the drive ${ }^{(2)}$
- Two input terminals for the 24 V DC power supply voltage

This circuit board is catalog number 20P-S520L.
Figure 108-115V AC to 24V DC I/O Converter Circuit Board Mounting Location

[^6]
I/0 Converter Board Wiring

Table 95 - Recommended Signal Wire Size

Wire Type and Size			Tightening Torque $N \cdot 0(1 b \bullet i n)$
Flexible (mm^{2})	multi-core (mm^{2})	AWG	
0.14...1.5	0.14...1.5	28... 16	0.4 (3.5)

A $75 \times 2.5 \times 0.4 \mathrm{~mm}$ ($3.0 \times 0.1 \times 0.02 \mathrm{in}$.) flathead screwdriver is recommended for connecting wire to the terminal block inputs. Strip the ends of the cables to a length of 6.5 mm (0.26 in .).

Table 96-I/O Converter Board M_IN Terminal Block Designations

	No.	Signal	Description
	1	Digital Input 1	Rated input voltage:115V AC $\pm 10 \%$ $50 \ldots 60 \mathrm{~Hz}$. ON input voltage: 115 V AC $\pm 10 \%$ OFF input voltage: 0-70V AC ON input current: 4...5.5 mA
	2	Digital Input 2	
	3	Digital Input 3	
	4	Digital Input 4	
	5	Digital Input 5	
	6	Digital Input 6	
	7	Digital Input 7	
	8	Digital Input 8	
	Com	Digital Input Common	

Table 97-I/O Converter Board M_OUT Terminal Block Designations

	No.	Signal	Description

Figure 109-I/O Converter Board with Internal Supply Wiring Diagram

Figure 110-I/0 Converter Board with External Supply Wiring Diagram

Notes:

PowerFlex DC Standalone Regulator Installation

This appendix contains installation information specific to the PowerFlex DC Standalone Regulator (SAR). The PowerFlex DC SAR and Gate Amplifier are currently sold through Rockwell Automation Drive Systems only. Consult the factory for availability.

Installation and Wiring Instructions

Complete the following for SAR installation and configuration:

1. Read and complete all installation and configuration instructions for the SAR and Gate Amplifier contained in the PowerFlex DC Standalone Regulator and Gate Amplifier User Manual, publication number 23PUM001.
2. Read and complete all additional power, control and I / O wiring, grounding, and configuration instructions in Chapter 1 Installation and Wiring of this manual pertaining to the frame A PowerFlex DC drive.

IMPORTANT Do not change (undo) any of the installation or configuration settings made to the SAR (as instructed in the PowerFlex DC Standalone Regulator and Gate Amplifier User Manual) when completing the instructions from Chapter 1 of this manual.
3. Continue with the instructions in Chapter 2 Drive Start Up of this manual.

Notes:

History of Changes

This appendix summarizes the revisions to this manual. Reference this appendix if you need information to determine what changes have been made across multiple revisions. This may be especially useful if you are deciding to upgrade your hardware or firmware based on information added with previous revisions of this manual.

20P-UM001K-EN-P, July 2014

Topic
Added the Maximum Surrounding Air Temperature Specifications.
Updated the frame B drive dimensions to include a different depth dimension for certain catalog numbers.
Updated the Typical Power Wiring Diagrams to illustrate connections for bother series A and series B frame D fans.
Updated the Frame D, Series B and C Heatsink Cooling Fan Specifications to include information on fan air flow
verification after wiring.
Changed the name of parameter 467 from [Max Fld Curr Pct] to [Max Fld Flux Pct].
The parameter name was only incorrect in this manual.
Added new values to the Testpoint Codes and Functions table.
Removed the Certifications and Specifications information.

20P-UM001J-EN-P, February 2014

Topic		
Added the following new parameters for firmware version 6.001:		
Parameter	Parameter	Parameter
170 [Encoder Config]	435 [Act Spd Reg BW]	1106 [Spd Band Intgrtr]
213 [SCR Diag Test En]	436 [Spd Reg Damping]	1107 [Brk Release Time]
214 [SCR Diag Status]	448 [SpdReg BW Bypass]	1108 [Brk Set Time]
215 [OpenSCR WarnLvl]	470 [UnderVIIt Flt Dly]	1109 [Brk Alarm Travel]
216 [OpenSCR Flt Cfg]	475 [FIdLoss Flt Dly]	1110 [Brk Slip Count]
217 [OpenSCR Threshld]	1034 [SpdReg Kp Pct]	1111 [Float Tolerance]
218 [OpenSCR Trip Lvl]	1035 [SpdReg Ki Pct]	1112 [MicroPsnScalePct]
332 [Drive Checksum]	1100 [Torq Prove Cfg]	1113 [ZeroSpdFloatTime]
333 [MtrOvrld Factor]	1101 [Torq Prove Setup]	1114 [Brake Test Torq]
334 [MtrOvrld Speed]	1103 [Torq Prove Sts]	1329 [Speed Ref Source]
433 [Total Inertia]	1104 [Torq Limit Slew]	1330 [Spd Ref Sel Sts]
434 [Spd Reg BW]	1105 [Speed Dev Band]	1394 [Drive Alarm 2]
Moved parameters 493 [Arm Volt Kp], 494 [Arm Volt Ki], 495 [Arm Volt Kp Base], and 496 [Arm Volt Ki Base] from the Speed Command file / Speed Regulator group to the Motor Control file / Field Config group.		
Moved parameters 93 [Spd Reg Kp Base] and 94 [Spd Reg Ki Base] from the Speed Command file / Speed Regulator group to the Motor Control file / Autotune group.		
Changed the units from "\%" to "none" for parameters 87 [Spd Reg Kp], 99 [Spd Reg Kp Outpt], and 459 [SpdReg Kp Bypass].		
Changed the units from "\%" to "sec "-1" for parameters 88 [Spd Reg Ki], 100 [Spd Reg Ki Outpt], and 460 [SpdReg Ki Bypass].		
Changed the default value of [Droop Filter] from 0 to 100.		
Renamed parameter 249 [Save MOP Ref] to [MOP Ref Config] and changed the following bits: - Bit 0 "At Pwr Down" renamed to "Save PwrDown" - Bit 1 "At Stop" was renamed to "Save At Stop" - Bit 2"Reset AtStop" was added - Bit 3 "Reset At Flt" was added		
Changed option 9 "Torque Ref" to "Sel Torq Ref" for parameter 66... 69 [Anlg Outx Sel].		
Added options 65. . 72 to parameters 133 . . 144 [Digital Inx Sel].		
Added option 30 "Brake Slip" to parameters 145. . 152 [Digital Outx Sel].		
Added options 30 "Brake Slip" and 31 "TP Brake Cmd" to parameters 629 [Relay Out 2 Sell and 1392 [Relay Out 1 Sell].		
Added the following new faults to Chapter 4 - Troubleshooting: - Shorted SCR (F89) - Open SCR (F90) - TorqPrv Spd Band (F94) - Fwd End Limit (F95) - Rev End Limit (F96) - Fwd Over Travel (F97) - Rev Over Travel (F98) - Travel Lim Cflct (F99)		
Changed the fault type to 2 (Non-Configurable) for fault 4 AC Undervoltage.		
Added the "BrakeSlipped" and "TrqProvCflct, and "TP Encls Config" alarms to Chapter 4-Troubleshooting.		
Updated the total dynamic brake resistance column in the Dynamic Brake Resistor Kits and DC Output Contactors tables.		
Added the new Lifting/Torque Proving topic to Appendix C Application Notes.		
Added the Manually Tuning the Speed Regulator for Firmware Revision 6.001 and Later procedure to Appendix C Application Notes.		

Topic
Add the SCR Diagnostic Tests section to Appendix C Application Notes.
Updated the Speed Feedback block diagram.
Updated the Field Current Regulator block diagram
Topic
Added a note to Figure 5 - Frame D Dimensions - Right Side and Front Views indicating which terminal sizes apply to which frame D drive ratings. Added instructions for drive installations in an ungrounded or high-impedance neutral ground or systems Updated the Typical Power Wiring Diagrams and the Field Converter Connections section to include the step-down transformer required in the field converter input power supply circuit for 575V and 690V AC input drives. Updated the Field Converter Connections section to include information on a requirements for a step down transformer. Updated the description for Par 469 [Field Mode Sel] option 1 "Field Weaken" to include the requirement to wire the armature voltage feedback terminals A1 and A2 on the drive to terminals A1 and A2 on the motor, respectively, when Par 458 [SpdReg FB Bypass] is set to 1 "Enabled." Updated the maximum value listed for parameters 7 [Current Limit], 8 [Current Lim Pos], and 9 [Current Lim Neg] from 200\% to 250\%. Added a note to Par 458 [SpdReg FB Bypass] requiring, that when set to 1 "Enabled" and Par 469 [Field Mode Sel] is set 1"Field Weaken," the armature voltage feedback terminals A1 and A2 on the drive must be wired to terminals A1 and A2 on the motor, respectively. Updated the S-curve parameter descriptions (19, 665, 666, 667, and 668) to better reflect the function of the ramp time. Updated the drive armature overcurrent trip specifications. Added the noise level values for each drive frame fan. Updated the Bussmann North American Fuse Block part numbers for frame A and B drives. Added the new S-curve Configuration section. Updated the Ramp Reference Block Diagram to reflect the interaction of the linear and S-curve ramps.

20P-UM001H-EN-P, April 2011

Change			
Add the kW ratings to the Standard Drive Catalog Number Explanation.			
Corrected the "Field Amps" column in "460V, 60 Hz Input" table (f2) for drive codes $1 \mathrm{K1}, 1 \mathrm{~K} 3$, and 1 K 4 to be 70 Amps in the Standard Drive Catalog Number Explanation.			
Updated the Drive Start Up procedures to include steps for both resolver module and permanent magnet motor configuration.			
Removed all reference to the following unused parameters: - 911 [Z Channel Enable] - 912 [Z Capture Pos En] - 913 [Z Captured Pos]			
Removed unused parameter 1383 [TaskLoad 32 ms].			
The "Basic" and "Advanced" parameter view tables have been updated to reflect all parameter additions and changes for firmware version 5.002.			
Added the following new parameters for firmware version 5.002:			
Parameter	Parameter	Parameter	Parameter
12 [Current Rate Lim]	423 [Reslvr Type Sel]	427 [Reslvr Position]	432 [Reslvr Error Cnt]
89 [SpdReg PosLm0ut]	424 [Reslvr Spd Ratio]	428 [Resolver Speed]	431 [Reslvr Cable Bal]
90 [SpdReg NegLmOut]	425 [Resolver Config]	429 [Resolver Pos Sel]	
422 [Fdbk Option ID]	426 [Resolver Status]	430 [Resolver Spd Sel]	

20P-UM001G-EN-P, October 2010

Change		
Added the 575 V AC input, frame B \& C drives and 690V AC input, frame C drives to the Standard Drive Catalog Number Explanation.		
Added the Standalone Regulator catalog numbers.		
Added the 575V AC input drives to Table 2"Frame B Weights".		
Added the 690V AC input drives to Table 3 "Frame C Weights".		
Updated the frame D dimensions.		
Updated installation information regarding use of isolation transformers and line reactors.		
Updated Tables 14 and 15 in the Field Current Configuration section to include a field current scale setting for 1 A .		
Updated the S15 DIP Switch Configuration section to include 575V and 690V AC input drives.		
Added the data type description for all parameters in Chapter 3.		
The "Basic" and "Advanced" parameter view tables have been updated to reflect all parameter additions and changes for firmware version 4.001.		
Added the following new parameters for firmware version 4.001:		
Parameter	Parameter	Parameter
232 [Inertia Comp 0ut]	801 [Anlg In2 Filter]	1008 [Spd Reg Fdbk]
464 [SAR Volts Scale]	802 [Anlg In3 Filter]	1009 [Spd Reg Fdbk Pct]
476 [Field Curve Out]	1006 [Droop Out]	1010 [Spd Reg Err]
643 [SpdReg AntiBckup]	1007 [Droop Out Pct]	1011 [Spd Reg Err Pct]

Parameters 731 [PID Steady Delay] and 734 [P Init IntgI Gain] have been moved from the "PID Control" group to the "PI Control" group.
Parameter 444 was renamed from [Spd Fdbk Filter] to [Spd Reg P Filter] for firmware version 4001.
Added option 2"Off" to parameter 1016 [SpdFuncSelect].
The options for parameter 715 [Torq Limit Type] have been corrected for firmware version 4.001.
Added option 47 "Encoder Spd" to parameter 786 [PID Source].
Added new "Init Diam Calc" group to the "Applications" file to simplify programming.
Parameters 1187 [Winder Type] and 1204 [Line Spd Source] have been moved from the "Winder Functions" group to the "Diameter Calc" group.
Added the option list for [PID Source] to parameters 1204 [Line Spd Source] and 1284 [Ref Spd Source].

Change
The following parameters have been moved to the "Winder Functions" group:
- Parameter 1212 [Acc Dec Filter] - moved from the "Ramp Rates" group.
- Parameters 1188 [Accel Status], 1189 [Decel Status], and 1190 [Fast Stop Status] - moved from the "Diagnostics"
group.
- Parameters 1191 [InertiaCompCnst] and 1192 [InertiaCompVar] - moved from the "Speed Regulator" group.
Updated the actions for a "Feedback Loss" (F91) fault to include possible encoder configuration errors.
Updated the Watts Loss tables for 575 and 690V AC input drives.
Updated all Drive Power Circuit Protection tables for 575 and 690V AC input drives.
Updated all AC Input Line Reactors and AC Input Contactors tables for 575 and 690V AC input drives.
Updated all Dynamic Brake Resistor Kits and DC Output Contactors tables for 575 and 690V AC input drives.
Added the Alternate Dynamic Brake Resistor Kits and DC Output Contactors tables for 575 and 690V AC input drives.
Added 575 and 690 V AC input drives to the Alternate EMC Filters tables.
Updated the Terminal Adapter Kits for frame D drives table.
Updated the Block Diagrams to reflect all additions and changes for firmware version 4.001.
Added Appendix H - PowerFlex DC Standalone Regulator Installation.
Added Appendix - History of Changes to contain all previous manual revision information.

20P-UM001F-EN-P, June 2009

Change
Updated the Catalog Number Explanation to reflect new drive ratings.
Added frame D dimensions and weights.
Added lifting instructions for frame D drives.
Added instructions for opening frame D drives.
Added CE Conformity information for frame D drives and updated the emissions limits table.
Added Control Power Protection information for frame D drives and updated information for rev. "I" and above control
power circuit boards.
Updated the AC Input and DC Output Voltage tables for 575V and 690V drives.
Updated the Typical Power Wiring diagrams to include isolation transformer/line reactor requirements.
Updated the Armature Converter Connections section for frame D.
Updated the Armature Voltage Feedback Connections section for frame D drives.
Updated the Field Circuit Connections section for frame D drives.
Updated the S14 DIP switch settings for the field current configuration.
Updated the frame C heatsink cooling fans connection information.
Added frame D heatsink cooling fans connection information.
Updated the Armature Fuse Signal Terminals information for frame D drives.
Updated Table 24 to include examples of the jumper and switch settings.
Updated the S15 DIP Switch Configuration section to include frame D drives.
Updated relevant I/O Wiring Examples to include required DIP Switch settings.
Added illustration for frame D drive field power and I/O wire routing.
Updated the "Heatsink OvrTemp" (F8) fault action to include fuse location information.
Updated the possible causes for the "Sustained Curr" (F70) fault.
Updated the "Electrical" specifications.
Updated the Encoder Pulses Per Revolution range.
Added Watts Loss tables for frame D drives.
Updated all Drive Power Circuit Protection tables for 575 and 690V AC input and frame D drives.
Updated the Control Power Circuit Protection Fuses table for frame D drives and updated information for rev. "II" and
above control power circuit boards.
Added replacement fuse table for frame D overvoltage clipping board.
Added AC Input Line Reactors and AC Input Contactors for frame D drives.
Added a table for recommended Isolation Transformers.
Added Dynamic Brake Resistor Kits and DC Output Contactors for frame D drives.
Added the Alternate EMC Filters tables.
Added the Terminal Adapter Kits for frame D drives.
Updated the "Installing a Communication Adapter" appendix for frame D drives.

Numerics

115V AC to 24V DC I/O converter board
catalog number 377
2-wire control
non-reversing 84
reversing 84
3-wire control 84,85

A

AC input contactors
configure 30 recommended 257
AC input line reactors recommended 257
AC input voltage 44
AC Line Freq (Par. No. 588) 127
AC Line Voltage (Par. No. 466) 127
AC Undervoltage fault 220
Acc Dec Filter (Par. No. 1212) 168
Accel Mask (Par. No. 596) 189
Accel Owner (Par. No. 605) 189
Accel Status (Par. No. 1188) 166
Accel Time 1 (Par. No. 660) 154
Accel Time 2 (Par. No. 24) 153
access
S.M.A.R.T. screen 270

Act Spd Filter (Par. No. 923) 140
Act Spd Reg BW (Par. No. 435) 150
Act Ten Ref Pct (Par. No. 1194) 167
Actual Comp (Par. No. 1213) 168
Actual Speed (Par. No. 924) 124
Actuator Delay (Par. No. 1266) 155
Adaptive I Gain1 (Par. No. 189) 157
Adaptive I Gain2 (Par. No. 191) 157
Adaptive I Gain3 (Par. No. 193) 157
Adaptive Joint 1 (Par. No. 186) 156
Adaptive Joint 2 (Par. No. 187) 157
Adaptive P Gain1 (Par. No. 188) 157
Adaptive P Gain2 (Par. No. 190) 157
Adaptive P Gain3 (Par. No. 192) 157
Adaptive Ref (Par. No. 183) 156
Adaptive Reg Typ (Par. No. 182) 156
Adaptive Spd 1 (Par. No. 184) 156
Adaptive Spd 2 (Par. No. 185) 156
Adaptive Spd En (Par. No. 181) 156
adaptive speed regulator
function 320
Adaptv Regulator group 156-157
adjust
current regulator 335
advanced parameter view 118
alarm type
non-configurable 217
user configurable 217
alarms
Arm Voltage 226
Auxiliary Input 226
Bipolarfflct 226
BrakeSlipped 226
CntactrCflct 226
DiglncflcA 226
DiglnCflctB 227
DiglnCflct 227
FB Cfg Cflct 227
Fld Current Loss 227
FldCfg Cflct 227
Motor Over Temp 227
Motor Overload 227
Ref (flct 227
Spd Fdbk Err 227
Spd Fdbk Loss 228
Start At PowerUp 228
Torq Prov Cflct 228
visual notification 219
Alarms group 182-184
Alpha Test (Par. No. 166) 143
ALT key
functions 270
analog and digital I/0 expansion board
catalog number 375
Analog In1 Value (Par. No. 1404) 194
Analog In2 Value (Par. No. 1405) 194
Analog In3 Value (Par. No. 1406) 194
analog inputs
configure 280
signal comparison 281
wiring 83
Analog Inputs group 192-194
analog outputs
wiring 84
Analog Outputs group 194-195
analog tachometer
DIP switch 77
ground 33
terminal block 88
Anlg In1 Cmp (Par. No. 1042) 193
Anlg In1 Cmp Dly (Par. No. 1044) 193
Anlg $\ln 1$ Cmp Eq (Par. No. 1045) 194
Anlg In1 Cmp Err (Par. No. 1043) 193
Anlg In1 Config (Par. No. 71) 192
Anlg In1 Filter (Par. No. 792) 193
Anlg In1 Offset (Par. No. 74) 193
Anlg In1 Scale (Par. No. 72) 192
Anlg In1 Sel (Par. No. 70) 192
Anlg In1 Target (Par. No. 295) 193
Anlg In1 Tune (Par. No. 259) 193
Anlg In2 Config (Par. No. 76) 192
Anlg In2 Filter (Par. No. 801) 193
Anlg In2 Offset (Par. No. 79) 193
Anlg In2 Scale (Par. No. 77) 192
Anlg In2 Sel (Par. No. 75) 192
Anlg In2 Target (Par. No. 296) 193
Anlg In2 Tune (Par. No. 260) 193

Anlg In3 Config (Par. No. 81) 192
Anlg In3 Filter (Par. No. 802) 193
Anlg In3 Offset (Par. No. 84) 193
Anlg In3 Scale (Par. No. 82) 192
Anlg In3 Sel (Par. No. 80) 192
Anlg In3 Target (Par. No. 297) 193
Anlg In3 Tune (Par. No. 261) 193
Anlg Out1 Scale (Par. No. 62) 194
Anlg Out1 Sel (Par. No. 66) 195
Anlg Out2 Scale (Par. No. 63) 194
Anlg Out2 Sel (Par. No. 67) 195
Anlg Out3 Scale (Par. No. 64) 194
Anlg Out3 Sel (Par. No. 68) 195
Anlg Out4 Scale (Par. No. 65) 194
Anlg Out4 Sel (Par. No. 69) 195
Anlg Tach Gain (Par. No. 562) 139
Anlg1 Tune Scale (Par. No. 73) 192
Anlg2 Tune Scale (Par. No. 78) 192
Anlg3 Tune Scale (Par. No. 83) 192
Applications file 158-173
Arm Current (Par. No. 200) 125
Arm Current Pct (Par. No. 199) 125
Arm Inductance (Par. No. 454) 140
Arm Resistance (Par. No. 453) 140
Arm Test Angle (Par. No. 167) 143
Arm Volt Ki (Par. No. 494) 131
Arm Volt Ki Base (Par. No. 496) 131
Arm Volt Kp (Par. No. 493) 131
Arm Volt Kp Base (Par. No. 495) 131
Armature Overvoltage fault 220
armature terminals
wire size 50
Armature Voltage alarm 226
armature voltage feedback
terminal block, frame A 54
terminal block, frame B 54
terminal block, frame C 55
terminal block, frame D 55
terminals 53
wire size 53
At Speed (Par. No. 394) 177
At Speed Delay (Par. No. 105) 147
At Speed Error (Par. No. 104) 147
At Zero Speed (Par. No. 395) 177
auto speed sources 310
Auto/Manual examples 311
Autotune Cur Lim (Par. No. 1048) 142
Autotune group 140-142
Aux Inp FIt Cfg (Par. No. 354) 182
Auxiliary Input alarm 226
Auxiliary Input fault 220

B

Base Omega (Par. No. 1163) 164
basic parameter view 116
Bipolar Conflict alarm 226
bipolar inputs
warning 80
bipolar signal
analog output 84
bipolar speed reference analog input 83
block diagrams 345
brake resistors 261
Brake Test Torq (Par. No. 1114) 172
BrakeSlipped alarm 226
Brk Alarm Travel (Par. No. 1109) 171
Brk Release Time (Par. No. 1107) 171
Brk Set Time (Par. No. 1108) 171
Brk Slip Count (Par. No. 1110) 171

C

cables
recommendations 43
spacing 43
spacing example 43
spacing notes 44
can't start drive 229
catalog number
115 V AC to 24 V DC I/0 converter board 377 analog and digital I/0 expansion board 375
Standalone Regulator 16 standard drive 15
CE Compliance
General Considerations 39
CE Conformity 39
change
speed source 311
changed parameters
view 273
circuit breaker
control circuit 42
clear
faults 219
Clear Fault Que (Par. No. 263) 181
Close Loop Comp (Par. No. 1208) 167
Closed Loop En (Par. No. 1214) 168
Closing Speed (Par. No. 1262) 155
Comm Control group 188
common mode interference 80
communication
logic command word 237
logic status word 238
programmable controller 237
communication adapter
install 369
kits 369
Communications file 188-191
compare
analog input signals 281
compensation
droop 289
configure
AC input contactor 30
analog inputs 280
DC output contactor 30
dynamic brake resistor 30
feedback signal 308
Klixon 62
line speed signal 306
programmable controller 237
PTC 62
start at powerup 333
tension set point signal 309
thermal switch 62
thermistor 62
Connected Components Workbench 93
Connected Components Workbench software
113
Constant J Comp (Par. No. 1172) 165
Contactor Conflict alarm 226
ContactorControl (Par. No. 1391) 199
contactors
AC input 257
configure 30
DC output 261
control block diagrams 345
control circuit
input power 65
Control Config group 152
Copycat 273
corrective actions
for drive problems 229
cross reference
parameter name 204
parameter number 210
Cur Lim Neg Out (Par. No. 11) 125
Cur Lim Pos Out (Par. No. 10) 125
current configuration
field 60
Current Lim Neg (Par. No. 9) 133
Current Lim Pos (Par. No. 8) 133
Current Limit (Par. No. 7) 133
Current Meters group 125-126
Current Rate Lim (Par. No. 12) 133
Current Reg In (Par. No. 41) 125
current regulator
adjust 335
tune settings 335
current/speed curve
function 282
CurrLimit Active (Par. No. 349) 175
CurrReg Autotune (Par. No. 452) 140

D

Dancer Constant (Par. No. 798) 163
data
save 273
Data In A1 (Par. No. 610) 190
Data In A2 (Par. No. 611) 190
Data In B1 (Par. No. 612) 190

Data In B2 (Par. No. 613) 190
Data In C1 (Par. No. 614) 190
Data In C2 (Par. No. 615) 190
Data In D1 (Par. No. 616) 190
Data In D2 (Par. No. 617) 190
Data In SelData (Par. No. 1320) 190
Data In Val Sel (Par. No. 1319) 190
data nameplate 12
Data Out A1 (Par. No. 618) 190
Data Out A2 (Par. No. 619) 190
Data Out B1 (Par. No. 621) 190
Data Out B2 (Par. No. 621) 190
Data Out C1 (Par. No. 622190
Data Out C2 (Par. No. 623) 190
Data Out D1 (Par. No. 624) 190
Data Out D2 (Par. No. 625) 190
DataLinks group 190
DC contactor crimp lugs kits 262
DC output contactors 261 configure 30
recommended 261
DC output voltage 45
Decel Mask (Par. No. 631) 190
Decel Owner (Par. No. 609) 189
Decel Status (Par. No. 1189) 166
Decel Time 1 (Par. No. 662) 154
Decel Time 2 (Par. No. 32) 153
defaults
reset 273
definitions
digital input option selections 197
digital output option selections 201
relay output option selections 201
diagnostic data
viewing 273
Diagnostics group 175-181
diagrams
control block 345
power wiring 45
Diam Calc Dis (Par. No. 1161) 163
Diam Inc Dec En (Par. No. 1205) 165
Diam Init Filter (Par. No. 1206) 165
Diam Preset 0 (Par. No. 1164) 164
Diam Preset 1 (Par. No. 1165) 164
Diam Preset 2 (Par. No. 1166) 164
Diam Preset 3 (Par. No. 1167) 164
Diam Preset Sel (Par. No. 1168) 164
Diam Stdy Delay (Par. No. 1207) 165
Diam Threshold (Par. No. 1158) 163
Diameter Calc (Par. No. 794) 162
Diameter Calc group 163-165
Diameter Calc St (Par. No. 800) 163
Diameter Filter (Par. No. 1162) 164
Diameter Reached (Par. No. 1159) 163
Diameter Reset (Par. No. 1157) 163
Dig In Status (Par. No. 564) 199

Dig In Term 1 (Par. No. 565) 199
Dig In Term 10 (Par. No. 574) 199
Dig In Term 11 (Par. No. 575) 199
Dig In Term 12 (Par. No. 576) 199
Dig In Term 2 (Par. No. 566) 199
Dig In Term 3 (Par. No. 567) 199
Dig In Term 4 (Par. No. 568) 199
Dig In Term 5 (Par. No. 569) 199
Dig In Term 6 (Par. No. 570) 199
Dig In Term 7 (Par. No. 571) 199
Dig In Term 8 (Par. No. 572) 199
Dig In Term 9 (Par. No. 573) 199
Dig Out Status (Par. No. 581) 202
Digital In1 Sel (Par. No. 133) 196
Digital In10 Sel (Par. No. 142) 196
Digital In11 Sel (Par. No. 143) 196
Digital In12 Sel (Par. No. 144) 196
Digital In2 Sel (Par. No. 134) 196
Digital In3 Sel (Par. No. 135) 196
Digital In4 Sel (Par. No. 136) 196
Digital In5 Sel (Par. No. 137) 196
Digital In6 Sel (Par. No. 138) 196
Digital In7 Sel (Par. No. 139) 196
Digital In8 Sel (Par. No. 140) 196
Digital In9 Sel (Par. No. 141) 196
Digital Input Conflict A alarm 226
Digital Input Conflict B alarm 227
Digital Input Conflict C alarm 227
Digital Inputs group 196-199
Digital Out1 Sel (Par. No. 145) 200
Digital Out2 Sel (Par. No. 146) 200
Digital Out3 Sel (Par. No. 147) 200
Digital Out4 Sel (Par. No. 148) 200
Digital Out5 Sel (Par. No. 149) 200
Digital Out6 Sel (Par. No. 150) 200
Digital Out7 Sel (Par. No. 151) 200
Digital Out8 Sel (Par. No. 152) 200
digital outputs
option definitions 201
Digital Outputs group 200-203
dimensions
frame A 19
frame B 20
frame C 21
frame D 22, 23

DIP switch
SO 75, 76
S175, 76
S10 75,76
S1175, 76
S12 75, 76
S1460, 75, 76
S15 75, 76, 77
S1875, 76
S2 75, 76
S20 75, 76
S2175, 76
S3 75, 76
S4 75, 76, 77
S9 75, 76
Direction Mask (Par. No. 594) 189
Direction Mode (Par. No. 1322) 174
Direction Owner (Par. No. 603) 189
Discrete Speeds group 145-146
DncrPosSpd (Par. No. 795) 162
DPI Baud Rate (Par. No. 589) 188
DPI Fdbk Select (Par. No. 1321) 188
DPI Inputs group 203
DPI P1 Select (Par. No. 1323) 203
DPI P2 Select (Par. No. 1324) 203
DPI P3 Select (Par. No. 1325) 203
DPI P4 Select (Par. No. 1326) 203
DPI P5 Select (Par. No. 1327) 203
DPI Port Sel (Par. No. 590) 188
DPI Port Value (Par. No. 1343) 188
drive
clearance 18
data nameplate 12
enclosure 18
firmware version 12
frame size 12
mount 18
mounting 18, 19
power wiring 44
problems 229
series number 12
start-up 91
status 218
storage 11
temperature 18
weights 19
Drive Alarm 1 (Par. No. 1380) 184
Drive Alarm 2 (Par. No. 1394) 184
Drive Checksum (Par. No. 332) 126
Drive Data group 126-127
Drive Logic Rslt (Par. No. 1328) 179
Drive Memory group 174
Drive Overload fault 220
drive problems
drive starts, motor does not turn 230
drive will not start 229
motor does not reach commanded speed 230
motor reaches maximum speed immediately
231
motor turning wrong direction 230
Drive Size (Par. No. 465) 127
drive starts, motor does not turn 230
Drive Status 1 (Par. No. 381) 176
Drive Status 2 (Par. No. 382) 177
Drive Type (Par. No. 300) 126
Drive Type Sel (Par. No. 201) 128
drive will not start 229
DriveExplorer 93
DriveExplorer software 113
DriveTools SP 93
DriveTools SP software 113
droop compensation 289
Droop Filter (Par. No. 697) 154
Droop Limit (Par. No. 700) 155
Droop Out (Par. No. 1006) 124
Droop Out Pct (Par. No. 1007) 124
Droop Percent (Par. No. 696) 154
Drv Fld Brdg Cur (Par. No. 374) 129
Dsp Error fault 220
dynamic brake resistor
configure 30
recommended 261
using 31
Dynamic Control file 152-157
Dynamic Friction (Par. No. 1175) 165

E

edit
parameters 274
EEPROM Error fault 220
Elapsed Lifetime (Par. No. 235) 126
electrostatic discharge
precaution 14
EMC Directive
Installation Requirements 40
EMC Filters
Alternates 264
Alternates, EPCOS 267
Alternates, Rasmi 264
Alternates, Schaffner 265
EN 61800-3
Installation Requirements 40
Enable Droop (Par. No. 699) 155
enable input
wiring 84
Enable PD (Par. No. 770) 160
Enable PI (Par. No. 769) 158
Enable PI PD (Par. No. 1258) 162
enclosure
rating 18
encoder
ground 33
terminal block 86
wiring 87
Encoder Config (Par. No. 170) 135
Encoder Counts (Par. No. 1022) 140
Encoder Err Chk (Par. No. 652) 139
Encoder Error fault 220

Encoder Out Sel (Par. No. 1021) 140
Encoder PPR (Par. No. 169) 135
Encoder Speed (Par. No. 420) 124

F

factory defaults
reset 273
Fast Stop Status (Par. No. 1190) 166
Fast Stop Time (Par. No. 38) 155
Fault 1 Code (Par. No. 1351) 181
Fault 1 Time (Par. No. 1361) 182
Fault 10 Code (Par. No. 1360) 181
Fault 10 Time (Par. No. 1370) 182
Fault 2 Code (Par. No. 1352) 181
Fault 2 Time (Par. No. 1362) 182
Fault 3 Code (Par. No. 1353) 181
Fault 3 Time (Par. No. 1363) 182
Fault 4 Code (Par. No. 1354) 181
Fault 4 Time (Par. No. 1364) 182
Fault 5 Code (Par. No. 1355) 181
Fault 5 Time (Par. No. 1365) 182
Fault 6 Code (Par. No. 1356) 181
Fault 6 Time (Par. No. 1366) 182
Fault 7 Code (Par. No. 1357) 181
Fault 7 Time (Par. No. 1367) 182
Fault 8 Code (Par. No. 1358) 181
Fault 8 Time (Par. No. 1368) 182
Fault 9 Code (Par. No. 1359) 181
Fault 9 Time (Par. No. 1369) 182
Fault Arm Amps (Par. No. 1371) 182
Fault Clear (Par. No. 1347) 181
Fault Clr Mask (Par. No. 597) 189
Fault Clr Mode (Par. No. 1348) 181
Fault Clr Owner (Par. No. 606) 189
Fault Field Amps (Par. No. 1373) 182
fault queue 273
Fault Speed (Par. No. 1372) 182
fault type
non-configurable 217
user configurable 217
Fault Voltage (Par. No. 1374) 182
FaultCode (Par. No. 57) 126
field
current configuration 60 DC output voltage 45 input terminals 56 output terminals 56 terminal block, frame A 57 terminal block, frame B 58 terminal block, frame (58,59 terminal block, frame D 59 wire size 56
Field Config group 130-133
Field Configuration Conflict alarm 227

field converter

tune voltage regulator 341
Field Current (Par. No. 351) 126
field current curve tune 343
Field Current Loss alarm 227
Field Current Loss fault 220
field current regulator
tune 337
Field Curve Out (Par. No. 476) 126
Field Econ Delay (Par. No. 1407) 133
Field Economy En (Par. No. 499) 132
Field Mode Sel (Par. No. 469) 131
Field Reg Enable (Par. No. 497) 131
File-Group-Parameter list 273
Filt TorqCur Pct (Par. No. 928) 126
Final Diameter (Par. No. 1178) 166
fine tune
regulators 334
firmware version 12
Fld Const 40 Pct (Par. No. 916) 132
Fld Const 70 Pct (Par. No. 917) 132
Fld Const 90 Pct (Par. No. 918) 132
Fld Current Pct (Par. No. 234) 126
Fld Reg Ki (Par. No. 92) 130
Fld Reg Ki Base (Par. No. 98) 130
Fld Reg Kp (Par. No. 91) 130
Fld Reg Kp Base (Par. No. 97) 130
Fld Test Angle (Par. No. 168) 143
Fld Weaken Ratio (Par. No. 456) 130
FIdLoss Flt Cfg (Par. No. 473) 183
FIdLoss Flt Dly (Par. No. 475) 183
Float Tolerance (Par. No. 1111) 171
Flux Divide (Par. No. 462) 130
Flux Filter BW (Par. No. 463) 130
Flux Ref Pct (Par. No. 500) 126
Flying Start En (Par. No. 388) 149
Force Min Field (Par. No. 498) 132
frame A
armature converter terminals 50
dimensions 19
PE ground terminal 50
weights 19
frame B
armature converter terminals 51
dimensions 20
PE ground terminal 51
weights 20
frame C
armature converter terminals 51
dimensions 21
PE ground terminal 51
weights 21
frame D
armature converter terminals 52
dimensions 22,23
PE ground terminal 52
terminal adapter kits 267
weights 24
frame size 12
Freeze Ramp (Par. No. 373) 153
Friction (Par. No. 1015) 141
functions
adaptive speed regulator 320
ALT key 270
current/speed curve 282
droop 289
PID 309
speed draw 326
speed regulation 320
speed threshold indicators 324
speed up 323
speed zero 325
fuses
control power circuit 42
frame A 239
frame B 239
frame C 245
frame D 245
input power circuit 42, 239
overvoltage clipping circuit board, frame D 256
pulse transformer circuit board, frame B 254
switching power supply circuit board 252
transient noise filter circuit board, frame C 255
Fwd End Limit fault 220
Fwd Over Travel fault 220

G

Gear Box Ratio (Par. No. 797) 162 ground
encoder 33
PE 33
power feeder 33
requirements 32
safety 33
tachometer 33
typical scheme 32

H

Hardware Fault 220
Heatsink Over Temperature fault 221

HIM
ALT key 270
connection 269
display 270
DPI Port 1269
DPI Port 2269
DPI Port 3269
DPI Port 5269
edit parameters 274
indicators 219
install 275
menu structure 272
menus 273
remove 275
status indicator 218
view parameters 274
HIM menus
Device Select 273
Diagnostics 273
Memory Storage 273
Parameter 273
Preferences 274

I

I Reg Error (Par. No. 587) 140
I/0 converter circuit board
catalog number 377
install 377
terminal block 378
wire size 378
wiring diagrams 379
I/0 expansion circuit board
catalog number 375
install 375
terminal block 376
wire 375
wire size 375
wiring diagram 376
Inertia (Par. No. 1014) 141
Inertia C Filter (Par. No. 1012) 140
Inertia Comp Out (Par. No. 232) 126
InertiaCompCnst (Par. No. 1191) 167
InertiaCompVar (Par. No. 1192) 167
Init Diam Calc group 162-163
Initial Diameter (Par. No. 1177) 166 input
contactors 257
line reactor 257
potentiometer 83
voltage 44
input current
control circuit 42
input power
circuit protection 239
control circuit 65
fuses 245
input voltage
AC 44
Input/Output file 192-203
install
communication adapter 369 HIM 275
I/O converter circuit board 377
I/0 expansion circuit board 375
Int Acc Calc En (Par. No. 1183) 166
interference
common mode 80
Interrupt Error fault 221
Inversion In 1 (Par. No. 1276) 199
Inversion In 10 (Par. No. 1388) 199
Inversion In 11 (Par. No. 1389) 199
Inversion In 12 (Par. No. 1390) 199
Inversion In 2 (Par. No. 1277) 199
Inversion In 3 (Par. No. 1278) 199
Inversion In 4 (Par. No. 1279) 199
Inversion In 5 (Par. No. 1280) 199
Inversion In 6 (Par. No. 1281) 199
Inversion In 7 (Par. No. 1282) 199
Inversion In 8 (Par. No. 1283) 199
Inversion In 9 (Par. No. 1387) 199
Inversion Out 1 (Par. No. 1267) 202
Inversion Out 2 (Par. No. 1268) 202
Inversion Out 3 (Par. No. 1269) 202
Inversion Out 4 (Par. No. 1270) 202
Inversion Out 5 (Par. No. 1271) 202
Inversion Out 6 (Par. No. 1272) 202
Inversion Out 7 (Par. No. 1273) 202
Inversion Out 8 (Par. No. 1274) 202
Inversion Relay1 (Par. No. 1393) 203
Inversion Relay2 (Par. No. 1275) 202
Inverting Fault 221
isolation transformer
configuration 29
recommended 259
using 29

J

Jog Mask (Par. No. 593) 189
Jog Off Delay (Par. No. 1409) 146
Jog Owner (Par. No. 602) 189
Jog Ramp Time (Par. No. 1410) 154
Jog Speed (Par. No. 266) 145
Jog TW Enable (Par. No. 1256) 168
Jog TW Speed (Par. No. 1255) 168
joystick
wiring 83
jumper
SA-SB 65

K

kits
communication adapter 369
Klixon
configure 62

L
Language (Par. No. 302) 174
Last Stop Source (Par. No. 1402) 180
LED status
green, flashing 218
green, steady 218
red, flashing 218
red, steady 218
yellow, flashing 218
yellow, steady 218
LEDs 218
MOD 218
NET A 218
NET B 218
PORT 218
STS 218
lift
drives 25
Limits group 145
Line Accel Pct (Par. No. 1184) 166
Line Decel Pct (Par. No. 1185) 166
Line FastStp Pct (Par. No. 1186) 166
line reactor
configuration 29
recommended 257
using 29
Line Spd Gain (Par. No. 1156) 163
Line Spd Source (Par. No. 1204) 165
Line Spd Thresh (Par. No. 1155) 163
Line Speed Pct (Par. No. 1160) 163
line speed signal
PID 306
link
parameters 316
Load Comp (Par. No. 698) 154
Load Limits group 154-155
Local Mask (Par. No. 599) 189
Local Owner (Par. No. 608) 189
Lock Speed Integ (Par. No. 348) 149
logic command word 237
Logic Mask (Par. No. 591) 188, 190
Logic Mask Act (Par. No. 1376) 190
logic status word 238
Low Voltage Directive
Installation Requirements 40
Low Voltage Directive and Electromagnetic Compatibility Directive 39

M

Main Contactor fault 221
Man Ref Preload (Par. No. 210) 174
manual speed sources 310
Masks \& Owners group 188-190
Materl Width Pct (Par. No. 1173) 165
Max Deviation (Par. No. 796) 162
Max Diameter (Par. No. 1153) 163
Max Feedback Spd (Par. No. 162) 128

Max Fld Curr Pct (Par. No. 467) 130
Max Ref Speed (Par. No. 45) 128
Max Speed Fwd (Par. No. 3) 145
Max Speed Rev (Par. No. 4) 145
Maximum Speed (Par. No. 2) 145
menu
HIM 272, 273
MicroPsnScalePct (Par. No. 1112) 171
Min Fld Curr Pct (Par. No. 468) 131
Min Speed Fwd (Par. No. 5) 145
Min Speed Rev (Par. No. 6) 145
Minimum Diameter (Par. No. 799) 163
Minimum Speed (Par. No. 1) 145
MOD LED 218
Monitor file 123-127
MOP Accel Time (Par. No. 22) 153
MOP Dec Active (Par. No. 397) 178
MOP Decel Time (Par. No. 30) 153
MOP Inc Active (Par. No. 396) 177
MOP Mask (Par. No. 598) 189
MOP Owner (Par. No. 607) 189
MOP Ref Config (Par. No. 249) 174
MOP Select (Par. No. 1375) 174
Motor Control file 128-144
Motor Data group 128-129
motor not reaching commanded speed 230
motor not turning 230
Motor Over Temperature alarm 227
Motor Over Temperature fault 221
Motor Overload alarm 227
Motor Overload fault 221
motor reaches maximum speed immediately 231
Motor Trq Ref (Par. No. 17) 125
motor turning wrong direction 230
mount
drive 18
lift 25
mounting
dimensions 19
weights 19
MtrOvrld Factor (Par. No. 333) 129
MtrOvrld Flt Cfg (Par. No. 479) 183
MtrOvrld Speed (Par. No. 334) 129
MtrOvrld Status (Par. No. 1290) 178
MtrOvrld Type (Par. No. 376) 129

N

NET A LED 218
NET B LED 218
Nom Mtr Arm Amps (Par. No. 179) 128
Nom Mtr Fld Amps (Par. No. 280) 128
numbered parameter list 273

0
Offs Accel Time (Par. No. 1198) 167
Open SCR fault 221
Opening Delay (Par. No. 1263) 155
OpenSCR Flt Cfg (Par. No. 216) 144
OpenSCR Threshld (Par. No. 217) 144
OpenSCR Trip Lvl (Par. No. 218) 144
OpenSCR WarnLvl (Par. No. 215) 144
Out Volt Level (Par. No. 921) 133
Output Power (Par. No. 1052) 127
Output Voltage (Par. No. 233) 126
Overcurrent fault 222
OverCurrent Thr (Par. No. 584) 183
Overspeed fault 222
Overspeed Val (Par. No. 585) 184
OverTemp Flt Cfg (Par. No. 365) 182
OverVolt Flt Cfg (Par. No. 203) 182
overvoltage clipping circuit board, frame D fuses 256

P

Param Access Lvl (Par. No. 211) 174
parameter access level
change 273
parameter files
Applications 158-173
Communications 188-191
Dynamic Control 152-157
Input/Output 192-203
Monitor 123-127
Motor Control 128-144
Speed Command 145-151
Utility 174-188
parameter groups
Adaptv Regulator 156-157
Alarms 182-184
Analog Inputs 192-194
Analog Outputs 194-195
Autotune 140-142
Comm Control 188
Control Config 152
Current Meters 125-126
DataLinks 190
Diagnostics 175-181
Diameter Calc 163-165
Digital Inputs 196-199
Digital Outputs 200-203
Discrete Speeds 145-146
DPI Inputs 203
Drive Data 126-127
Drive Memory 174
Faults 181-182
Field Config 130-133
Init Diam Calc 162-163
Limits 145
Load Limits 154-155
Masks \& Owners 188-190
Motor Data 128-129
PD Control 159-160
PI Control 158-159
PID Control 160-162
Ramp Rates 152-154
Reference Config 174
Restart Modes 156
Scale Blocks 172-173
Security 190-191
Speed Feedback 135-140
Speed Meters 123-125
Speed References 146
Speed Regulator 146-150, ??-151
Stop Modes 155
Test Generator 142-144
Torq Attributes 133-134
Torque Prove 170-172
User Defined 185-188
Winder Functions 165-169
parameter views
advanced 118
basic 116
parameters
edit 274
organization 115
view 274
PD Control group 159-160
PD Deriv Filter (Par. No. 767) 159
PD Deriv Gain 1 (Par. No. 766) 159
PD Deriv Gain 2 (Par. No. 789) 160
PD Deriv Gain 3 (Par. No. 791) 160
PD Output PID (Par. No. 421) 159
PD Prop Gain 1 (Par. No. 768) 160
PD Prop Gain 2 (Par. No. 788) 160
PD Prop Gain 3 (Par. No. 790) 160
PE ground
wire size 50
peripheral devices
view 273

PI Central v sel (Par. No. 779) 159
PI Central v1 (Par. No. 776) 158
PI Central v2 (Par. No. 777) 158
PI Central v3 (Par. No. 778) 158
PI Central vsO (Par. No. 780) 159
PI Central vs1 (Par. No. 781) 159
PI Control group 158-159
PI Init IntgI Gn (Par. No. 734) 158
PI Init Prop Gn (Par. No. 793) 159
Pl integr freeze (Par. No. 783) 159
PI Integral Gain (Par. No. 764) 158
PI Lower Limit (Par. No. 785) 159
PI Output (Par. No. 771) 158
PI Prop Gain PID (Par. No. 765) 158
PI Steady Thrsh (Par. No. 695) 158
PI Upper Limit (Par. No. 784) 159
PID
feedback signal 308
function 306, 308, 309
line speed signal 306
PID Accel Time (Par. No. 1046) 162
PID Clamp (Par. No. 757) 160
PID Control group 160-162
PID Decel Time (Par. No. 1047) 162
PID Error (Par. No. 759) 160
PID Error Gain (Par. No. 1254) 162
PID Feedback (Par. No. 763) 161
PID Output (Par. No. 774) 161
PID Output Scale (Par. No. 773) 161
PID Output Sign (Par. No. 772) 161
PID Setpoint 0 (Par. No. 760) 160
PID Setpoint 1 (Par. No. 761) 160
PID Setpoint Sel (Par. No. 762) 160
PID Source (Par. No. 786) 162
PID Source Gain (Par. No. 787) 162
PID Steady Delay (Par. No. 731) 158
PID Target (Par. No. 782) 161
Pollution Degree Ratings 41
Port 1 Adapter fault 222
Port 1 DPI Loss fault 222
Port 2 Adapter fault 222
Port 2 DPI Loss fault 222
Port 3 Adapter fault 222
Port 3 DPI Loss fault 222
Port 4 Adapter fault 222
Port 4 DPI Loss fault 222
Port 5 Adapter fault 222
Port 5 DPI Loss fault 222
PORT LED 218
Port Mask Act (Par. No. 1379) 191
potentiometer
wiring 83
power circuit
fuses 42
protection 42
Power Failure fault 222
power feeder
ground 33
power terminals armature converter 50
power wiring 44
AC input contactor 46 armature output terminals 50 armature voltage feedback terminals 53 contact terminals 62 DC output contactor 47 diagrams 45 dynamic brake 48 field input terminals 56 field output terminals 56 motor thermistor terminals 62 normally open contact terminals 62 PE (earth ground) terminal 50
Powerup Delay (Par. No. 1345) 156
preferences HIM 274
Preset Speed 1 (Par. No. 154) 145
Preset Speed 2 (Par. No. 155) 145
Preset Speed 3 (Par. No. 156) 145
Preset Speed 4 (Par. No. 157) 145
Preset Speed 5 (Par. No. 158) 145
Preset Speed 6 (Par. No. 159) 145
Preset Speed 7 (Par. No. 160) 145
programmable controller
communication 237
configure 237
PTC
configure 62
pulse transformer circuit board, frame B fuses 254

R

Ramp Delay (Par. No. 20) 153
Ramp In (Par. No. 110) 123
Ramp In Pct (Par. No. 111) 123
Ramp In Zero En (Par. No. 1265) 155
Ramp Out (Par. No. 113) 123
Ramp Out Pct (Par. No. 114) 123
Ramp Rates group 152-154
Ramp Select 0 (Par. No. 403) 178
Ramp Select 1 (Par. No. 404) 178
Ramp Type Select (Par. No. 18) 152
Rated Motor Volt (Par. No. 175) 128
Real FF PID (Par. No. 418) 160
Ref Line Spd (Par. No. 1286) 169
Ref Spd Source (Par. No. 1284) 169
Ref Speed Gain (Par. No. 1285) 169
Ref Zero Level (Par. No. 106) 147
Reference Config group 174
Reference Conflict alarm 227
Reference Mask (Par. No. 595) 189
Reference Owner (Par. No. 604) 189
regulators
fine tune 334

Relay Out 1 Sel (Par. No. 1392) 203
Relay Out 2 Sel (Par. No. 629) 202
relay outputs
option definitions 201
terminals 62
remove
HIM 275
Reset Defaults (Par. No. 258) 174
Reset Fld Curve (Par. No. 920) 132
Reset to Defaults 273
Reslvr Cable Bal (Par. No. 431) 138
Reslvr Error Cnt (Par. No. 432) 178
Reslvr Position (Par. No. 427) 138
Reslvr Spd Ratio (Par. No. 424) 136
Reslvr Type Sel (Par. No. 423) 136
Resolver Config (Par. No. 425) 137
Resolver Error fault 222
Resolver Pos Sel (Par. No. 429) 138
Resolver Spd Sel (Par. No. 430) 138
Resolver Speed (Par. No. 428) 124
Resolver Status (Par. No. 426) 138
Restart Modes group 156
Rev End Limit fault 222
Rev Over Travel fault 222
Roll Diameter (Par. No. 1154) 163

S

S Curve Accel 1 (Par. No. 665) 154
S Curve Accel 2 (Par. No. 667) 154
S Curve Decel 1 (Par. No. 666) 154
S Curve Decel 2 (Par. No. 668) 154
S Curve Time (Par. No. 19) 152
S.M.A.R.T. list screen
access 270
use 271
safety
ground 33
SAR Volts Scale (Par. No. 464) 129
SA-SB jumper 65
save
data 273
Save HIM Ref (Par. No. 209) 174
scale blocks
link parameters 316
Scale Blocks group 172-173
Scale1 Div (Par. No. 487) 172
Scale1 In Abs (Par. No. 492) 173
Scale1 In Max (Par. No. 488) 172
Scale1 In Min (Par. No. 489) 172
Scale1 In Off (Par. No. 490) 173
Scale1 Input (Par. No. 484) 172
Scale1 Mul (Par. No. 486) 172
Scale1 Out Off (Par. No. 491) 173
Scale1 Output (Par. No. 485) 172
Scale2 Div (Par. No. 556) 172
Scale2 In Abs (Par. No. 561) 173

Scale2 In Max (Par. No. 557) 172
Scale2 In Min (Par. No. 558) 172
Scale2 In Off (Par. No. 559) 173
Scale2 Input (Par. No. 553) 172
Scale2 Mul (Par. No. 555) 172
Scale2 Out Off (Par. No. 560) 173
Scale2 Output (Par. No. 554) 172
Scale3 Div (Par. No. 1221) 172
Scale3 In Abs (Par. No. 1226) 173
Scale3 In Max (Par. No. 1222) 172
Scale3 In Min (Par. No. 1223) 172
Scale3 In Off (Par. No. 1224) 173
Scale3 Input (Par. No. 1218) 172
Scale3 Mul (Par. No. 1220) 172
Scale3 Out Off (Par. No. 1225) 173
Scale3 Output (Par. No. 1219) 172
Scale4 Div (Par. No. 1230) 172
Scale4 In Abs (Par. No. 1235) 173
Scale4 In Max (Par. No. 1231) 172
Scale4 In Min (Par. No. 1232) 172
Scale4 In Off (Par. No. 1233) 173
Scale4 Input (Par. No. 1227) 172
Scale4 Mul (Par. No. 1229) 172
Scale4 Out Off (Par. No. 1234) 173
Scale4 Output (Par. No. 1228) 172
Scale5 Div (Par. No. 1239) 172
Scale5 In Abs (Par. No. 1244) 173
Scale5 In Max (Par. No. 1240) 172
Scale5 In Min (Par. No. 1241) 172
Scale5 In Off (Par. No. 1242) 173
Scale5 Input (Par. No. 1236) 172
Scale5 Mul (Par. No. 1238) 172
Scale5 Out Off (Par. No. 1243) 173
Scale5 Output (Par. No. 1237) 172
Scale6 Div (Par. No. 1248) 172
Scale6 In Abs (Par. No. 1253) 173
Scale6 In Max (Par. No. 1249) 172
Scale6 In Min (Par. No. 1250) 172
Scale6 In Off (Par. No. 1251) 173
Scale6 Input (Par. No. 1245) 172
Scale6 Mul (Par. No. 1247) 172
Scale6 Out Off (Par. No. 1252) 173
Scale6 Output (Par. No. 1246) 172
SCR Diag Status (Par. No. 214) 144
SCR Diag Test En (Par. No. 213) 143
Secondary, Ungrounded 34
Security group 190-191
Selected TorqRef (Par. No. 14) 125
series number 12
set
DIP switch S14 60
DIP switch S15 77
DIP switch S4 77
Set Fld Curve (Par. No. 919) 132
set preferences
HIM 274

Shorted SCR fault 222
SLAT Dwell Time (Par. No. 16) 152
SLAT Err Stpt (Par. No. 15) 152
Software Version (Par. No. 331) 126
sourcing digital output wiring 85
Spd 0 Trip Delay (Par. No. 627) 155
Spd Band Intgrtr (Par. No. 1106) 171
Spd Draw Out Pct (Par. No. 1019) 125
Spd FB Filt BW (Par. No. 915) 140
Spd FB Filt Gain (Par. No. 914) 140
Spd FB Loss Lvl (Par. No. 455) 138
Spd Fdbk Control (Par. No. 457) 139
Spd Fdbk Invert (Par. No. 461) 139
Spd Fdbk Loss fault 223
Spd Fdbk State (Par. No. 651) 178
Spd Limit Active (Par. No. 372) 175
Spd Loss Flt Cfg (Par. No. 478) 183
Spd Match Acc (Par. No. 1196) 167
Spd Match Compl (Par. No. 1203) 167
Spd Match Dec (Par. No. 1197) 167
Spd Match Gain (Par. No. 1200) 167
Spd Match Torque (Par. No. 1216) 168
Spd Ref Sel Sts (Par. No. 1330) 180
Spd Ref Zero En (Par. No. 124) 148
Spd Reg Autotune (Par. No. 1027) 141
Spd Reg BW (Par. No. 434) 149
Spd Reg Damping (Par. No. 436) 150
Spd Reg Ki (Par. No. 88) 146
Spd Reg Ki Base (Par. No. 94) 140
Spd Reg Ki Outpt (Par. No. 100) 147
Spd Reg Kp (Par. No. 87) 146
Spd Reg Kp Base (Par. No. 93) 140
Spd Reg Kp Outpt (Par. No. 99) 146
Spd Reg Neg Lim (Par. No. 96) 146
Spd Reg Out Pct (Par. No. 236) 126
Spd Reg P Filter (Par. No. 444) 150
Spd Reg Pos Lim (Par. No. 95) 146
Spd Select 0 (Par. No. 400) 178
Spd Select 1 (Par. No. 401) 178
Spd Select 2 (Par. No. 402) 178
Spd Trq Mode Sel (Par. No. 241) 152
Spd Tune Inertia (Par. No. 1030) 141
Spd Up Gain Pct (Par. No. 445) 150
Spd Zero I En (Par. No. 123) 148
Spd Zero P En (Par. No. 125) 148
Spd Zero P Gain (Par. No. 126) 149
SpdFuncSelect (Par. No. 1016) 151
SpdOut FiltBW (Par. No. 239) 149
SpdOut FiltGain (Par. No. 238) 149
SpdReg AntiBckup (Par. No. 643) 151
SpdReg BW Bypass (Par. No. 448) 150
SpdReg FB Bypass (Par. No. 458) 139
SpdReg Ki Bypass (Par. No. 460) 151
SpdReg Ki Pct (Par. No. 1035) 141

SpdReg Kp Bypass (Par. No. 459) 150
SpdReg Kp Pct (Par. No. 1034) 141
SpdReg NegLmOut (Par. No. 90) 125
SpdReg PosLmOut (Par. No. 89) 125
SpdTune Friction (Par. No. 1031) 141
specifications
DC contactor crimp lug kits 262
Speed Command file 145-151
Speed Demand En (Par. No. 1215) 168
Speed Dev Band (Par. No. 1105) 171
speed draw
function 326
Speed Draw Out (Par. No. 1018) 125
Speed Feedback (Par. No. 122) 124
Speed Feedback Error alarm 227
Speed Feedback group 135-140
Speed Feedback Loss alarm 228
Speed Feedback Pct (Par. No. 121) 124
Speed Match (Par. No. 1195) 167
Speed Meters group 123-125
speed pot 83
Speed Ramp En (Par. No. 245) 153
Speed Ratio (Par. No. 1017) 146
Speed Ref A (Par. No. 44) 123
Speed Ref A Pct (Par. No. 47) 123
Speed Ref B (Par. No. 48) 123
Speed Ref B Pct (Par. No. 49) 123
Speed Ref Out (Par. No. 385) 124
Speed Ref Out Pct (Par. No. 384) 124
Speed Ref Source (Par. No. 1329) 179
speed reference sources
auto 310
manual 310
Speed References group 146
Speed Reg En (Par. No. 242) 149
Speed Reg In (Par. No. 118) 124
Speed Reg In Pct (Par. No. 117) 123
speed regulation
function 320, 323, 324, 325, 326
speed regulator
tune 339
Speed Regulator group 146-150, ??-151
speed source
change 311
Speed Thresh Neg (Par. No. 102) 147
Speed Thresh Pos (Par. No. 101) 147
Speed Threshold (Par. No. 393) 177
speed threshold indicators
function 324
Speed Tune Aborted fault 223
Speed Tune Current Limit fault 223 Speed Tune Dir (Par. No. 1029) 141
Speed Tune Friction Low fault 223
Speed Tune Ki (Par. No. 1033) 141
Speed Tune Kp (Par. No. 1032) 141
Speed Tune Load High fault 223
speed up
function 323
Speed Up Base (Par. No. 446) 150
Speed Up Filter (Par. No. 447) 150
speed zero
function 325
Speed Zero Delay (Par. No. 108) 148
Speed Zero Level (Par. No. 107) 148
Standalone Regulator
catalog number 16
standard drive
catalog number 15
standard I/O
terminal blocks 81
wire size 81
wiring examples 83
Start At Power Up alarm 228
start at powerup
configure 333
Start At Powerup (Par. No. 1344) 156
Start Inhibits (Par. No. 1403) 181
Start Mask (Par. No. 592) 188
Start Owner (Par. No. 601) 189
start up
drive 91
Static F Zero (Par. No. 1287) 169
Static Friction (Par. No. 1174) 165
status indicator
HIM 218
status indicators 218
Status1 at Fault (Par. No. 1349) 181
Status2 at Fault (Par. No. 1350) 181
Stop Modes group 155
Stop Owner (Par. No. 600) 189
storage (drive)
altitude 11
humidity 11
temperature 11
STS LED
green, flashing 218
green, steady 218
red, flashing 218
red, steady 218
yellow, flashing 218
yellow, steady 218
STune Overspeed fault 223
STune Stalled fault 223
STune Timeout fault 223
Sustained Curr fault 223
switching power supply circuit board
fuses 252

T
tachometer
DIP switch 77
ground 33
terminal block 88
Tachometer Speed (Par. No. 1408) 125

Taper Enable (Par. No. 1176) 166
TaskLoad 1 ms (Par. No. 1384) 180
TaskLoad 2 ms (Par. No. 1385) 180
TaskLoad 8 ms (Par. No. 1386) 180
TB Manual Ref (Par. No. 267) 146
temperature drive 18
Tension Reduct (Par. No. 1179) 166
Tension Ref (Par. No. 1180) 166
Tension Scale (Par. No. 1181) 166
tension set point signal configure 309
terminal adapter kits frame D 267
terminal blocks analog tachometer 88 armature converter, frame A 50 armature converter, frame B 51 armature converter, frame C 51 armature converter, frame D 52 armature voltage feedback, frame A 54 armature voltage feedback, frame B 54 armature voltage feedback, frame C 55 armature voltage feedback, frame D 55 control circuit power 65 encoder 86 field, frame A 57 field, frame B 58 field, frame (58,59 field, frame D 59
I/O converter circuit board 378 I/0 expansion circuit board 376 motor thermistor 62
relay output 62 SA-SB 68 standard I/0 81
test generator use 334
Test Generator group 142-144
TestPoint Data (Par. No. 1382) 180
TestPoint Sel (Par. No. 1381) 180
testpoints 231
thermal switch configure 62
thermistor configure 62
Threshold Delay (Par. No. 103) 147
Time AccDec Min (Par. No. 1182) 166
Torq Attributes group 133-134
Torq Cur Filter (Par. No. 926) 134
Torq Current Pct (Par. No. 1193) 167
Torq Limit Slew (Par. No. 1104) 171
Torq Limit Type (Par. No. 715) 155
Torq Prov Cflct alarm 228
Torq Prove Cfg (Par. No. 1100) 170
Torq Prove Setup (Par. No. 1101) 170
Torq Prove Sts (Par. No. 1103) 171
Torq Red CurLim (Par. No. 13) 154
Torque Const (Par. No. 1013) 141
Torque Negative (Par. No. 347) 175

Torque Positive (Par. No. 346) 175
Torque Prove group 170-172
Torque Reduction (Par. No. 342) 134
Torque Ref (Par. No. 39) 133
torque reference source 311
Torque Winder En (Par. No. 1209) 167
Total Inertia (Par. No. 433) 149
TP Encls Config alarm alarms

TP Encls Config 228
transient noise filter circuit board, frame C fuses 255
Trim Ramp (Par. No. 42) 146
Trim Ramp Pct (Par. No. 378) 146
Trim Speed (Par. No. 43) 146
Trim Speed Pct (Par. No. 379) 146
Trim Torque (Par. No. 40) 133
Troubleshooting
Crane Setup Encoderless 304
Crane Setup with Encoder 300
troubleshooting 217
TrqTpr Enable (Par. No. 750) 134
TrqTpr Lim0 (Par. No. 751) 134
TrqTpr Lim1 (Par. No. 752) 134
TrqTpr Lim2 (Par. No. 753) 134
TrqTpr Lim3 (Par. No. 754) 134
TrqTpr Lim4 (Par. No. 755) 134
TrqTpr Spd (Par. No. 756) 134
TstGen Amplitude (Par. No. 60) 142
TstGen Frequency (Par. No. 59) 142
TstGen Offset (Par. No. 61) 142
TstGen Output (Par. No. 58) 142
tune
current regulator 335
field current curve 343
field current regulator 337
speed regulator 339
voltage regulator 341

U

UnderVIt FIt Dly (Par. No. 470) 183
UnderVolt Thresh (Par. No. 481) 183
Ungrounded Secondary 34
unipolar speed reference
analog input 83
User Defined group 185-188
user sets 273
UserDefined0 (Par. No. 503) 186
UserDefined1 (Par. No. 504) 186
UserDefined10 (Par. No. 513) 186
UserDefined11 (Par. No. 514) 186
UserDefined12 (Par. No. 515) 186
UserDefined13 (Par. No. 516) 186
UserDefined14 (Par. No. 517) 186
UserDefined15 (Par. No. 518) 186
UserDefined2 (Par. No. 505) 186

UserDefined3 (Par. No. 506) 186
UserDefined4 (Par. No. 507) 186
UserDefined5 (Par. No. 508) 186
UserDefined6 (Par. No. 509) 186
UserDefined7 (Par. No. 510) 186
UserDefined8 (Par. No. 511) 186
UserDefined9 (Par. No. 512) 186
UsrDefBitWrdA (Par. No. 519) 186
UsrDefBitWrdAO (Par. No. 520) 187
UsrDefBitWrdA1 (Par. No. 521) 187
UsrDefBitWrdA10 (Par. No. 530) 187
UsrDefBitWrdA11 (Par. No. 531) 187
UsrDefBitWrdA12 (Par. No. 532) 187
UsrDefBitWrdA13 (Par. No. 533) 187
UsrDefBitWrdA14 (Par. No. 534) 187
UsrDefBitWrdA15 (Par. No. 535) 187
UsrDefBitWrdA2 (Par. No. 522) 187
UsrDefBitWrdA3 (Par. No. 523) 187
UsrDefBitWrdA4 (Par. No. 524) 187
UsrDefBitWrdA5 (Par. No. 525) 187
UsrDefBitWrdA6 (Par. No. 526) 187
UsrDefBitWrdA7 (Par. No. 527) 187
UsrDefBitWrdA8 (Par. No. 528) 187
UsrDefBitWrdA9 (Par. No. 529) 187
UsrDefBitWrdB (Par. No. 536) 187
UsrDefBitWrdBO (Par. No. 537) 188
UsrDefBitWrdB1 (Par. No. 538) 188
UsrDefBitWrdB10 (Par. No. 547) 188
UsrDefBitWrdB11 (Par. No. 548) 188
UsrDefBitWrdB12 (Par. No. 549) 188
UsrDefBitWrdB13 (Par. No. 550) 188
UsrDefBitWrdB14 (Par. No. 551) 188
UsrDefBitWrdB15 (Par. No. 552) 188
UsrDefBitWrdB2 (Par. No. 539) 188
UsrDefBitWrdB3 (Par. No. 540) 188
UsrDefBitWrdB4 (Par. No. 541) 188
UsrDefBitWrdB5 (Par. No. 542) 188
UsrDefBitWrdB6 (Par. No. 543) 188
UsrDefBitWrdB7 (Par. No. 544) 188
UsrDefBitWrdB8 (Par. No. 545) 188
UsrDefBitWrdB9 (Par. No. 546) 188
UsrDsplyDiv0 (Par. No. 51) 185
UsrDsplyMult0 (Par. No. 50) 185
UsrValDiv1 (Par. No. 54) 185
UsrValMult1 (Par. No. 53) 185
Utility file 174-188

V

Variable J Comp (Par. No. 1171) 165 view
changed parameters 273
parameters 274
peripheral device parameters 273
voltage regulator
tune 341

W

W Gain (Par. No. 1202) 167
W Offset (Par. No. 1199) 167
W Reference (Par. No. 1217) 168
W Target (Par. No. 1210) 168
warning
bipolar inputs 80
watts loss
data 234
weights
frame A 19
frame B 20
frame C 21
frame D 24
Winder Functions group 165-169
Winder Side (Par. No. 1201) 167
Winder Type (Par. No. 1187) 164
wire size
armature terminals 50
armature voltage feedback 53
field 56
I/0 converter circuit board 378
I/0 expansion circuit board 375
PE ground 50
standard I/0 81
wiring
2-wire control non-reversing 84
2-wire control reversing 84
3-wire control 84, 85
bipolar signal 84
bipolar speed reference 83
enable input 84
encoder 87
I/0 expansion circuit board 376
joystick 83
potentiometer 83
power 44
sourcing digital output 85
unipolar speed reference 83
wiring diagrams
I/0 converter circuit board 379
wiring examples
standard I/0 83
Write Mask Act (Par. No. 1377) 191
Write Mask Cfg (Par. No. 1378) 191

Z

Zero Ramp Input (Par. No. 345) 153
Zero Ramp Output (Par. No. 344) 153
Zero Torque (Par. No. 353) 134
ZeroSpdFloatTime (Par. No. 1113) 172

Rockwell Automation Support

Rockwell Automation provides technical information on the Web to assist you in using its products.
At http://www.rockwellautomation.com/support you can find technical and application notes, sample code, and links to software service packs. You can also visit our Support Center at https://rockwellautomation.custhelp.com/ for software updates, support chats and forums, technical information, FAQ s, and to sign up for product notification updates.

In addition, we offer multiple support programs for installation, configuration, and troubleshooting. For more information, contact your local distributor or Rockwell Automation representative, or visit http://www.rockwellautomation.com/services/online-phone.

Installation Assistance

If you experience a problem within the first 24 hours of installation, review the information that is contained in this manual. You can contact Customer Support for initial help in getting your product up and running.

United States or Canada	1.440 .646 .3434
Outside United States or Canada	Use the Worldwide Locator at http://www.rockwellautomation.com/rockwellautomation/support/overview.page, or contact your local Rockwell Automation representative.

New Product Satisfaction Return

Rockwell Automation tests all of its products to help ensure that they are fully operational when shipped from the manufacturing facility. However, if your product is not functioning and needs to be returned, follow these procedures.

United States	Contact your distributor. You must provide a Customer Support case number (call the phone number above to obtain one) to your distributor to complete the return process.
Outside United States	Please contact your local Rockwell Automation representative for the return procedure.

Documentation Feedback

Your comments will help us serve your documentation needs better. If you have any suggestions on how to improve this document, complete this form, publication RA-DU002, available at http://www.rockwellautomation.com/literature/.

Rockwell Automation maintains current product environmental information on its website at

http://www.rockwellautomation.com/rockwellautomation/about-us/sustainability-ethics/product-environmental-compliance.page

Rockwell Otomasyon Ticaret A.Ş., Kar Plaza İş Merkezi E Blok Kat: 634752 İçerenköy, İstanbul, Tel: +90 (216) 5698400
www.rockwellautomation.com

Power, Control and Information Solutions Headquarters

Americas: Rockwell Automation, 1201 South Second Street, Milwaukee, WI 53204-2496 USA, Tel: (1) 414.382.2000, Fax: (1) 414.382.4444
Europe/Middle East/Africa: Rockwell Automation NV, Pegasus Park, De Kleetlaan 12a, 1831 Diegem, Belgium, Tel: (32) 2663 0600, Fax: (32) 26630640
Asia Pacific: Rockwell Automation, Level 14, Core F, Cyberport 3, 100 Cyberport Road, Hong Kong, Tel: (852) 2887 4788, Fax: (852) 25081846

[^0]: (1) RF 3xxx-MHU EMC filter manufactured by Rasmi Electronics Ltd. xxx designates filter current rating. See the manufacturer published literature for details.
 (2) RF 3xxx-SIEI EMC filter manufactured by Rasmi Electronics Ltd. $x x x$ designates filter current rating. See the manufacturer published literature for details.
 (3) EPCOS B84143B Type S081 EMC filter manufactured by EPCOS AG. See the manufacturer published literature for details.

[^1]: (1) See Cable and Wiring Recommendations on page 43 for more information.

[^2]: (1) Selectable via switch S 21 on the control board. See Table 27 on page $\underline{76}$.
 (2) Selectable via switch S 20 on the control board. See $\underline{\text { Table } 27}$ on page $\underline{76}$.

[^3]: (1) You must use DriveExplorer software v5.02 or later or DriveTools SP software v4.01 or later with a PowerFlex DC drive specific software patch. The patch can be downloaded from http://www.ab.com/support/abdrives/webupdate/
 (2) You must use Connected Components Workbench software v2.00 or later. The software can be downloaded from http://ab.rockwellautomation.com/Programmable-Controllers/Connected-Components-Workbench-Software

[^4]: (1) See the Standard Drive Catalog Number Explanation on page 15, positions $8 \ldots 10$, for the Hp , armature amp, and field amp ratings that correspond to each drive current rating code listed in this table.

[^5]: (1) The Analog and Digital I/O Expansion circuit board is not factory installed.

[^6]: (1) The 115 V AC to 24 V DC $/ 0$ Converter circuit board is not factory installed.
 (2) If more than eight 115 V AC digital input signals require conversion to 24 V DC (i.e., the optional PowerFlex DC drive $\mathrm{I} / 0$ Expansion circuit board is used - see Appendix F), a second Converter board is required and must be sourced and wired independently from the 115 V AC to 24 V DC I/O Converter board mounted on the control board and be mounted in an appropriate enclosure external to the PowerFlex DC drive enclosure.

